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A B S T R A C T   

Vaccination is the most effective way to provide long-lasting immunity against viral infection; thus, rapid 
assessment of vaccine acceptance is a pressing challenge for health authorities. Prior studies have applied survey 
techniques to investigate vaccine acceptance, but these may be slow and expensive. This study investigates 29 
million vaccine-related tweets from August 8, 2020 to April 19, 2021 and proposes a social media-based 
approach that derives a vaccine acceptance index (VAI) to quantify Twitter users’ opinions on COVID-19 
vaccination. This index is calculated based on opinion classifications identified with the aid of natural lan-
guage processing techniques and provides a quantitative metric to indicate the level of vaccine acceptance across 
different geographic scales in the U.S. The VAI is easily calculated from the number of positive and negative 
Tweets posted by a specific users and groups of users, it can be compiled for regions such a counties or states to 
provide geospatial information, and it can be tracked over time to assess changes in vaccine acceptance as related 
to trends in the media and politics. At the national level, it showed that the VAI moved from negative to positive 
in 2020 and maintained steady after January 2021. Through exploratory analysis of state- and county-level data, 
reliable assessments of VAI against subsequent vaccination rates could be made for counties with at least 30 
users. The paper discusses information characteristics that enable consistent estimation of VAI. The findings 
support the use of social media to understand opinions and to offer a timely and cost-effective way to assess 
vaccine acceptance.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) is a novel communicable 
disease. Along with non-pharmaceutical interventions to reduce human- 
to-human transmissions, the COVID-19 vaccine is the primary strategy 
to help contain infection, decrease morbidity, and reduce loss of life. The 
U.S. began its first vaccine distribution on December 14, 2020, and more 
than 172.2 million Americans (52.4% population) were fully vaccinated 
as of August 26, 2021 [1]. However, vaccine hesitancy has been an 
obstacle to reaching herd immunity [2]. 

Government agencies and health authorities need information to 

assess and respond to public sentiment about vaccination, both accep-
tance and hesitancy. For simplicity, the term acceptance is used to 
encompass both acceptance and hesitancy. Prior studies have estimated 
vaccine hesitancy by asking respondents’ willingness to receive vaccines 
[3–5]. Early survey-based studies used general wording that focused on 
certain groups to formulate an assessment for adolescent and childhood 
vaccine hesitancy [6,7]. With a deeper understanding of vaccine hesi-
tancy, recent studies have integrated more aspects [4,5] and collected 
responses through a variety of techniques, such as online tools [8], 
telephone interviews [9], and systematic literature reviews [10]. 

Among these survey-based models, the “3C” (confidence, 
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complacency, convenience) model and the Working Group De-
terminants of Vaccine Hesitancy Matrix were widely applied, both of 
which were developed by the Strategic Advisory Group of Experts 
(SAGE) at the World Health Organization (World Health Organization 
(WHO) SAGE, 2014). The “3C” model focuses on measuring the “3C’s 
lens” and identifies barriers within the community. In contrast, the 
Vaccine Hesitancy Matrix emphasizes external factors (e.g., culture, 
society, environment, and health aspects) derived from literature re-
views and expert opinions. Other commonly applied indices include, for 
high-income countries, the Global Vaccine Confidence Index [12] and 
the Vaccine Hesitancy Scale [13]; and, for the low- and middle-income 
countries, the Caregiver Vaccine Acceptance Scale [14]. 

In the context of COVID-19, recent studies have demonstrated the 
usefulness of survey tools to measure the acceptance of vaccination 
[15,16] and to understand its driving factors. In particular, the U.S. 
Centers for Disease Control and Prevention (CDC) applied the House-
hold Pause Survey (HPS) to evaluate vaccine hesitancy [17]. They used 
survey results to estimate state-level hesitancy rates and then applied a 
“downscaling” method to predict county-level hesitancy rates based on 
the Census Bureau’s 2019 American Community Survey (ACS) [17]. The 
final result for each county is an estimate of the percentage of the 
population that may be vaccine-hesitant. 

Survey-based methods have also been applied to assist the assess-
ment of vaccine acceptance [5,18–20]. These may target specific groups 
(e.g., parents [7,21], healthcare providers [22]) and specific places. 
Therefore, these methods may provide limited insights on broad public 
perceptions of vaccine acceptance at different geographical scales. 
Developing survey-based indices for a wide application may demand a 
commitment of long-term investigation and a large effort to collect 
representative responses. 

Collecting information from social media platforms, in contrast, can 
cover large geographical areas at comparatively low cost. Although 
these data may be of lower fidelity than survey questions, they can be 
obtained almost instantaneously. Throughout the COVID-19 pandemic, 
social media have been a forum for vaccine-related public discourse 
where opinions regarding the COVID-19 vaccines circulate rapidly [23]. 
Opinions expressed on social media provide data resources that can be 
leveraged to rapidly assess vaccine acceptance. 

Existing studies using social media data to assess opinions related to 
vaccines mainly evaluate vaccine-related contents through semantic 
analysis or sentiment analysis [24–26]. They have captured online 
opinions (e.g., pro- or anti-vaccine campaigns) to help health organi-
zations more readily recognize prevalent vaccination messages [27–29]. 
Other studies have discussed the role of social media in enhancing 
vaccine confidence [30,31]. For example, Rosen et al [31] found a 
positive correlation between social media engagement and HPV vaccine 
awareness. The study suggested that enhancing the connection between 
health organizations and the public through social media can help 
disseminate vaccine information strategically. 

Studies that attempt to estimate vaccine acceptance using social 
media data are less common than survey studies. Piedrahita-Valdés et al. 
[32] applied sentiment analysis to estimate global vaccine hesitancy 
using Twitter data for all types of vaccines from 2011 to 2019. They 
found that the percentage of neutral tweets showed a decreasing ten-
dency, while the percentage positive and negative tweets increased over 
time. Johnson et al. [33] investigated 100 million Facebook users 
expressing opinions regarding vaccination to study the evolution of pro- 
and anti-vaccine clusters from February to October 2019. To classify the 
clusters, they manually reviewed Facebook pages and identified 
whether each page was part of a pro- or anti-vaccination cluster. The 
study found that anti-vaccination clusters managed to become highly 
entangled and dominated in Facebook networks. 

The broad set of studies seeking to leverage social media have 
demonstrated the potential of these data to investigate online messages 
regarding vaccine acceptance. However, most prior studies have applied 
sentiment and other textual analysis to indicate vaccine acceptance 

qualitatively, but not to estimate acceptance quantitatively, and across 
different geographical regions. Further, there has been little discussion 
of the reliability of social media data in assessing vaccine acceptance. 

To fill the research gaps, the present study explores the utility of 
social media data to render quick indication of COVID-19 vaccine 
acceptance. The primary objectives are to,  

1. Explore whether social media is a reliable indicator of vaccine 
acceptance as validated through later vaccination rates in the context 
of COVID-19.  

2. Discuss specific circumstances in which social media data generate a 
reliable estimate of vaccine acceptance (e.g., length of time to collect 
data, number of users to include, granularity of the analysis). 

The study addresses the above two objectives via the analysis of 
Twitter data related to COVID-19 vaccine in the U.S. Specifically, the 
study proposes a vaccine acceptance index (VAI) to quantify online 
opinions towards vaccination. The study includes temporal and spatial 
analysis to validate the reliability of conclusions from social media data 
against vaccination rates published by official channels. The intent is to 
monitor vaccine acceptance across different geographical areas with 
rapidity, broad spatial coverage, and cost-effectiveness. 

