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Abstract: Overnutrition and metabolic disorders impair cognitive functions through molecular
mechanisms still poorly understood. In mice fed with a high fat diet (HFD) we analysed the expression
of synaptic plasticity-related genes and the activation of cAMP response element-binding protein
(CREB)-brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signalling.
We found that a HFD inhibited both CREB phosphorylation and the expression of a set of CREB target
genes in the hippocampus. The intranasal administration of neural stem cell (NSC)-derived exosomes
(exo-NSC) epigenetically restored the transcription of Bdnf, nNOS, Sirt1, Egr3, and RelA genes by
inducing the recruitment of CREB on their regulatory sequences. Finally, exo-NSC administration
rescued both BDNF signalling and memory in HFD mice. Collectively, our findings highlight novel
mechanisms underlying HFD-related memory impairment and provide evidence of the potential
therapeutic effect of exo-NSC against metabolic disease-related cognitive decline.

Keywords: CREB; synaptic plasticity; high fat diet; exosomes; memory deficits; BDNF; personalized
medicine; epigenetics

1. Introduction

The central nervous system undergoes structural and functional changes throughout adulthood in
response to physiological stimuli and environmental conditions. Neuroplasticity involves proliferation
and differentiation of adult neural stem cells as well as changes in the morphology and activity of
differentiated neurons [1]. Environmental stimuli influence the physiology of brain cells by regulating
the expression of large numbers of specific gene sets via epigenetic modifications [2]. Overnutrition
alters normal cell signalling in the brain, potentially interfering with both synaptic function and adult
neurogenesis, thereby leading to impairment of cognitive functions [3]. Accordingly, epidemiological
evidence indicates that metabolic disorders, such as insulin resistance and type 2 diabetes, accelerate
brain ageing and increase the risk of neurodegenerative diseases [4,5]. However, the molecular
mechanisms underlying the long-term effects of nutrient excess on synaptic plasticity and memory are
still partially unknown.

BDNF plays a pivotal role inside the brain, being upregulated in response to neuronal activity and
enhancing both synaptic and structural plasticity via activation of the cAMP-PKA-CREB pathway [6,7].
The CREB-BDNF pathway has been clearly demonstrated to be fundamental to sustain neuron survival,
synaptic plasticity and memory [8,9]. CREB has also been reported to work as a metabolic sensor by
adapting the transcriptional activity in brain cells according to the nutrient availability [10,11]. In the
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last decades, multiple approaches targeting CREB and synaptic-plasticity-related pathways have been
theorized and tested to counteract brain ageing and enhance cognitive functions [12,13]. More recently,
several studies have shown that administration of stem cells-derived exosomes mitigates neural
damage and stimulates functional recovery in animal models of brain disorders [14–17]. Exosomes
are extracellular vesicles of endosomal origin that play a role in cell-to-cell communication, carrying
information including hormones, peptides and microRNA [18]. Interestingly, BDNF may be secreted
outside the cells as free protein or via exosomal vesicles [19], which raises the possibility of developing
a BDNF-based therapeutic strategy exploiting the use of exosomes.

However, there is no evidence about the effects of stem cell-derived exosomal cargo on neuronal
gene expression and brain function in a well-established mouse model of metabolic disease-dependent
cognitive impairment, with mice fed a high fat diet (HFD) [20]. Here, we demonstrated that a HFD
inhibited the CREB-BDNF pathway and reduced the expression of a set of synaptic plasticity-related
CREB target genes in the hippocampus of mice. Moreover, intranasal administration of neural stem cell
(NSC)-derived exosomes (exo-NSC) restored both CREB activity and TrkB signalling in the hippocampi
of HFD mice, thus counteracting the HFD-dependent alteration of gene expression and memory deficits.

