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ABSTRACT Penicillin-binding proteins (PBPs) are essential for bacterial cell wall bio-
synthesis, and several are clinically validated antibacterial targets of �-lactam antibi-
otics. We identified mutations in the mrdA gene encoding the PBP2 protein in two
Escherichia coli blaNDM-1 clinical isolates that reduce susceptibility to carbapenems
and to the intrinsic antibacterial activity of a diazabicyclooctane (DBO) PBP2 and
�-lactamase inhibitor. These mutations coexisted with previously described muta-
tions in ftsI (encoding PBP3) that reduce susceptibility to monobactams, penicillins,
and cephalosporins. Clinical exposure to �-lactams is driving the emergence of mul-
tifactorial resistance that may impact the therapeutic usefulness of existing antibac-
terials and novel compounds that target PBPs.

IMPORTANCE Emerging antibacterial resistance is a consequence of the continued
use of our current antibacterial therapies, and it is limiting their utility, especially for
infections caused by multidrug-resistant isolates. �-Lactams have enjoyed extensive
clinical success, but their broad usage is linked to perhaps the most extensive and
progressive example of resistance development for any antibacterial scaffold. In
Gram-negative pathogens, this largely involves constant evolution of new �-
lactamases able to degrade successive generations of this scaffold. In addition, more
recently, alterations in the targets of these compounds, penicillin-binding proteins
(PBPs), are being described in clinical isolates, which often also have multiple
�-lactamases. This study underscores the multifactorial nature of �-lactam resistance
by uncovering alterations of PBP2 that reduce susceptibility to carbapenems in E.
coli clinical isolates that also have alterations of PBP3 and express the NDM-1
�-lactamase. The changes in PBP2 also reduced susceptibility to the intrinsic antibac-
terial activity of some diazabicyclooctane (DBO) compounds that can target PBP2.
This may have implications for the development and use of the members of this rel-
atively newer scaffold that are inhibitors of PBP2 in addition to their inhibition of
serine-�-lactamases.
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�-Lactams are a broad class of antibacterial agents that inhibit penicillin-binding
proteins (PBPs) essential for transglycosylation and transpeptidation of peptidogly-

can strands during bacterial cell wall biosynthesis (1). Many �-lactam antibiotics have
been developed and extensively used in the clinic over the past several decades. These
antibiotics have a wide range of PBP affinities and specificities, with most inhibiting
multiple PBPs (2). Unfortunately, the utility of this class of antibiotics is being under-
mined by continuing resistance development. In particular, resistance to carbapenems,
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a group that has been widely used as an agent of last resort to treat severe infections
caused by extended-spectrum-�-lactamase (ESBL)-expressing Enterobacteriaceae, is a
growing concern (3). Clinical resistance to �-lactams in Gram-negative bacteria had
primarily been attributed to the expression of plasmid-carried or chromosomal
�-lactamase genes (4), with reports of specific target mutations being rare in Gram-
negative pathogens. Recently, however, mutations in ftsI encoding insertions in PBP3
that reduce susceptibility to certain �-lactams have been identified in Escherichia coli
clinical isolates (5, 6). In addition, clinical isolates and in vitro-selected E. coli mutants
with reduced susceptibility to carbapenems showed changes in the gene encoding
PBP2 (7–9). Given the continuing emergence and spread of new �-lactamases, there is
interest in the development of novel �-lactamase inhibitors (BLIs) (4) and in the
development of novel �-lactam mimetics that are not impacted by �-lactamases (10).
One such class of BLIs and �-lactam mimetics is the diazabicyclooctane (DBO) scaffold,
which was discovered by chemists at Hoechst Marion Roussel, such as NXL-104
(avibactam), NXL-105 (11) (US2010092443 [12]), and compounds 1 and 2 (WO 02/
100860 [13]) (Fig. 1). DBOs are potent inhibitors of �-lactamases but were originally
designed as �-lactam mimetics, and some analogs such as NXL-105 also had intrinsic
antibacterial activity through inhibition of PBP2 and were viewed as potential antibac-
terial drugs (11). The notion that the antibacterial activity of such compounds should
be considered in drug discovery has also been echoed more recently (14). Antibacterials
that act mainly by inhibition of PBP2 can exhibit relatively high frequencies of selecting
non-target-based resistance in vitro via a multiplicity of mutations affecting the strin-
gent response, thereby reducing susceptibility to inhibition of PBP2 (15, 16). The
potential for target-based resistance to DBOs is currently not well understood. We
reported previously (17) that four NDM-1-expressing E. coli clinical isolates (NB27236,
NB27330, NB27307, and NB27326 [Table 1]) possessed a previously characterized (5)
mutation in ftsI encoding a YRIN insertion in PBP3 that reduces susceptibility to PBP3
inhibitors such as aztreonam (which is not degraded by NDM-1). Intriguingly, one of
these isolates, NB27307, was 4-fold less susceptible to the antibacterial activity of the
very potent DBO molecule NXL-105 than was NB27236 or the control E. coli strain
NB27001 and 2-fold less susceptible than NB27330 (Table 1), based on broth microdi-