2. Material and methods 

2.1. Study design 

The concepts of acceptance, hesitancy, and uptake appear in a 
breadth of vaccine literature. While the specific definitions used in a 
study may differ, the present study uses the following definitions. Vac-
cine acceptance is taken as the individual or group decision to accept or 
refuse when presented with an opportunity to vaccinate [34]. Vaccine 
hesitancy refers to situations where people have doubts or concerns to-
ward vaccinations, without referring to actual vaccine receipt [34]. 
Vaccine uptake refers to the proportion of a population that has received 
a specific vaccine. Unlike vaccine uptake which is an objective measure, 
vaccine acceptance and vaccine hesitancy consider people’s willingness 
to accept or refuse when presented the opportunity to vaccinate [35]. 

The research framework is illustrated in Fig. 1. It starts with data 
preparation, which involves collecting English-language tweets con-
taining the keyword “vaccine” and appearing from August 9, 2020, to 
April 18, 2021. For consistency, this search word choice was maintained 
throughout the study window even if additional words and phrases 
began to be used later in the study. For example, the word “vaccination,” 
might also be contained in tweets expressing people’s opinions towards 
COVID-19 vaccine acceptance. However, “vaccination” is typically used 
to refer to receiving or administering the vaccine and the COVID-19 
vaccination efforts did not begin until December 14, 2020 [1] 
(approximately halfway through the study window). 

To develop the training set, a set of the 15,000 most frequently 
occurring tweets were sampled from the tweet pool. These were 
manually labeled (i.e., classified into one of three categories) by the 
authors, as documented in Section 2.2. Then, a random sample of 2,000 
unique tweets (distinct from the training tweet samples) was selected 
and manually labeled (using the same criteria for labeling as applied to 
the training samples) to build the testing set. Following the creation of 
the training and testing sets, a text augmentation technique was used to 
balance the training set, generating a larger augmented dataset with an 
approximately balanced sample distribution between three label cate-
gories, as described in Section 2.2.4. 

Text classification pipelines were developed to classify a tweet into 
one of three categories of opinion toward the COVID-19 vaccine: posi-
tive, negative, or unrelated. The construction of the text classification 
pipelines is described in Section 2.3. The initial training set and the 
augmented training set were used to train nine candidate text classifi-
cation pipelines (including two sentiment tools). Recall, Precision, F1- 
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score, and Accuracy – defined in Section 2.3.4 – were used to measure 
the performance of each model on the testing set. 

The best-performing pipeline was applied to the entire dataset to 
label all available tweets. Then, a vaccine acceptance index (VAI) was 
developed to measure the online level of vaccine acceptance in a 
geographic area during a particular period (Section 2.4). This VAI for a 
particular region requires information regarding the location of indi-
vidual Twitter users. Section 2.5 explains the process of location 
identification. 

2.2. Data preparation 

2.2.1. Data collection 
The Twitter Standard Search API [36] was used with the search term 

“vaccine” and geocode “39.8, − 95.583, 2500 km” [37] to scrape 
vaccine-related tweets in the date range from August 9, 2020 to April 18, 
2021 over the geographic area covered by the geocode. This geocode 
parameter value is specified by “latitude, longitude, radius,” and it 
returns tweets by users located within a radius of 2,500 km of the center 
39.8, − 95.583. The study selected this date range after the announce-
ment of the first COVID-19 vaccine made by the Russian government on 
August 8, 2020, and before the U.S. mass vaccination started on April 
19, 2021. The search word “vaccine” would return tweets that 
mentioned COVID-19 vaccine, but some fraction of the returned tweets 
was not COVID-19 related (e.g., HPV vaccine, flu vaccine). The latter 
were labeled as unrelated. The downloaded tweets included original 
tweets, mentions (i.e., a tweet that quotes another user’s username), 
replies (i.e., a comment to another user’s tweet), and retweets (i.e., a 
reposting of a tweet) that contained the keyword “vaccine.” The 
geographic search range was restricted to continental North America 
with the given geocode to investigate the U.S. public’s response to the 
COVID-19 vaccine. The resulting dataset contains 29,213,502 English 
language tweets. 

2.2.2. Manual labeling 
To classify users’ opinions towards the COVID-19 vaccine, the most 

frequently occurring 15,000 tweets were selected (i.e., the 15,000 
unique tweets retweeted the most) and manually classified each tweet 
into a “positive (class 1),” “negative (class − 1),” or “unrelated (class 0)” 
about COVID-19 vaccine. Sentiment analysis was not used to classify the 
tweets because it was judged that sentiment score might not represent 
the user’s opinion in the research context. For example, the tweet “Rich 
people did not experience the same pandemic as working-class people and 
now they get the vaccine first. It’s actually twisted” is identified as negative 
using sentiment analysis, but it does not necessarily imply that this user 
was negative about the COVID-19 vaccine. A prior study also reveals the 
difference between sentiment and opinion mining in the text [38]. 

The criteria for manual labeling are based on the CDC strategy to 
reinforce confidence in COVID-19 vaccines [39]. Table 1 illustrates the 
specific labeling criteria used and examples. Tweets discussing vaccine 
passport (the second example in the class “unrelated” in Table 1) were 
labeled as unrelated (class 0) given that a Twitter user could possibly 
oppose to the vaccine passport while accepting the vaccine. 

The manual classification process considered the 15,000 unique 
tweets that were retweeted the most, but subsequent analysis incorpo-
rated classifications for all retweets, given that online users who 
retweeted a tweet were presumed to share the same opinion as the 
original tweet. Each tweet in the training set was labeled by two anno-
tators. When a tweet received the same label from both annotators, it 
was considered as the final label for this tweet. When there was a 
disagreement, the label was finalized through a short discussion by the 
annotators. As a result, there are 13,624 tweets (90.8% of training data) 
that received the same labels from two annotators, and the rate of 
variation between two annotators is 9.1% ((15000–13624)/15000). The 
manual labeling process resulted in a training set of 4,092 positive 
tweets (class 1), 1,783 negative tweets (class − 1), and 9,125 unrelated 
tweets (class 0). 

Next, 2,000 unique tweets were randomly selected (different from 

Fig. 1. The research framework for the implementation of the proposed model.  
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the training set), and the same label criteria was used to build the testing 
set. As a result, the rate of variation is 8.1% ((2000–1837)/2000), and 
the testing set contained 492 positive tweets (class 1), 224 negative 
tweets (class − 1), and 1,284 unrelated tweets (class 0). The training and 
testing sets were used for building and assessing the performance of a 
text classification model. In particular, the manually labeled samples in 
the testing set were considered as the “ground-truth” values and used to 
measure the classification performance of different candidate models. 

2.2.3. Text cleaning 
Before text classification, several steps were applied to clean the 

tweets. First, short URLs, user names (@username), the retweet prefix 
(RT @username), digits, emojis, and punctuations were removed. Next, 
each tweet was tokenized into a list of separate words and characters. 

Then the tokenized words were converted to their stemming forms 
(lemmatization). The Natural Language Toolkit (NLTK) python package 
was used to complete the text cleaning [40]. 