2. Results

2.1. HFD Impairs the Expression of Synaptic Plasticity-Related Genes

Nutrient-dependent signals may influence cell physiology by both altering post-translational
modifications of proteins and changing gene expression [21]. We recently reported that HFD affects
hippocampal synaptic plasticity and memory by inhibiting the early phase of long-term potentiation
(LTP) via AMPA receptor GluA1 hyper-palmitoylation [22]. However, the protein synthesis-dependent
late-LTP and long-term memory require selective activation or repression of specific genes [23]. To gain
insight into the mechanisms underlying the memory deficits due to the hypercaloric diet, we analysed
the expression of a large number of plasticity-related genes in hippocampal extracts of mice fed a HFD
for six weeks. A real-time PCR (RT-PCR) array revealed up- and downregulation of several genes in the
hippocampus of overfed mice, including matrix metallopeptidase 9 (Mmmp9, +377%), neurotrophin 5
(Ntf5, +242%), Bdnf (−77%), discs large homolog 4 (Dlg4, −65%), early growth response 3 (Egr3, −65%),
glutamate receptor interacting protein 1 (Grip1, −75%), glutamate metabotropic receptor 4 and 8
(Grm4 and Grm8, −74% and −70%, respectively), neuronal nitric oxide synthase (nNos, −75%), proviral
integration site 1 (Pim1, −76%), v-rel reticuloendotheliosis viral oncogene homolog A (RelA, −66%)
and sirtuin 1 (Sirt1, −75%) (n = 4 mice; Figure 1 and Supplementary Table S1). Collectively, the data
from an unbiased analysis of gene expression indicated that HFD interfered with different molecular
cascades potentially involved in the regulation of synaptic plasticity and memory.
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Figure 1. High fat diet (HFD) alters the expression of synaptic plasticity-related genes. Up-down fold
expression changes of synaptic plasticity-related genes significantly altered in the hippocampus of mice
fed with HFD for six weeks (n = 4 mice per experimental group). Real-time (RT)-PCR was performed
in triplicate. The table shows genes with fold change ≥2 and p value < 0.05. The full list of genes and
fold expression changes is shown in Supplementary Table S1.

2.2. HFD Downregulates CREB-BDNF-TrkB Signalling in the Hippocampus

Bioinformatic analysis of the RT-PCR array results identified a panel of potential CREB target genes
among those differentially expressed in the hippocampus of HFD-fed mice (i.e., Bdnf, nNOS, Sirt1, Egr3,
Adam10, Dlg4 and RelA). The activity of transcriptional factor CREB has been shown to be regulated
by nutrient availability in neuronal cells [11,24]. Therefore, we analysed the activating phosphorylation
of CREB at serine 133 (pCREBSer133) in the hippocampus of HFD animals. The immunoblot analysis
showed reduced levels of pCREBSer133 in HFD mice compared to controls (−47.7%, p = 2.6 × 10−4;
n = 8 mice; Figure 2A).

Since phosphorylation regulates the recruitment of CREB on the promoters of target genes,
we analysed the binding of this transcription factor on the regulatory sequences of Bdnf, nNOS, Sirt1,
Egr3, Adam10, Dlg4 and RelA. Chromatin immunoprecipitation (ChIP) analysis performed on the
hippocampi of HFD mice revealed a decrease of CREB protein on the promoters of Bdnf, nNOS, Sirt1,
Egr3 and RelA (Bdnf promoter I: −58.3%, p = 2.9 × 10−5; Bdnf promoter IV: −81.3%, p = 3.2 × 10−6;
nNOS promoter: −73.1%, p = 5.3 × 10−4; Sirt1 promoter: −51.5%, p = 4.2 × 10−4; Egr3 promoter: −51.3%,
p = 0.0027; RelA promoter: −38.1%, p = 0.024; n = 6 mice; Figure 2B), whereas no significant changes
were observed on regulatory sequences of Adam10 and Dlg4 genes. Accordingly, the acetylation
of lysine 9 on histone 3 (H3K9ac), an epigenetic marker of transcriptional activity, was significantly
reduced on the same loci (Bdnf promoter I: −60.7%, p = 3.8 × 10−5; Bdnf promoter IV: −43.6%,
p = 0.0024; nNOS promoter: −47.1%, p = 0.004; Sirt1 promoter: −35.3%, p = 0.022; Egr3 promoter:
−36.2%, p = 0.016; RelA promoter: −49.3%, p = 8.1 × 10−4; n = 6 mice; Figure 2B). Bdnf represents a key
CREB target gene but it also stimulates the transcription factor via activation of TrkB [25]. To investigate
the molecular effects of CREB inactivation in hippocampi of HFD mice, we explored both the BDNF
protein levels and the activating phosphorylation of TrkB at tyrosine 816 (pTrkBTyr816). We found lower
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levels of both BDNF and pTrkBTyr816 in HFD-fed animals compared to controls (−38.7%, p = 0.001
and −37.7%, p = 0.04, respectively; n = 8 mice; Figure 2C). Our data demonstrated that HFD inhibited
CREB activity and reduced BDNF signalling leading to lower CREB-mediated transcription of key
neuronal genes in the hippocampus.