FIG 1 Chemical structures of diazabicyclooctane (DBO) molecules. NXL-105 is described in reference 11
(US2010092443 [12]), and compounds 1 and 2 are described in WO 02/100860 (13).

TABLE 1 Mutations identified in E. coli clinical isolates and antibiotic susceptibilities of engineered E. coli mrdA mutantsa

E. coli strain Source PBP2 alteration

MIC (�g/ml) of drug:

NXL-105 Comp 1 Comp 2 IPM MEM ATM CAZ

NB27001 ATCC 25922 None 0.008 0.5 2 0.25 �0.06 0.125 0.25
NB27236 (FtsIYRIN) JMI V217M 0.008 4 1–2 16 �64 �64 �64
NB27330 (blaCTX-M-15 blaCMY-2 blaNDM-1, FtsIYRIN) IHMA V217M 0.016 8 4 32 �64 �64 �64
NB27307 (blaNDM-1 FtsIYRIN) ATCC BAA-2471 (27) L573Q 0.032 32 16 16 32 �64 �64
NB27326 (blaSHV-12 blaCMY-2 blaNDM-1 FtsIYRIN) IHMA V217M, V522I 0.016–0.032 32 16 4 16 �64 �64
BW25113 None 0.004 1 2 0.25 0.032 0.125 0.25
BW25113-CDK0001 This study L573Q 0.016 4 16 0.5 0.125 0.125 0.25
BW25113-CDK0004 This study V522I 0.004 4 16 0.5 0.06 0.125 0.25
aAbbreviations: ATM, aztreonam; CAZ, ceftazidime; IPM, imipenem; MEM, meropenem; ATCC, American Type Culture Collection; IHMA, International Health
Management Associates; Comp, compound. IPM, MEM, ATM, and CAZ were obtained from commercial sources. DBOs were synthesized at Novartis. MIC data were
generated according to CLSI methodology (18). Unique amino acid substitutions in PBP2 are indicated in bold. Strain numbers are Novartis internal numbering. Strain
NB27330 was isolated from the colon of a patient in India. NB27307 is a respiratory isolate from Pakistan, and NB27326 is an isolate from peritoneal fluid in India. No
additional information is available for strain NB27236.

Ranjitkar et al.

July/August 2019 Volume 4 Issue 4 e00074-19 msphere.asm.org 2

https://msphere.asm.org


lution assay according to CLSI methodology (18). Strain NB27326 was also 2- to 4-fold
less susceptible than NB27236 and NB27001 (Table 1). Strains NB27307 and NB27326
were also less susceptible to the less potent DBO compounds 1 and 2 (Fig. 1) than were
NB27236 and NB27330 (4- to 16-fold) and were 64-fold (compound 1) and 8-fold
(compound 2) less susceptible than the control strain NB27001 (Table 1). However,
strains NB27236 and NB27330 were also less susceptible to compound 1 (8- to 16-fold)
than the control strain NB27001 whereas they did not show these substantial shifts in
susceptibility to compound 2 (Table 1). Since the antibacterial activity of DBOs is
mediated by inhibition of PBP2 (14), we asked if NB27307 and NB27326 harbored
mutations in mrdA, which encodes PBP2. PCR amplification and sequencing of mrdA
from all four isolates, and the control strain NB27001 (ATCC 25922), using the primers
listed in Table 2, indicated that NB27307 and NB27326, the two isolates that were the
most consistently less susceptible to DBOs, each had unique mutations encoding
amino acid substitutions in PBP2 compared to the other isolates or to the E. coli ATCC
25922 or strain MG1655 mrdA reference sequences (19). These were T1718A, encoding
a unique L573Q substitution for strain NB27307, and G1564A, encoding a unique V522I
substitution for strain NB27326 (Table 1). NB27326 also had a V217M substitution in
addition to V522I, while the two more-susceptible isolates, NB27236 and NB27330,
harbored only the V217M substitution.