2.2.4. Sample balance 
Imbalance in the training set (9,125 class 0 tweets, 4,092 class 1 

tweets, and 1,783 class − 1 tweets) might pose an issue for the text 
classification process in that the trained model could classify a random 
tweet as class 0 to obtain a high testing accuracy. As a result, the trained 
model might not produce an adequate performance for the minority 
class. There are two practical methods to tackle this issue, down-
sampling and upsampling. Downsampling balances classes by training 
on a small subset of the majority class samples, while upsampling bal-
ances classes by increasing the size of the minority class samples. Since 
downsampling might lead to a loss of information for the model to 
capture “unrelated” tweet information, upsampling was used to balance 
the training samples. 

The easy data augmentation (EDA) technique was selected to 
perform upsampling since it does not require a model pre-trained on an 
external dataset [41]. The EDA technique uses four operations to in-
crease the text sample size: 1) synonym replacement (random words in a 
text are replaced by a synonym), 2) random insertion (random words are 
inserted into the text), 3) random swap (randomly swap two words in 
the text), and 4) random deletion (randomly delete words in the text) 
[41]. 

The coding recommendations proposed by the original article were 
followed and the augmentation for class 1 and class − 1 was set to one 
time and four times, respectively. As a result, the augmented training 
dataset contained 8,184 class 1 samples, 9,125 class 0 samples, and 
8,915 class − 1 samples. To test the sensitivity of results to this exper-
iment choice, both the original training set and the augmented 
(upsampled) training set were used to train a classification model in the 
subsequent experiments. 

2.3. Text classification 

2.3.1. Sentiment classification 
Sentiment classification, although it is different from opinion clas-

sification, was used to test the credibility of opinion classification. 
Sentiment classification tools use natural language processing (NLP) to 
analyze conversations and classify text into a positive, negative, or 
neutral emotional category. This study applied two popular Python- 
based sentiment tools, Textblob and Vader (Valence Aware Dictionary 
and sEntiment Reasoner). Textblob is a free Python library for pro-
cessing textual data and provides a simple integrated and convenient 
API for diving into sentiment analysis [42]. Vader is an open-sourced 
and lexicon-based sentiment analysis tool under MIT license that is 
attuned to the sentiment expressed in social media [43]. 

2.3.2. Text vectorization 
Text vectorization converts text into a vector or a matrix of vectors of 

numbers. Two text vectorization approaches were applied: Term 
Frequency-Inverse Document Frequency (TF-IDF) and Word Embedding 
methods. TF-IDF is a term weighting method used to perform text sim-
ilarity, text classification, and information retrieval [44]. The key for-
mula of TF-IDF is, 

w(t,D) = tf (t,D)⋅idf (t,N) = ft,D⋅log(
N
nt
) (1)  

in which w(t,D) denotes the word t’s weight in tweet D; ft,D represents 
the frequency of word t in tweet D;N is the total number of tweets; and nt 
is the number of tweets in which word t appears. Although TF-IDF does 
not capture word position or semantic similarity, it is an efficient al-
gorithm for matching words in a query to documents [45]. Due to its 
simplicity and fast computation, TF-IDF is useful when dealing with a 

Table 1 
Tweet classifications and examples.  

Class Label Criteria Tweet Example 

Positive 
(Class 1)  

• Refer to safety and 
effectiveness.  

• Show positive emotion (e.g., 
willingness to take vaccine).  

• Describe large distribution and 
administration, process and 
policies that lead to vaccine 
development, authorization, 
and recommendation. 

I got the Pfizer vaccine and pso 
pfar pno pside effects [sic].  

Today was a good day. I have 
never been happier to wait in a 
line. If you’re eligible, join me 
and sign up to get your vaccine. 
Come with me if you want to live!  

The U.S. recorded 3.1 million 
vaccine doses administered 
today, according to the CDC.  

Yesterday, in an effort to instill 
confidence in the vaccine, I had 
my shot administered in public. I 
have absolute confidence in the 
vaccine and look forward to the 
second shot. 

Negative 
(Class-1)  

• Show safety concern (e.g., 
illness, death, vaccine 
accidents, strong allergic 
reaction).  

• Express negative emotion (e.g., 
not willing to take vaccine, 
protest against the vaccine). 

The Oxford University 
coronavirus vaccine trial has 
been paused in what drug maker 
Astra Zeneca described as a 
“routine” action taken when 
there is a potentially unexplained 
illness among participants.  

23 die in Norway after receiving 
Pfizer COVID-19 vaccine: 
officials https://t. 
co/A56OlLYmz0.  

America’s Frontline Doctors are 
at the CDC in Atlanta to protest 
against forcing millions of 
Americans to take an 
experimental vaccine for Covid- 
19, a pathogen with a survival 
rate of 99.7%. We will fight 
against any experimental therapy 
being forced on anyone. 

Unrelated 
(Class 0)  

• Discuss topics not related to 
vaccine confidence (e.g., 
vaccine rollout, vaccine equity, 
vaccine passport).  

• Describe topics not related to 
COVID-19 vaccine (e.g., flu 
vaccine, HPV vaccine). 

Rich people did not experience 
the same pandemic as working 
class people and now they get the 
vaccine first. It’s actually twisted.  

No vaccine passport. It doesn’t 
get much more dystopian than 
being required to show your 
“health papers” wherever you go.  

Even with a vaccine, I’ll still be 
wearing a mask and continuing 
cleaning and social distancing. I 
ain’t had a cold or nothing since 
March.  
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large set of textual data. 
Unlike TF-IDF, word embedding techniques can help capture se-

mantic meanings [46], which may be used to compute text similarity 
and perform text classification. Word embedding methods convert each 
word into a vector of real numbers. Two popular pre-trained word 
embedding methods were applied in this study: FastText [47] and 
Global Vectors (GloVe) [48]. FastText applied in this research was pre- 
trained on Wikipedia based on 300 dimensions [47]. GloVe was trained 
based on Twitter content and each word was mapped using 300-dimen-
sionals [53]. 

2.3.3. Multi-class classifiers 
Multi-class classification involves more than two classes. In this 

study, the target domain contains three classes: class 1 (positive), class 
− 1 (negative), and class 0 (unrelated). After each word in a tweet was 
converted to a vector using the TF-IDF method or word embedding 
methods, different machine learning classifiers were applied to classify 
each tweet into one of the three classes. 

Classifiers used in this study were Decision Tree (DT), Random Forest 
(RF), Naïve Bayes (NB), Support Vector Machine (SVM), Logistic 
Regression (LR), and Long Short-Term Memory (LSTM). These are well 
machine learning classifiers and can be used in conjunction with the TF- 
IDF text vectorization method. Pipelines using these classifiers com-
bined with the TF-IDF technique were constructed based on the Scikit- 
learn Python library [50]. The TF-IDF method converts a tweet into a 
vector of features; however, word embedding techniques convert each 
word in a tweet into an n-dimensional vector based on the pre-trained 
dataset. Thus, each tweet sample is represented as a matrix, with each 
column denoting the word vector. Given that the input to a classification 
model is a matrix, it usually requires deep learning techniques (e.g., 
neural networks) to deal with such classification tasks. In this study, the 
LSTM model was applied for text classification in conjunction with word 
embeddings. The implementation was constructed with the Keras Py-
thon library [51]. 