Figure 2. CREB-BDNF-TrkB signalling is inhibited in the hippocampus of HFD-fed mice. (A) Immunoblot
analysis and bar graphs showing pCREBS133 in the hippocampus of mice fed with standard diet (SD)
or HFD (n = 8 mice per group; statistics using unpaired Student’s t test). (B) ChIP assays of both CREB
and histone 3 lysine 9 acetylation (H3K9ac) on the promoters of Bdnf, nNOS, Sirt1, Egr3, RelA, Adam10
and Dlg4 genes in the hippocampus of SD and HFD mice (n = 6 mice per group; statistics using unpaired
Student’s t test). Mock indicates the binding of non-specific IgG. Real-time analysis was performed in
triplicate. (C) Immunoblot analysis and bar graphs showing the levels of BDNF and pTrkBT816 in the
hippocampus of SD and HFD mice (n = 8 mice; statistics using unpaired Student’s t test). Data are
expressed as mean ±SEM. * p < 0.05; ** p < 0.01; *** p < 0.001; n.s., not significant.

2.3. NSC-Derived Exosomes Restore CREB Transcriptional Activity in HFD Mice

Synaptic plasticity in neurons is orchestrated by activation of multiple transcription factors [26].
Adult NSCs represent a source of neurotrophic factors released via exosomes potentially regulating the
transcription in mature neurons [27–29]. Therefore, we tested the ability of exosomal vesicles derived
from NSC (exo-NSC) to counteract HFD-dependent molecular changes.

First, we characterized exosomes purified from NSC culture media using transmission electron
microscopy, scanning electron microscopy and dynamic light scattering. The analysis of physical
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properties of extracellular vesicles showed a typical cup shape and a size distribution with an average
peak at 100 nm (Figure 3A,B and Supplementary Figure S1A). Moreover, immunoblot analysis of
exosome cargo detected exosome-specific markers such as CD81 and Alix along with large amounts
of BDNF in protein lysates extracted from exo-NSC (Figure 3C). Then, we investigated the effects of
chronic intranasal administration of exo-NSC on CREB-BDNF-TrkB signalling in the hippocampus
of HFD mice. Mice intranasally treated with exo-NSC showed the localization of vesicles inside the
hippocampus (Figure 3D). The levels of pCREBSer133 were increased in the hippocampus of both SD and
HFD mice after treatment with exo-NSC (F3.28 = 11.23, SDveh vs. SDexo-NSC p = 0.014, SDveh vs. HFDveh

p = 2.8 × 10−3, HFDveh vs. HFDexo-NSC p = 0.014, SDveh vs. HFDexo-NSC p = 0.531; n = 6; Figure 4A).
Importantly, exo-NSC administration did not per se affect calorie intake in animals (Supplementary
Figure S2A). The levels of BDNF and pTrkBTyr816 were also completely restored in HFD mice upon
administration of exo-NSC (F3.28 = 16.76 for BDNF, SDveh vs. HFDveh p = 3.4 × 10−4, HFDveh vs.
HFDexo-NSC p = 9.3 × 10−4, SDveh vs. HFDexo-NSC p = 0.062; F3.28 = 6.61 for pTrkBTyr816, SDveh vs.
HFDveh p = 0.026, HFDveh vs. HFDexo-NSC p = 0.032, SDveh vs. HFDexo-NSC p = 0.689; n = 6; Figure 4A).

Figure 3. Neural stem cell (NSC)-derived exosomes characterization. (A) Transmission electron
microscopy image of exosome isolated from NSC medium (exo-NSC). (B) Dynamic light scattering
spectrum showing the size distribution curve of exo-NSC. (C) Representative images of immunoblots
analysis of protein lysates extracted from exo-NSC, NSC or washing solution after exosome isolation
(See Materials and Methods). CD81 and Alix are exosomal markers whereas Tubulin is used as negative
control. (D) Confocal images of hippocampus of mice intranasally treated with exo-NSC labelled with
fluorescent dye (Exo-Glow, red) and immunofluorescently stained for MAP2 (green). Arrows show
exosomal vesicles. Image credit: Allen Institute (http://mouse.brain-map.org/static/atlas) [30].