To establish whether the two unique alterations reduced susceptibility to DBOs or
�-lactams that act in part by inhibition of PBP2, each alteration was introduced
individually into the susceptible E. coli laboratory strain BW25113 by recombination as
previously described (20). Briefly, linear DNA fragments encompassing the appropriate
region of mrdA were amplified from E. coli clinical isolates NB27307 and NB27326 using
primers SR200 and SR201 (Table 2). There were three silent mrdA mutations in NB27326,
and these were present on the PCR fragment from this isolate. The fragments were then
individually transformed into electrocompetent E. coli BW25113 cells harboring the
pKD46 helper plasmid (20). Mutants were selected on individual LB agar plates (tryp-
tone, 10 g/liter; yeast extract, 5 g/liter; NaCl, 10 g/liter; agar, 1.5%) containing 0.25%
(wt/vol) arabinose and 0.25 �g/ml imipenem at 37°C. The introduced missense muta-
tions were confirmed on the genome for BW25113-CDK0001 and BW25113-CDK0004
(Table 1) by PCR and sequencing of the mrdA gene using primers SR202 and SR203
(Table 2). The three silent mutations within mrdA from clinical isolate NB27326 were
also introduced into mrdA of BW25113-CDK0004. Whole-genome sequencing of
BW25113-CDK0001 and BW25113-CDK0004 using previously described methodology
(21) confirmed that only the intended mutations were introduced on the genome.
These alterations caused a modest 2- to 4-fold decrease in susceptibility to imipenem
and meropenem, which act in part by inhibition of PBP2 (7) (BW25113-CDK0001

TABLE 2 Oligonucleotide primers used in this study

Primer purpose and name Sequence (5=–3=)
mrdA (PBP2) sequencinga

SR176 CATCACCACCAACCATCCTT
SR177 CCGTGCAGCACATCTTCATA
SR178 TGACGATATTGCTGCATTCC
SR179 GGTTCACCAGCGGTGTATTC
SR180 TGGTTTCCACGCCTAGTTATG
SR181 AGGTTTCGTTCGCTTTCAGA
SR182 CCGAATGGATGGGTAAATTC
SR183 TGTGGGATCGAGATGGACTT

Gene manipulations and diagnostic PCR
SR200 TTGACGGTATCTCCAGCAAA
SR201 GCTAAGGCCAGAGAGGAACA
SR202 ACACCATTCCGGTTGGTATC
SR203 TACGCTCCATCATGCCAATA

aThe mrdA gene was amplified from clinical isolates for sequencing in segments using primer pairs SR176/
SR177, SR178/SR179, SR180/SR181, SR182/SR183, and SR176/SR183.
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[L573Q] and BW25113-CDK0004 [V522I] [Table 1]). Susceptibility to aztreonam and
ceftazidime, which do not significantly engage PBP2 (2, 22), was not affected by either
alteration.

BW25113-CDK0001 also exhibited a 4-fold decrease in susceptibility to NXL-105 (11)
(Table 1). No shift in NXL-105 MIC was mediated by the V522I alteration alone
(BW25113-CDK0004); however, the possibility that V522I might cause a more subtle
shift (lower than 2-fold) in this strain background was not tested by growth curve
analysis. We speculated that less potent but structurally related DBOs such as com-
pounds 1 and 2 (Fig. 1) might reveal a more consistent effect of both the L573Q and
V522I alterations. Indeed, the activity of both compounds was decreased (4- to 8-fold,
respectively) for BW25113-CDK0001 (L573Q) and BW25113-CDK0004 (V522I) (Table 1).
As mentioned above, isolates NB27236 and NB27330, which harbored only the V217M
alteration, were less susceptible to compound 1 than NB27001, suggesting that this
change may differentially affect susceptibility to different DBO molecules, but this
remains to be confirmed. It should be noted that we did not determine the PBP binding
profiles for compounds 1 and 2 and therefore do not know if they differ. Nonetheless,
it is possible that an additional contribution of the V217M alteration that was not tested
here together with V522I in mutant BW25113-CDK0004 could be necessary to see a
shift in NXL-105 susceptibility in this mutant. Lastly, both BW25113-CDK0001 and
BW25113-CDK0004 were 4-fold less susceptible to the non-DBO PBP2 inhibitor amdi-
nocillin (MIC of 1 �g/ml for both compared to 0.25 �g/ml for BW25113 or NB27001).
The L573Q and related L573V substitutions were previously implicated in reducing
susceptibility to amdinocillin but were only tested along with other PBP2 alterations (9,
23). Overall, our data suggest that the amino acid substitutions identified in this study
affect the intrinsic antibacterial activity of these DBO molecules, but it is unlikely that
they would interfere with inhibition of �-lactamases by DBOs.