2.3.4. Performance measurement 
Ultimately, two sentiment-based classifiers (Textblob and Vader), 

five vector-based machine-learning based classifiers (TF-IDF + DT, TF- 
IDF + RF, TF-IDF + NB, TF-IDF + SVM, and TF-IDF + LR) and two deep- 
learning classifiers (FastText + LSTM and GloVe + LSTM) were 
considered as candidate models. The nine candidate models were 
trained using the manual classified training data (with and without 
upsampling), and performance was assessed using the “unseen” 2,000 
tweets contained in the testing set. Each of these machine learning 
classifiers contains hyperparameters that control the learning process. 
The grid search method was applied to tune the hyperparameters and to 

search for the ideal model architecture. The parameter range of grid 
search for different classifiers is presented in Table 2. 

Precision, Recall, and F1-score were used to assess the classification 
performance on the testing data. Precision measures the fraction of true 
positive cases over the retrieved cases a model predicts. Recall is the 
fraction of true positive cases over all the relevant cases that are actually 
identified. The F1-score is a rating of test accuracy, combining Recall 
and Precision [52]. They are defined as: 

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F1score =
2 × Recall × Precision

Recall + Precision
(4)  

Accuracy =
TP + TN

TP + TN + FP + FN
(5)  

where TP = True Positive, TN = True Negative, FP = False Negative, and 
FN = False Negative. 

Using grid search, different hyperparameters listed in Table 2 were 
tuned to achieve an idea architecture for each machine learning classi-
fier. The best hyperparameter combination for each classifier was 
selected mainly based on F1-scores and testing accuracy. Performance 
on the testing dataset of these classification models with the best tuned 
hyperparameters is shown in Table 3 for both the original and upsam-
pled training sets. 

The TF-IDF + RF trained on an augmented training set offered the 
best performance overall and therefore was applied to the whole dataset 
in subsequent steps. The performance of some models improved but 
some reduced when dealing with the augmented training set, according 
to the F1-scores. One possible explanation is that the text augmentation 
added more samples to balance the classes but also introduced more 
information to the training process (e.g., more words with synonym 
change, and more training samples with the same classification). How-
ever, with sample balance, most models showed an improvement on 
class 1 and class − 1. In particular, the performance of some models 
(built with NB and RF) for class − 1 greatly improved with sample 
balance, as demonstrated by a higher F1-score. 

Second, pipelines using word embedding techniques were not 
consistently superior to those built on TF-IDF even those word- 
embedding methods are often considered more advanced. In applica-
tions such as those in this study, it is crucial to discriminate between 
words with similar meanings. However, the word embedding techniques 
may contain too much hidden information that is difficult to understand 
by the machine. 

Third, the performance of sentiment classification tools was barely 
satisfactory, as demonstrated by lower F1-score and testing accuracy. As 
discussed, in applications of mining opinions from social media data, 
sentiment scores may not sufficiently reflect users’ opinions, especially 
when involving complex context (e.g., irony, metaphor). 

2.4. Vaccine acceptance index (VAI) 

The selected classification model TF-IDF + DT trained on the 
upsampled training dataset was applied to 29,213,502 tweets contained 
in the full dataset. A classification was assigned to each tweet and used 
to compute a user-based vaccine acceptance measure. The following 
index was proposed to measure vaccine acceptance in geographic area 
during a particular period. Vaccine acceptance was defined for a specific 
Twitter user j during time-period k (VAj,k) as: 

VAj,k =
Pjk − Njk

Pjk + Njk
(6) 

Table 2 
The grid search of hyperparameters for different machine learning classifiers.  

Classifier Grid search range 

DT Max depth: [10, 20, 40, 60, 80, 120, 200] 
Min samples leaf: [1,2,4] 

RF Max depth: [10, 20, 40, 60, 80, 120] 
Min samples leaf: [1,2,4] 
Num of estimators: [50, 100, 200, 300, 400, 500] 

Multinomial 
NB 

Alpha (smooth parameter): [0.1, 0.2, 0.5, 1, 1.5, 2] 

Linear SVM C (regularization parameter): [0.01, 0.05, 0.1, 0.5, 1, 2, 10, 100] 
Max iteration: [200, 500, 1000, 2000, 3000, 4000] 

Multinomial LR C (inverse of regularization strength): [0.01, 0.1, 0.5, 1, 2, 5, 10, 
20, 100] 
Multiclass solver: [‘sag’, ‘saga’, ‘lbfgs’] 
Max iteration: [500, 1000, 2000, 4000, 8000, 12000] 

LSTM Batch size: [16, 32, 64, 128, 256] 
Num of epochs: [10, 20, 30, 50, 80, 100, 150] 
Learning rate: [0.001, 0.01, 0.05, 0.1, 0.2] 
Drop rate: [0.2, 0.3, 0.4, 0.5]  
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where Pjk and Njk denote the number of positive tweets and negative 
tweets, respectively, that this user posted in the given period. This 
Twitter-derived vaccine acceptance index reflects public opinions over 
COVID-19 vaccine acceptance that emerged on Twitter. This index was 
computed based on the unit of users rather than tweets. 

The regional vaccine acceptance index for geographical region i 
during time-period k (VAIi,k) was computed as the average of the indices 
computed for all Ri,k users located in the region: 

VAIi,k =
1

Ri,k

∑Ri,k

j=1
VAj,k (7) 

For example, if a user j (located in region i) posted five tweets during 
time period k identified as {− 1, 0, 1, − 1, − 1}, then the acceptance value 
for that user during the time period (VAj,k) is (1–3)/(1 + 3) = − 0.5. If 
Ri = 6 users from region i posted related messages during time period k, 
and their acceptance values are computed as {− 0.5, 0.5, − 0.5, 0.2, 0.8, 
0.7}, then the VAI for region i and time period k (VAIi,k) is computed as 

(− 0.5 + 0.5–0.5 + 0.2 + 0.8 + 0.7)/6 = 0.2. For the following analysis, 
this formula was used to compute VAI at the national, state, and county 
levels in each time period. 

2.5. Location identification 

The regional vaccine acceptance index requires information 
regarding the location of individual Twitter users. There are two types of 
information that can be leveraged to identify a user’s location: (1) a user 
posting geolocation information (latitude/longitude) as part of a public 
tweet, and (2) a user providing registration location (i.e., home location) 
as part of their public profile. While geolocation tied to a tweet provides 
the most robust location information, only a small proportion of tweets 
in the dataset (18,806 out of 29,213,502 or 0.06% of tweets) were 
associated with latitude and longitude. This does not provide sufficient 
data to reveal the temporal and spatial patterns of interest. However, 
Twitter allows users to register home locations in their user profile. More 
than half (16,334,206 out of 29,213,502 or 55.9%) of tweets in the 
dataset had registration locations indicating either U.S. state or city. 
Therefore, registration location was used to ensure sufficient data for 
temporal and spatial analysis. 

To identify state and county information from registration profiles, a 
simple word mapping was applied based on a list of U.S. locations (cities, 
counties, state names, and state codes) obtained from SimpleMaps.com 
[53]. For example, the following registration locations, “California, 
USA,” “CA,” and “California,” indicate the State of California. Other 
registration locations may contain more specific location information, 
such as city or county. For example, the following locations, “Los 
Angeles, CA” “New York City,” “Orlando,” and “Houston, TX,” contain 
city information. Location information was used to identify the user’s 
profile state and, if possible, the user’s profile county. If a registration 
location contained only city information, it was referred to its corre-
sponding county and state. For example, if a user’s registration location 
is “Seattle,” then the county information for this location was identified 
as “King County” and the state is identified as “Washington.” Using this 
approach, a Python code was developed by the authors, and 16,334,206 
records were extracted containing state information for nation-level and 
state-level analysis and 8,885,549 records containing the county infor-
mation for county-level analysis. 