http://mouse.brain-map.org/static/atlas
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Figure 4. exo-NSCs restore CREB transcriptional activity in the hippocampus. (A) Immunoblot analysis
and bar graphs showing the levels of BDNF, pTrkBT816 and pCrebS133 in mice intranasally treated with
saline (vehicle) or exo-NSC and fed for 6 weeks with either SD or HFD (SDveh, SDexo-NSC, HFDveh,
HFDexo-NSC, respectively; n = 6 mice per experimental group; statistics using two-way ANOVA and
Bonferroni post hoc). (B) mRNA expression of Bdnf, nNos, Sirt1 and Egr3 in the hippocampus of
SDveh, SDexo-NSC, HFDveh and HFDexo-NSC mice. Real-time analysis was performed in triplicate.
The experiment was repeated six times using independent RNA samples (n = 6 mice per experimental
group; statistics using two-way ANOVA and Bonferroni post hoc). (C) ChIP assays of both CREB
and H3K9ac on the promoters of Bdnf, nNos, Sirt1 and Egr3 genes in the hippocampus of SDveh,
SDexo-NSC, HFDveh and HFDexo-NSC mice. Real-time analysis was performed in triplicate (n = 6 mice
per experimental group; statistics using two-way ANOVA and Bonferroni post hoc). Data are expressed
as mean ±SEM. * p < 0.05; ** p < 0.01; *** p < 0.001; n.s., not significant.

Subsequently, we evaluated the transcription of CREB target genes that we found downregulated
in the hippocampus of HFD mice. Administration of exo-NSC increased in HFD mice the expression
of Bdnf, nNOS and Egr3 to levels comparable with controls (F3.28 = 34.57 for Bdnf, SDveh vs. HFDveh

p = 7.4 × 10−5, HFDveh vs. HFDexo-NSC p = 7.9 × 10−5, SDveh vs. HFDexo-NSC p = 0.581; F3.28 = 9.48 for
nNOS, SDveh vs. HFDveh p = 5.1 × 10−3, HFDveh vs. HFDexo-NSC p = 1.4 × 10−3, SDveh vs. HFDexo-NSC

p = 0.302; F3.28 = 20.5 for Egr3, SDveh vs. HFDveh p = 6.4 × 10−5, HFDveh vs. HFDexo-NSC p = 2.3 × 10−4,
SDveh vs. HFDexo-NSC p = 0.565; n = 6; Figure 4B). Treatment with exo-NSC stimulated the expression
of Bdnf and Sirt1 also in SD mice (F3.28 = 34.57 for Bdnf, SDveh vs. SDexo-NSC p = 2.7 × 10−4; F3.28 = 26.
71 for Sirt1, SDveh vs. SDexo-NSC p = 0.0021, SDveh vs. HFDveh p = 2 × 10−5, HFDveh vs. HFDexo-NSC

p = 0.0001, SDveh vs. HFDexo-NSC p = 9.5 × 10−4; n = 6; Figure 4B). Conversely, no significant changes
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were observed in the expression of RelA, Adam10 and Dlg4 after exo-NSC administration (Figure S2B).
Moreover, intranasal administration of exo-NSC counteracted the HFD-dependent downregulation of
nNos, Bdnf and Sirt1 in the neocortex (F3.28 = 30.17 for Bdnf, SDveh vs. HFDveh p = 1.3 × 10−4, HFDveh

vs. HFDexo-NSC p = 0.016, SDveh vs. HFDexo-NSC p = 0.148; F3.28 = 42.35 for nNOS, SDveh vs. HFDveh

p = 6.3 × 10−5, HFDveh vs. HFDexo-NSC p = 2.97 × 10−4, SDveh vs. HFDexo-NSC p = 0.105; F3.28 = 34.34
for Sirt1, SDveh vs. HFDveh p = 4.1 × 10−4, HFDveh vs. HFDexo-NSC p = 0.005, SDveh vs. HFDexo-NSC

p = 0.428; n = 6; Figure S2C).
To further investigate the effect of exo-NSC on CREB transcriptional activity, we analysed the

binding of the transcription factor on the promoters of genes modulated by exo-NSC. ChIP experiments
showed that exo-NSC treatment increased the recruitment of CREB on the promoters of Bdnf, nNOS,
Sirt1 and Egr3 in HFD mice (F3.28 = 27.04 for Bdnf promoter I, HFDveh vs. HFDexo-NSC p = 2.1 × 10−5;
F3.28 = 84.53 for Bdnf promoter IV, HFDveh vs. HFDexo-NSC p = 0.0038; F3.28 = 214.95 for nNOS, HFDveh