The PBP2 L573Q substitution identified here in the blaNDM-1-containing E. coli clinical
isolate NB27307 occurs at the same position as a previously described L573V substi-
tution associated with decreased susceptibility to imipenem (9) and is immediately
adjacent to an M574I substitution previously associated with reduced susceptibility to
carbapenems (7, 23). Furthermore, an L573Q substitution emerged in E. coli during in
vitro serial passaging studies using ertapenem (8). However, the V522I substitution
identified here in the blaNDM-1-containing E. coli clinical isolate NB27326 has not, to our
knowledge, been previously associated with resistance.

A BLAST search of publicly available NCBI sequences using the PBP2 L573Q variant
found one E. coli genome (NZ_CP021879.1; strain AR_0137) encoding the identical
PBP2 protein. E. coli strain AR_0137 is an antibiotic-resistant carbapenemase-producing
strain that is part of the FDA-CDC resistant bacteria panel (https://www.ncbi.nlm.nih
.gov/bioproject/294416). A similar BLAST search using only the truncated sequence
KIAERLRDHKQMTAFAPYNNPQVA, encompassing L573Q, yielded the same single hit.
Searching publicly available sequences using the PBP2 V522I (single) variant se-
quence yielded 17 E. coli genomes encoding the identical protein (GenBank accession
numbers AXN84639.1, TBI06625.1, RKP81685.1, AWR48380.1, OXK11063.1, RWS74779.1,
KZJ44915.1, ROK48460.1, AUY30260.1, OCO29799.1, QAY43423.1, QBC12101.1,
KDG76004.1, AXP27762.1, AYL12293.1, AWA17983.1, and VCY82512.1). These strains
were mainly multidrug-resistant (MDR) and carbapenem-resistant/carbapenemase-
producing clinical isolates, with RWS74779.1 having been isolated from water. This
suggests that the V5221 substitution in PBP2 could be emerging among MDR isolates.
Searching with the PBP2 V217M V522I double variant sequence dropped the number
of hits to two (GenBank accession numbers KSY14719.1 and PSF33251.1). One of these,
strain 50673720, was a carbapenemase-producing clinical isolate from Norway (24).

As mentioned above, it is well established that Gram-negative bacteria can become
less susceptible to PBP2 inhibition at high frequency through a multiplicity of nontarget
mutations related to the stringent response (15, 16). PBP2 target mutations affecting
DBO activity, being more rare, may be difficult to identify using standard in vitro
selection experiments, given the high background of stringent response mutants. Here,
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we noticed a trend suggesting differential susceptibility of clinical isolates and con-
firmed the presence of PBP2 alterations affecting DBO susceptibility. To our knowledge,
this is the first report of alterations in PBP2 that reduce susceptibility to the intrinsic
antibacterial activity of a DBO molecule. Antibacterial DBO molecules are referred to as
“enhancers” of the activity of �-lactams that inhibit other PBPs besides PBP2, due to
synergy arising during inhibition of multiple PBPs (25, 26). It is reasonable to suspect
that the PBP2 variants such as those identified in this study may therefore also reduce
this effect, but this remains to be determined. Nonetheless, the presence of these PBP2
variants in clinical isolates that also harbor the YRIN insertion in PBP3 (5) as well as
blaNDM-1, provides yet another glimpse into the clinical emergence of multifactorial
resistance, not only �-lactamase mediated but also involving multiple target mutations.
The latter can clearly impact currently used therapeutics but may also hamper the
future potential of novel �-lactam mimetics such as DBOs to the extent that their
effectiveness relies on engaging these targets.
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