Some limitations of this application are noted. First, this approach 
cannot identify locations that were not presented in the list of U.S. lo-
cations obtained from SimpleMaps.com, such as “Times Square” or 
“Long Island.” Second, this approach only returns the last location in-
formation when a user’s profile contains multiple locations. For 
example, if the registration location includes two locations such as “LA 
and NYC,” the method will only identify the last location “NYC” and 
refers it to the county and state information “New York, NY.” Third, it 
cannot capture nouns of locality in the users’ registration locations, such 
as “near,” “between,” “north to,” and “close to.” Last, this approach 
returns the county and state information with the most populated area 
when the user’s input only contains the city name that may refer to 
multiple locations in the U.S. For example, a user’s input of “Portland” 
can refer to a city in Oregon, Maine, Colorado, Texas, Tennessee, or 
Indiana. This approach generates the county and state information as 
“Multnomah, Oregon” given that the Portland city in Oregon has the 
largest population among these cities. 

3. Results 

3.1. National-level analysis 

The volume of positive- and negative-classified tweets over time is 
shown in Fig. 2a. Fig. 2b shows the national VAI computed each day and 
on a 7-day rolling average. For the daily values (blue line in Fig. 2b), a 
clear rising trend in observed during the study period. This character-
ization appears consistent with survey results on 7,420 American adults 

Table 3 
Classification performance.   

Without sample balance With sample balance 

Class 
1 

Class − 1 Class 0 Class 
1 

Class − 1 Class 0 

Precision 
Textblob  0.33 0.15 0.60    
Vader  0.33 0.19 0.58    
TF-IDF + DT  0.46 0.29 0.68  0.41 0.26 0.67 
TF-IDF + RF  0.91 0.91 0.66  0.70 0.57 0.79 
TF-IDF + NB  0.69 0.58 0.70  0.58 0.35 0.84 
TF-IDF + SVM  0.61 0.49 0.76  0.56 0.40 0.81 
TF-IDF + LR  0.68 0.58 0.75  0.58 0.41 0.81 
FastText +

LSTM  
0.65 0.43 0.68  0.44 0.26 0.78 

GloVe + LSTM  0.56 0.40 0.72  0.40 0.32 0.75  

Recall 
Textblob  0.57 0.26 0.31    
Vader  0.52 0.52 0.24    
TF-IDF + DT  0.36 0.21 0.78  0.39 0.31 0.66 
TF-IDF + RF  0.24 0.04 0.99  0.61 0.49 0.85 
TF-IDF + NB  0.43 0.11 0.92  0.63 0.73 0.63 
TF-IDF + SVM  0.56 0.38 0.82  0.62 0.66 0.67 
TF-IDF + LR  0.54 0.34 0.88  0.61 0.64 0.71 
FastText +

LSTM  
0.33 0.21 0.90  0.55 0.40 0.61 

GloVe + LSTM  0.43 0.35 0.82  0.58 0.34 0.58  

F1-score 
Textblob  0.41 0.19 0.41    
Vader  0.40 0.28 0.34    
TF-IDF + DT  0.40 0.25 0.72  0.40 0.28 0.66 
TF-IDF + RF  0.38 0.08 0.79  0.65 0.52 0.82 
TF-IDF + NB  0.53 0.19 0.79  0.61 0.47 0.72 
TF-IDF + SVM  0.59 0.43 0.79  0.59 0.50 0.73 
TF-IDF + LR  0.60 0.42 0.81  0.60 0.50 0.75 
FastText +

LSTM  
0.44 0.28 0.78  0.49 0.31 0.68 

GloVe + LSTM  0.50 0.37 0.76  0.47 0.33 0.65  

Accuracy  Training Testing  Training Testing 
Textblob   37.4%    
Vader   34.9%    
TF-IDF + DT  94.6% 59.6%  94.5% 54.3% 
TF-IDF + RF  92.8% 67.6%  99.2% 74.4% 
TF-IDF + NB  83.9% 69.1%  85.6% 64.4% 
TF-IDF + SVM  89.0% 69.7%  92.9% 65.5% 
TF-IDF + LR  85.6% 72.1%  94.6% 67.4% 
FastText +

LSTM  
94.2% 66.3%  86.9% 56.8% 

GloVe + LSTM  89.4% 65.9%  92.2% 55.3%  
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indicating that vaccine hesitancy declined by 10.8% from October 2020 
to March 2021 [15]. It is also consistent with national poll results re-
ported by Nguyen et al. [16] which showed that the intent to receive 
COVID-19 vaccination increased from 39.4% to 49.1% among adults 
and across all priority groups from September to December 2020. 

In addition to providing insights on overall trends, VAI provides 
insights regarding public reactions to vaccine-related events. Given that 
Twitter users responded to news events by posting personal opinions and 
event observations, the index is likely to reflect events and the avail-
ability of vaccine information (e.g., clinical trial results regarding vac-
cine safety and efficacy). Fig. 3 shows the same daily time-series with 
notable events annotated. 

For example, the national VAI moved from negative acceptance to 
the positive range, and the volume of positive tweets increased in early 

November. Pfizer published its trial efficacy result on November 9, 
2020. Before this date, the overall opinions on vaccine acceptance 
fluctuated between negative and neutral. Other notable events or 
opinions potentially contributing to changes in vaccine acceptance 
might have included: (1) scientists worried that the government put 
political pressure on the FDA to approve the vaccine without referencing 
the clinical data, and (2) the U.S. rejected joining the WHO’s COVID-19 
vaccine initiative [54]. After the trial data became available from Pfizer, 
the VAI increased to 0.8 and remained consistently high throughout the 
study period (April 19, 2021). Near the end of the study period, a sig-
nificant negative spike was observed in Fig. 3, which coincides tempo-
rally and thus may be associated with the pause of the Johnson & 
Johnson vaccine due to the report of blood clots on April 13, 2021 [55]. 

Fig. 2. Temporal results of (a) daily tweet volume of all positive and negative tweets, and (b) national VAI computed on a daily and weekly basis.  

Fig. 3. Timeline of notable events relative to calculated national-level VAI.  
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3.2. State-level analysis 

The relationship between the VAI and later vaccination rates was 
explored at the state level. Tweets were extracted for state-level loca-
tions at which information could be obtained. Tweets were grouped 
based on extracted locations to calculate the state-level index using Eq. 
(7). The 7-day VAI in each state was compared with the national-level 
trend (Fig. 4a). In each subplot, the grey dotted line is the rolling 
weekly national trend, and the blue line and yellow lines show state- 
level trend with the color denoting whether the state-level VAI is 
above (blue) or below (yellow) the national VAI. Detrended state-level 

7-day VAI were obtained by subtracting the national VAI. This pro-
vides a clearer view of the changes in each state. In both Fig. 4a and 
Fig. 4b, the x-axis represents the study period, and the y-axis represents 
the VAI (Fig. 4a) or difference in VAI (state VAI minus national VAI) 
(Fig. 4b). 