vs. HFDexo-NSC p = 2.4 × 10−4; F3.28 = 34.7 for Sirt1, HFDveh vs. HFDexo-NSC p = 2.1 × 10−5; F3.28 = 18.86
for Egr3, HFDveh vs. HFDexo-NSC p = 1.4 × 10−5; n = 6; Figure 4C). Accordingly, H3K9ac was enhanced
on the same regulatory sequences after exo-NSC administration (F3.28 = 68.25 for Bdnf promoter I,
HFDveh vs. HFDexo-NSC p = 4.9 × 10−7; F3.28 = 23.35 for Bdnf promoter IV, HFDveh vs. HFDexo-NSC

p = 0.038; F3.28 = 19.71 for nNOS, HFDveh vs. HFDexo-NSC p = 1.2 × 10−4; F3.28 = 22.66 for Sirt1, HFDveh

vs. HFDexo-NSC p = 1.3 × 10−4; F3.28 = 5.17 for Egr3, HFDveh vs. HFDexo-NSC p = 0.037; n = 6; Figure 4C).
Collectively, our findings demonstrated that exo-NSC stimulated CREB-BDNF-TrkB signalling in the
hippocampus of HFD mice leading to enhancement of CREB recruitment and transcriptional activity
on the promoters of synaptic plasticity-related genes.

2.4. NSC-Derived Exosomes Counteract HFD-Dependent Memory Deficits

Looking for a behavioural correlate of the molecular data reported above we tested whether
exosomes secreted from NSCs could prevent the cognitive impairment induced by HFD. To this aim,
we performed cognitive tasks such as novel object recognition (NOR) and object place recognition (OPR)
tests in overfed mice after intranasal administration of exo-NSC. In the NOR test, HFD mice showed a
significantly higher preference toward the novel object upon treatment with exo-NSC (F3.008 = 3.92,
SDveh vs. HFDveh p = 0.011, HFDveh vs. HFDexo-NSC p = 0.034; n = 9; Figure 5A). Moreover, exo-NSC
treatment completely abolished the detrimental effects of HFD on spatial memory, evaluated using the
OPR test (F3.008 = 3.44, SDveh vs. HFDveh p = 0.036, HFDveh vs. HFDexo-NSC p = 0.013; n = 9; Figure 5B).
Collectively, our findings demonstrated that exosomal cargo derived from NSCs counteracted the
HFD-dependent downregulation of CREB transcriptional activity and rescued the overnutrition-related
memory deficits.

Figure 5. NSC-derived exosomes counteract HFD-related memory deficits. (A) Preference index for the
novel object in the novel object recognition (NOR) paradigm in SD and HFD mice treated with vehicle
or exo-NSC (n = 10 for SD vehicle, 9 SD exo-NSC, 10 for HFD vehicle, 15 HFD exo-NSC; statistics
using two-way ANOVA and Bonferroni post hoc). (B) Preference index for the displaced object in the
object place recognition (OPR) paradigm in SD and HFD mice treated with vehicle or exo-NSC (n = 10
for each group; statistics using two-way ANOVA and Bonferroni post hoc). Data are expressed as
mean±SEM. * p < 0.05; n.s., not significant.
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3. Discussion

Epidemiological and molecular evidence demonstrates that overnutrition and metabolic diseases
negatively impact on hippocampal synaptic plasticity leading to alteration of cognitive functions [31].
Several molecular mechanisms have been proposed to be involved in nutrient excess-related
cognitive impairment, including mitochondrial dysfunction, activation of pro-inflammatory cytokines,
development of brain insulin resistance and alteration of neurotrophin signalling [22,32–34]. However,
how nutrient overload impinges on neuronal gene expression causing long-lasting effects on synaptic
plasticity and memory has not been understood yet. Here, we investigated the expression of a large
number of synaptic plasticity-related genes in the hippocampus of a well-established animal model of
metabolic disorder, HFD-fed mice. The unbiased analysis revealed reduced expression of several genes
responsive to the cellular energy state (e.g., Sirt1, Bdnf, and nNOS) and regulating the synaptic strength
(e.g., Egr3, RelA and Dlg4) (Figure 1). More importantly, bioinformatic analysis of RT-PCR array
data revealed a potential CREB-driven regulation of a cluster of downregulated genes. Accordingly,
we found reduced levels of pCREBSer133 in the hippocampus of HFD-fed mice (Figure 2A) and decrease
of both binding of the transcription factor and acetylation of H3K9 (i.e., a marker of transcriptional
activity) on the regulatory sequences of several memory-related genes (Figure 2B).