Other events potentially contributing to the evolution of vaccine 
acceptance include positive results from vaccine clinical trials, FDA’s 
approval of the emergency use authorization [56], vaccinations of front- 
line healthcare workers [57], and quick vaccine distribution across the 
U.S. [58]. These interactions between the Twitter-derived national VAI 
and the events suggest that social media could serve as an effective tool 

Fig. 4. 7-day rolling average of the state-level VAI (a) compared with the national VAI (y-axis is the VAI value and x-axis is the date across the full study period), and 
(b) with detrended from the national VAI (y-axis is the difference between state-level VAI and national VAI, and x-axis is the date across the full study period). 
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to reflect online opinions and support near real-time tracking of vaccine 
acceptance. 

Fig. 4a shows that the general trend of the index increased in all 
states. However, several patterns were observed in different states. 
These patterns were summarized based on manual classification and 
were only used as illustrative to show changes of the trends of state-level 
VAI. Overall, the East Coast of the U.S. (e.g., NY, MA, CT, RI, MD, VA, 
and DC) and selected Midwest states (i.e., IL and IN) tended to exceed 
the national index most of the time, while states in the south (e.g., AZ, 
NM, TX, LA, SC, and FL) were lower than the national level. Some states 
(e.g., SD, IA, AR, TN, MS, AL, and GA) had a higher acceptance index at 
the beginning but dropped afterward. Other states (e.g., WA, OR, CA, 
WI, and MT) were more negative in the first few months but later turned 
positive. 

Correlations were calculated between the Twitter-derived VAI and 
the cumulative vaccination rate [1] at the state level. This aimed to: (1) 
measure the potential value of using the social media-derived index to 
understand future vaccination rates at the state level, and (2) determine 
conditions when the Twitter-derived VAI shows a strong correlation to 
vaccination rate. 

Fig. 5a-c shows the correlation coefficient calculated between the 
daily (Fig. 5a), 7-day rolling average (Fig. 5b), and 30-day rolling 
average (Fig. 5c) state-level VAI and the corresponding state’s vacci-
nation rates on June 22, 2021. The data for vaccination rates were ob-
tained from CDC COVID-19 Data Tracker [1]. The regression line 
between time and the correlation coefficient is shown by the dotted 
trend line (with associated R2 values applying to the whole regression 
line annotated on the graphs). 

As expected, the VAI calculated using more recent data shows a 
stronger positive correlation with the June vaccination rates. It was 
further observed that calculating the VAI over a more extended time 
(monthly rolling average) generates a more stable relationship. The 
correlation is higher after the first vaccine distribution, which occurred 
on December 14, 2020, as indicated by the yellow boxes on Fig. 5c. This 
suggests that, at the state-level, the online opinions on vaccine accep-
tance expressed after the initial vaccine rollout are more strongly related 

to later vaccination rates. 
To further explore the temporal change in correlation between 

vaccination rates and the 30-day VAI, the correlation analysis was 
repeated using vaccination rates on three dates: April 22, May 22, and 
June 22, 2021. Fig. 5d illustrates the correlation results. A similar level 
of moderate-to-strong correlation (between 0.3 and 0.7) was observed 
between the social-media-derived VAI and vaccination rates on May 22 
and June 22, 2021. A lower correlation was observed with vaccination 
rates on April 22. The difference in strength of correlation could reflect 
that earlier vaccination rates were affected by the distribution plan 
rather than people’s willingness to receive the vaccine whereas later 
vaccination rates began to reflect preferences and opinions. This may 
also reflect the evolution from a time when vaccination rates reflect 
vaccination availability to a time when vaccination rates are driven by 
preferences. 

3.3. County-level analysis 

County-level VAI was computed as the average of the acceptance 
levels of all users from that county in a given period, where the county 
assigned to a particular user was determined from profile information. 
However, increased spatial discretization means there were fewer data 
available for each spatial unit (county). Fig. 6a presents the distribution 
of Twitter users by county. Fig. 6b shows county-level VAI computed 
across the period after the first vaccine distribution (December 14, 2020, 
to April 18, 2021) for counties with more than 30 users. 

Fig. 6a illustrates that most Twitter users in the dataset considered 
were from urbanized areas, such as New York, Los Angeles, Washington 
DC, and San Francisco. This observation is consistent with prior studies 
that social media data are likely to be biased, especially when consid-
ering urban and rural distributions [59,60]. It also reflects on a key 
question: in what circumstances can social media data generate a reli-
able estimate for county-level vaccine acceptance? 

To address this, the correlation between the Twitter-derived county- 
level VAI and county-level vaccination rate changes was calculated as a 
function of the number of users in that county. The analysis considered 

Fig. 5. The correlations of the state-level VAI with accumulative state-level vaccination rates reported on June 22, 2021, on a (a) daily, (b) rolling weekly, (c) rolling 
30-day basis, and against accumulative state-level vaccination rates (d) on April 22, May 22, and June 22, 2021, (the legend “04/22_rates” represents the correlation 
of state-level VAI with vaccination rates reported on April 22). 
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vaccinations published by CDC on April 22, May 22, and June 22, 2021 
[1]. County-level vaccination rates on June 22 are presented in Fig. 6c. 
County-level vaccination rates for Texas and selected counties in Cali-
fornia were not available. The change in correlation with number of 
users in a county was based on two scenarios: (1) using all the data in the 
study period, and (2) using data after the first vaccine distribution. The 
results are presented in Fig. 7a and Fig. 7b for scenarios 1 and 2, 
respectively. 

The correlation sharply increases when the number of users increases 
from 0 to 10. The correlation continues to rise, but at a slower rate, until 
leveling off between 20 and 30. Similar to the state-level analysis, data 
after the first vaccine distribution (scenario 2) generated a higher cor-
relation than all the data did (scenario 1). This observation again 
demonstrates that the pattern of online messages after the vaccine dis-
tribution had a positive correlation with people’s inclination to receive 
the vaccination. 

The low correlation observed when data are only available from a 
small number of users demonstrates that those data are likely not 

representative of the actual county-level vaccine acceptance. For 
example, when a county only has one user posting related opinions, the 
county-level estimation is entirely up to this user’s attitude, which could 
bias the analysis. However, the correlation shows general stability when 
counties are included in the correlation analysis only when the number 
of users is larger than about 30. It is further noted that the increase in 
correlation with the number of users may also pick up on the effects of 
unequal geographic sampling. For example, the correlation between 
vaccine acceptance index and vaccination rates may be higher in 
metropolitan areas than other regions. 

Finally, county-level VAI was compared with the CDC estimated 
vaccine hesitancy. The resulting percentages are presented in Fig. 6d 
(based on the data collected by the CDC from March 3 to 15, 2021) [17]. 
The result of the state-to-county downscaling approach is that it shows 
clear boundaries between states even when two counties are close to 
each other (e.g., note the border between Idaho and Washington). This 
shows negative correlation between county-level vaccine hesitancy (as 
estimated by the down-scaled survey) and vaccination rates (more 

Fig. 6. (a) The number of Twitter users in each county during full study period, (b) County-level VAI computed for the period (December 14, 2020 to April 18, 2021) 
for counties with the number of users larger than 30, (c) County-level vaccination rate based on the data published on June 22, 2021, and (d) CDC estimated vaccine 
hesitancy based on the HPS from March 3 to 15, 2021. 

Fig. 7. The correlations of the county-level VAI (based on different numbers of users) with vaccination rates using tweets obtained (a) from August 9, 2020, to April 
18, 2021, and (b) from December 14, 2020, to April 18, 2021 (after the first distribution). 
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hesitancy is associated with lower vaccination rate) on April 22 of − 0.23 
(p-value < 0.001), May 22 of  − 0.37 (p-value < 0.001), and June 22 of 
− 0.41 (p-value < 0.001). Compared to VAI, the survey-based down-
sampling method shows higher correlation. Still, the survey-based 
approach requires a larger commitment of time and resources and 
does not offer the same ability to track vaccine hesitancy over a long 
period or to see effects such as the impact of newsworthy events on 
opinions. 

4. Discussion 

While vaccination is the most successful public health intervention to 
contain infectious diseases, strategies are needed to rapidly assess vac-
cine acceptance. Survey-based methods have been applied to estimate 
vaccine hesitancy. In the COVID-19 context, studies have demonstrated 
the usefulness of survey tools to measure the intent for COVID-19 
vaccination and understand the driving factors [18–20]. However, two 
challenges remain with survey-based methods. First, collecting survey 
responses requires time and effort. Second, since information about 
demographic factors is difficult to collect over large areas, most surveys 
target one place or several places that may provide limited insights on 
assessing vaccine acceptance at a variety of geographical scales. 

Building on the existing body of knowledge related to the utility of 
social media in vaccine and other health studies, this study demonstrates 
that information can be drawn from Twitter users’ posts about attitudes 
toward vaccination. These posted messages combined with textual 
analysis can be leveraged to provide a fast and cost-effective assessment. 
Existing studies have utilized social media data with semantic network 
or topic modeling to analyze pro- or anti-vaccine opinions. However, 
there has been less focus on quantitative assessment of vaccine accep-
tance using social media data. While a few studies have leveraged 
sentiment analysis to estimate vaccine hesitancy, sentiment scores may 
not show appropriate representation of opinions. The present study fills 
this gap and extends previous studies by introducing a Twitter-derived 
vaccine acceptance index (VAI) derived using text classification. The 
result reveals a rising trend of this index, which appears consistent with 
survey studies that indicate vaccine hesitancy in the U.S. declined from 
October 2020 to March 2021 [15]. The study further explores the cor-
relation of VAI with vaccination rates at the state, and county levels. 

4.1. Theoretical and practical contribution 

From a theoretical perspective, the present study contributes to 
research focusing on information extraction from social media data. 
First, it provides insights into natural language processing tools to 
perform multi-class classification tasks on social media data. In this 
context, the TF-IDF method may be as effective as more advanced word 
embedding methods, possibly because word embedding methods may 
not discriminate minor distinctions among tweet data or bring too much 
hidden information to the training process (e.g., because each word is 
converted into a multi-dimensional vector). 

Second, this study indicates differences between sentiment classifi-
cation and opinion mining. A few studies have used sentiment analysis 
to assess vaccine hesitancy because sentiment could be a good indicator 
to reveal the overall emotions about vaccine confidence [32]. However, 
sentiment classification may result in a bias in opinion extraction in 
applications such as this study. This statement is supported by the 
comparatively low testing accuracy of sentiment classification 
compared to text classification models. 

Third, the research proposes a vaccine acceptance index based on 
tweeters’ opinions, which is a quantitative approach to measure online 
opinions. While this study is presented as a COVID-19 vaccine case 
study, the approach is applicable to similar issues and can be generalized 
as a framework with medicine and health relevance. For example, 
during the COVID-19 pandemic, online opinions on wearing masks and 
implementation of lockdown can be investigated using a similar 

research framework. It can also be generalized to study the vaccine 
acceptance of the flu vaccine and HPV vaccine or opinions on other 
important healthcare events or policies. 

From a practical perspective, this study provides an approach to the 
rapid assessment of vaccine acceptance. At the national level, this 
Twitter-based index provides an instrument to track online opinions on 
vaccine acceptance over time. The national-level analysis also reflects 
that the index is subject to the dynamics of notable events and the 
availability of vaccine information (e.g., clinical trial results regarding 
vaccine safety and efficacy). At the state level, through the exploration 
of correlation with later vaccination rates, the study has shown the 
potential of social media to assess vaccine acceptance. Observations are 
made regarding conditions under which correlations are high. For 
example, data obtained after the first vaccination rollout yields higher 
positive correlations, and the use of a longer period of data collection (e. 
g., one month) for computing the VAI shows a higher correlation with 
later state-level vaccination rates. At the county level, since social media 
data may be biased towards higher population (urbanized) areas, the 
study explores the effect of sample size on the computed correlation 
between the index and county-level vaccination rates. The correlation 
analysis suggests that correlations stabilized when only considering 
counties for which data was available from at least 30 users. 

The social media approach can benefit government agencies and 
health officials in the following ways. First, the study reveals that on the 
use of social media data can contribute to additional insights on public 
reactions to governments’ decisions on the vaccine. Such insights can 
usually be obtained via social media channels. Government agencies can 
also refer to social media analysis to assist decision-making related to 
the mechanisms for releasing information. Second, the study indicates 
conditions for using social media data for a granular assessment of 
vaccine acceptance. For example, calculating the state-level and county- 
level index with data after the first vaccine distribution can generate a 
more reliable analysis. The county-level assessment stabilizes when 
considering counties with more than 30 users. Third, this approach can 
help assess vaccine acceptance and help decision-makers to provide 
vaccine education for places where people feel hesitant to receive the 
vaccine. 

4.2. Limitations and future work 

Biases associated with this social media approach are worthy of note. 
First, relying on social media data can help eliminate the bias of those 
choosing to participate in a survey study, but it still has the bias of those 
choosing to leave a public comment about the vaccine. As described in 
the county-level analysis, previous studies have demonstrated that so-
cial media data are likely to be biased in a more granular level estima-
tion (e.g., social media users are younger and from more urbanized 
areas). These intrinsic characteristics of social media users might affect 
the estimates, and this limitation can be difficult to overcome in gath-
ering social media data [59,60]. 

Two processes during the model development could also introduce 
model bias. First, this study selected the keyword “vaccine” to scrape 
tweets, mainly to ensure consistency throughout the study period. 
However, other keywords, such as “vaccination” or common vaccine- 
related misspellings and slang (e.g., “vax”), may also contain helpful 
information about vaccine acceptance. Second, manual classifications of 
tweets (including the “ground-truth” samples in the testing set) were 
based on the authors’ interpretations of the COVID-19 vaccine accep-
tance expressed in the tweet. However, the authors might incorrectly 
identify a user’s opinion described by a tweet. 

When this social media-based index is applied to investigate vaccine 
acceptance, several limitations need to be addressed. First, this study 
used a general list of U.S. states and cities to match users’ registration 
locations. Given that a Twitter user’s input for the registration location 
could differ from the tweet location, there is no guarantee that the 
extracted information reflects a user’s actual location. Some location 
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descriptors were not considered in our analysis. For example, a user may 
input the location “Times Square,” which suggests a place in New York 
City, but this situation is not considered in this study. Future work will 
consider better location descriptors and integrate them with the current 
pipeline to identify location (e.g., city and county). 