Furthermore, HFD also caused lower expression of the neurotrophic factor BDNF and inhibition of
its molecular cascade (Figure 2C). Interestingly, activation of downstream effectors of the BDNF pathway
cell autonomously increased both BDNF synthesis and release, leading to a feed-forward TrkB-mediated
signalling loop that amplifies synaptic strength [35]. Accordingly, injection of function-blocking
anti-BDNF antibody into the CA1 region of the hippocampus decreased CREB phosphorylation and
impaired memory formation [36]. Our data support the role of CREB as a metabolic sensor in the brain.
It has been demonstrated that calorie restriction induces CREB activation and enhances memory by
inducing CREB-mediated gene expression [37]. Conversely, streptozotocin-induced hyperglycaemia
inhibited CREB activation and impaired synaptic functions [11]. Our findings reveal that HFD impinges
on CREB-BDNF-TrkB signalling causing alteration of synaptic plasticity-related gene expression.

A rising number of pre-clinical studies have proposed transplantation of stem cell-derived
exosomes as a new therapeutic strategy against cognitive decline and neurodegeneration. For instance,
the intranasal administration of exosomes derived from mesenchymal stem cells (MSCs) in a
mouse model of Alzheimer’s disease (AD) rescued dendritic spine density by reducing the
inflammation [38]. Accordingly, exosomes derived from adipose MSCs enhanced Aβ clearance
in vitro [39]. NSC-derived exosomal cargo contains a plethora of bioactive molecules potentially
contributing to regulation of transcriptional activity and synaptic activity in neurons, including
BDNF [40]. Intranasal administration of exo-NSC rescued CREB activation and neurotrophin-associated
molecular cascade in the hippocampus of HFD mice (Figure 4A). Increase of CREB phosphorylation and
changes of gene expression have been also detected in primary cortical neurons upon treatment with
oligodendrocyte-derived exosomes [41]. Moreover, MSC-derived exosomes have been demonstrated
to carry miR-133b, which positively modulates ERK1/2, STAT3 and CREB activation [42]. In addition,
in vivo administration of exosomes increased neural plasticity and functional recovery after stroke by
transfer of microRNAs including miR-17-92 and miR-133b [43,44]. Exosomal cargo can stimulate in the
target cells the expression of neurotrophic factors promoting neural activity such as NGF and S100b [45].
Exo-NSC administration also restored the levels of a large number of key genes downregulated by HFD
in the hippocampus of mice and reverted the overnutrition-related memory impairment (Figures 4B
and 5A,B). Similarly, an enriched environment counteracted diabetes-induced cognitive impairment
by inducing secretion of exosomal miR-146a from MSCs [46]. Interestingly, intranasal administration
of exo-NSCs mimicked calorie restriction-related signals in the hippocampus without changing the
calorie intake of mice (Figure S2). Indeed, NSC-derived vesicles induced the expression of nutrient
deprivation-related molecules such as Sirt1 and Bdnf (Figure 4B). Accordingly, the calorie restriction
mimetic resveratrol has been demonstrated to improve cognitive functions by reducing the expression
of miRNA inhibiting the CREB-BDNF pathway [47].
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Collectively, our paper provides novel evidence that exo-NSC counteracts HFD-induced memory
impairment by modulating the CREB-dependent expression of synaptic plasticity-related genes.
Extracellular vesicles represent a more promising tool than stem cell transplantation against age-related
diseases due to the lower risk of tumorigenicity and side effects [48]. However, further studies are
necessary to better characterize the composition of exosomal cargo derived from stem cells and to
understand the therapeutic potential of each component for personalized medicine.

4. Materials and Methods

4.1. Ethics and Animal Use Statement

Male C57BL/6 mice (30–35 days-old), derived from the Animal Facility of Università Cattolica del
Sacro Cuore, were used and randomly assigned to two feeding regimens: (i) standard diet (SD, control)
and (ii) high fat diet (HFD). Different groups of mice were used for each experimental test. Mice were
always housed in groups (3–5 animals per cage) and they were monitored daily. All animal procedures
were reviewed and approved on 16 January 2017 by the Ethics Committee of Università Cattolica
del Sacro Cuore and were fully compliant with Italian (Ministry of Health guidelines, Legislative
Decree No. 116/1992) and European Union (Directive No. 86/609/EEC) legislations on animal research.
The methods were carried out in strict accordance with the approved guidelines. The animals were
housed under a 12-h light-dark cycle at room temperature (RT: 19–22 ◦C), fed with their respective diet
and water ad libitum and body weight was monitored weekly.