Although the “simpler” algorithm TF-IDF technique obtained 
reasonable accuracy in this study, it may not be suitable for situations 
where tweet data differ from the training tweet data, especially when 
the size of the training set is small. TF-IDF is a bag-of-words method that 
converts each word into a number (a word count with the IDF score). If 
the training set does not include many words that appear in the whole 
dataset, the TF-IDF technique may not generate a satisfactory perfor-
mance. However, word embedding may also fail to generate competent 
performance given that it is not pre-trained based on health-related 
databases or cannot capture minor discriminations of words between 
tweets. Future work will focus on the application of neural network 
architectures with text vectorization techniques to improve perfor-
mance, such as Bidirectional Encoder Representations from Trans-
formers (BERT). 

The analysis completed in this study uses English tweets and English- 
based NLP techniques. When the VAI is applied to estimate vaccine 
acceptance in non-Egnlish speaking countries, tweets written in other 
languages need to be collected to train the model, and correspondingly, 
text classification models need to be developed using NLP techniques 
developed in other languages. Moreover, as previously mentioned, so-
cial media data may overrepresent the young, educated, and urbanized 
population, so the VAI may not be suitable for applications in those areas 
with few people using social media to communicate. Therefore, future 
work will also consider using NLP and machine learning tools trained in 
other languages and integrating data from surveys or models (e.g., CDC 
HPS model [17]) to complement the social media estimation. 

Ongoing and future work could build off the insights and approaches 
described in this study. For example, an extension of this study could be 
used to evaluate the impacts of campaigns or interventions by state or 
federal public and private sectors by tracking the dissemination patterns 
(e.g., retweets, mentions) of tweets from state-, federal-, and certain 
private-affiliated accounts. This can help to inform how those vaccine 
campaigns affect the online community. As another example, the pro-
posed VAI can be investigated hours to days after the interventions 
applied to assess their real-time impacts on vaccine acceptance. Another 
extension of this study could consider integrating data from other social 
media plaforms and comparing the results of VAI computed based on 
different social media data. This can help reveal the characteristics of 
different social media users when focusing upon policies or events with 
medicine and health relevance. 

Other future work could explore the relations of the online vaccine 
acceptance with socioeconomic factors (e.g., education level, gender, 
age, employment rate) and other COVID-19 factors (e.g., death rate, 
hospitalization rate). This social media approach may provide valuable 
insights into the geographical dynamics of vaccine acceptance and aid 
health professionals in conducting vaccine interventions, such as vac-
cine education. Last, future work could consider the generalizability of 
this research framework by applying it to investigate the vaccine 
acceptance on other types of vaccine and in a broader geographical 
scale, such as the vaccine acceptance over HPV vaccine and flu vaccine 
in different countries. 

5. Conclusions 

The study investigated 29 million vaccine-related tweets from 
August 8, 2020 to April 19, 2021, and proposes a vaccine acceptance 
index (VAI) to assess COVID-19 vaccine acceptance. To classify the 
opinions regarding vaccine acceptance, 17,000 sampled tweets were 
manually labeled, and different pipelines were developed with the aid of 
NLP techniques. Significant findings include: (1) the national VAI moved 
from negative to positive in 2020 and maintained constant after January 

2021, consistent with survey results, (2) the East Coast of the U.S. and 
selected Midwest states exceeded the national index most of the time, 
while states in the south were lower than the national level, (3) calcu-
lating VAI over a more extended time and based on data after the first 
vaccine distribution generated a more reliable analysis, (4) calculating 
the county-level VAI when only considering counties for which data 
were available from at least 30 users ensured a more consistent analysis. 

These findings have demonstrated the usefulness of social media data 
for the dynamic assessment of vaccine acceptance and provided insights 
into the reliability of using social media data. This proposed social media 
approach provides potentials for fast and cost-effective assessment of 
vaccine acceptance across large geographical scales. 
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Exploring vaccine hesitancy among healthcare providers in the United Arab 
Emirates: a qualitative study, Hum. Vaccines Immunother. 17 (7) (2021) 
2018–2025, https://doi.org/10.1080/21645515.2020.1855953. 

[23] H. Lyu et al., Social media study of public opinions on potential COVID-19 
vaccines: informing dissent, disparities, and dissemination, Intell. Med., p. 
S266710262100036X, Aug. 2021. https://doi.org/10.1016/j.imed.2021.08.001. 

[24] M. pui S. Chan, K.H. Jamieson, D. Albarracin, Prospective associations of regional 
social media messages with attitudes and actual vaccination: A big data and survey 
study of the influenza vaccine in the United States, Vaccine 38 (40) (2020) 
6236–6247, https://doi.org/10.1016/j.vaccine.2020.07.054. 

[25] A.E. Leader, A. Burke-Garcia, P.M. Massey, J.B. Roark, Understanding the messages 
and motivation of vaccine hesitant or refusing social media influencers, Vaccine 39 
(2) (2021) 350–356, https://doi.org/10.1016/j.vaccine.2020.11.058. 

[26] A.B. Wiyeh, S. Cooper, A. Jaca, E. Mavundza, D. Ndwandwe, C.S. Wiysonge, Social 
media and HPV vaccination: Unsolicited public comments on a Facebook post by 
the Western Cape Department of Health provide insights into determinants of 
vaccine hesitancy in South Africa, Vaccine 37 (43) (2019) 6317–6323, https://doi. 
org/10.1016/j.vaccine.2019.09.019. 

[27] D. Hu, C. Martin, M. Dredze, D.A. Broniatowski, Chinese social media suggest 
decreased vaccine acceptance in China: An observational study on Weibo following 
the 2018 Changchun Changsheng vaccine incident, Vaccine 38 (13) (2020) 
2764–2770, https://doi.org/10.1016/j.vaccine.2020.02.027. 

[28] G.J. Kang, et al., Semantic network analysis of vaccine sentiment in online social 
media, Vaccine 35 (29) (2017) 3621–3638, https://doi.org/10.1016/j. 
vaccine.2017.05.052. 

[29] S. Martin, et al., ‘Vaccines for pregnant women…?! Absurd’ - Mapping maternal 
vaccination discourse and stance on social media over six months, Vaccine 38 (42) 
(2020) 6627–6637, https://doi.org/10.1016/j.vaccine.2020.07.072. 

[30] N. Ahmed, S.C. Quinn, G.R. Hancock, V.S. Freimuth, A. Jamison, Social media use 
and influenza vaccine uptake among White and African American adults, Vaccine 
36 (49) (2018) 7556–7561, https://doi.org/10.1016/j.vaccine.2018.10.049. 

[31] B.L. Rosen, C. Wheldon, E.L. Thompson, S. Maness, P.M. Massey, Social media 
engagement association with human papillomavirus and vaccine awareness and 
perceptions: Results from the 2017 US Health Information National Trends Survey, 
Prev. Med. 138 (2020) 106151, https://doi.org/10.1016/j.ypmed.2020.106151. 

[32] H. Piedrahita-Valdés, et al., Vaccine Hesitancy on Social Media: Sentiment Analysis 
from June 2011 to April 2019, Vaccines 9 (1) (2021) 28, https://doi.org/10.3390/ 
vaccines9010028. 

[33] N.F. Johnson, et al., The online competition between pro- and anti-vaccination 
views, Nature 582 (7811) (2020) 230–233, https://doi.org/10.1038/s41586-020- 
2281-1. 
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