4.2. Animals and Treatments

Mice from the same litter were randomly assigned to different experimental groups. Animals were
fed with SD (18.5% proteins; 46% carbohydrates, namely 42% starch, 4% sucrose; 3% fats; 6.55% fat
caloric content; cat. num. 4RF21) or HFD (23% proteins; 42% carbohydrates, namely 28% starch,
9% sucrose, 5% maltodextrin; 34% fats; 60% fat caloric content; cat. num. PF4051/D) for 6 weeks.
The diets were from Mucedola (Guidonia Montecelio, RM, Italy). For in vivo administration of
NSC-derived exosomes (exo-NSC), mice were intranasally treated with saline (vehicle) or exo-NSC
(1.5 µg per nostril, 3 times per week) for the entire duration of the diet. Mice used for molecular
analyses were immediately sacrificed at the end of the diet.

4.3. Culture of Neural Stem Cells

Postnatal hippocampal NSC culture were isolated according to previously published protocol [10].
Briefly, brains of newborn (0–1 day old) C57bl/6 mice were microdissected to obtain the hippocampal
region upon sagittal sectioning. Tissues were finely minced and digested using accutase (in DPBS,
0.5 mM EDTA; Innovative Cell Tecnologies, Inc., San Diego, CA, USA) at 37 ◦C for 30 min.
After centrifugation, cells were carefully dissociated by passaging in fire-polished Pasteur pipettes and
resuspending in NeurobasalA medium, supplemented by 2% B27 (Gibco, Grand Island, NY, USA),
Glutamax (0.5 mM; Invitrogen, Carlsbad, CA, USA), mouse fibroblast growth factor 2 (FGF2, 10 ng/mL;
Invitrogen), epidermal growth factor (EGF, 10 ng/mL; Invitrogen, Carlsbad, CA, USA) and mouse
platelet-derived growth factor bb (PDGFbb; 10 ng/mL; Invitrogen, Carlsbad, CA, USA). Cells were
seeded onto a 25-cm2 T-flask and incubated at 37 ◦C in 5% CO2 atmosphere. During the first week
NSCs began to form neurospheres in vitro. At 2-day intervals, the neurospheres were collected and
passaged using a gently enzymatic and mechanical dissociation. After 1–2 passages of NSC expansion,
NSC medium containing extracellular vesicles was separated via centrifugation (800× g 10 min).
NSCs cultured in the medium described above, thereinafter referred to as “proliferation medium”,
remained in an undifferentiated state and were proliferated.
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4.4. Exosomes Isolation

Twenty-four hours after medium change, the media were collected and immediately frozen at
−80◦C until exosome isolation. exo-NSC were isolated from culture medium using an exoEasy Maxi
Kit (Qiagen) and multistep centrifugations according to the manufacturer indications. The exosomes
were quantified with the Bradford method.

4.5. Dynamic Light Scattering

Exosome analyses were performed using Zetasizer Nano ZS apparatus (Malvern Instruments
Ltd., Worcestershire, UK). Data for each sample were collected on a continuous basis for 12 min in sets
of four measurements for each sample [49].

4.6. Transmission Electron Microscopy

Morphological analysis of exosomes was performed using transmission electron microscopy.
The isolated samples were fixed with formaldehyde and 2.5% glutaraldehyde in 0.1 mol/L sodium
cacodylate buffer (pH 7.4) and then placed on Formvar-carbon-coated grids and air-dried for 10 min.
After being rinsed with double-distilled water, the exosomes were postfixed in 1.5% osmium tetroxide
in 0.1 mol/L cacodylate buffer (pH 7.3) and then were allowed to dry. Vesicles were observed with a
Zeiss Libra 120 (Zeiss NTSGmbH, Oberkochen, Germany).

4.7. Scanning Electron Microscope

Exosomes were fixed on grids using a buffer with 4% of paraformaldehyde and 2% of
glutaraldehyde. PBS buffer was added three times to wash the sample. After, grids were serially
washed with 25%, 50%, 70%, 95%, 100% and 100% ethanol solutions on ice for 5 min. To make the
surface conductive, a coating of gold-palladium alloy was applied (10 mA for 15 s) before imaging.
High-resolution images were acquired with the following settings: accelerating voltages = 6 kV,
working distance = 10 nm and magnification = 122.000×. Vesicles were observed with a Zeiss supra 25
(Zeiss NTSGmbH, Oberkochen, Germany).

4.8. Behavioural Experiments

Behavioural tests were carried out from 9 a.m. to 4 p.m. and data were analysed blind using an
automated video tracking system (Any-Maze™). Recognition memory was evaluated using a novel
object recognition (NOR) test. On the first day, animals were familiarized for 10 min with the test arena
(45 × 45 cm). On the second day (training session), they were allowed to explore two identical objects
placed symmetrically in the arena for 10 min. Mice that took less than 20 s as total exploration time or
that explored one of two identical objects for more than 10% of the total exploration time during the
training session were excluded from the test. On the third day (test session), a new object replaced one
of the old objects. Animals were allowed to explore for 10 min and the preference index, calculated as
the ratio between time spent exploring the novel object and time spent exploring both objects, was used
to measure recognition memory. To exclude place preference in the test session, the position of the
novel object was alternated on both sides of the box. All objects and the box were cleaned with 70%
ethanol solution at the end of each test.

Spatial memory was analysed using an object place recognition (OPR) test. The animals were first
habituated for 10 min to the testing arena. Different cues were placed on the walls of the testing arena
in order to provide spatial points of reference. In the training phase, 24 h after the habituation phase,
the animals were exposed to a couple of identical objects in two corners of the arena. After 10 min,
the animals were removed from the testing arena and taken back to their home cage. Twenty-four
hours after the training phase, one of the objects was moved to the opposite corner and the animals
were brought back to the testing area for 10 min. As for the NOR test, the time spent exploring both
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objects was recorded and a preference index for the displaced object was calculated. Between each
animal, the objects and the arena were cleaned with 70% ethanol solution and fresh bedding was added.

4.9. Western Blotting

Hippocampi and exosomes were homogenized in ice-cold lysis buffer (NaCl 150 mM, Tris-HCl
50 mM pH 7.4, EDTA 2 mM) containing 1% Triton X-100, 0.1% SDS, 1× protease inhibitor cocktail
(Sigma-Aldrich, St. Louis, MO, USA), 1 mM sodium orthovanadate (Sigma-Aldrich, St. Louis, MO,
USA) and 1 mM sodium fluoride (Sigma-Aldrich, St. Louis, MO, USA). The homogenized was
sonicated for 10 s “on” and 20 s “off” 3 times using a Diagenode Bioruptor Standard Waterbath
Sonicator, and then, the sample was spun down at 22,000× g, 4 ◦C. Supernatant was quantified for
protein content (DC Protein Assay; Bio-Rad, Hercules, CA, USA). Equal amounts of protein were diluted
in Laemmli buffer, boiled and resolved using SDS-PAGE as previously described [50]. The primary
antibodies (available in Table S2) were incubated overnight and revealed with HRP-conjugated
secondary antibodies (Cell Signaling Technology Inc., Danvers, MA, USA) and chemiluminescent
substrates (Cyanagen, Bologna, BO, Italy). The band density was documented and quantified using
UVItec Cambridge Alliance. Expression levels of the target protein were quantified by calculating the
band intensity ratio of the target protein and actin (loading control) in each lane. Phosphorylation
levels of the target protein were quantified by calculating the band intensity ratio of the phospho-target
protein, target protein and actin (loading control) in each lane. In each bar graph, the mean value of
controls was set to 1 and the expression or phosphorylation levels of the target protein were shown as
fold changes compared to the control (relative units). Images shown were cropped for presentation
with no manipulations.

4.10. RNA Analyses

Hippocampi and neocortices were isolated under optic microscope and homogenized in TRIzol
(Invitrogen, Carlsbad, CA, USA). RNA was extracted and purified using an RNeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. cDNA was synthetized using an RT2
First Strand Kit (Qiagen, Hilden, Germany). For PCR array experiments, an RT2 Profiler Custom PCR
Array (PAMM-126Z) was used to simultaneously examine the mRNA levels of 89 genes, including 5
housekeeping genes in 96-well plates according to the protocol of the manufacturer (Qiagen, Hilden,
Germany). cDNA of all samples was analysed in triplicate, and data were normalized for actin levels
using the ∆∆Ct method. All results are shown in Table S1. Bioinformatic analysis of transcription
factors regulating the modified genes was performed using RT2 Profiler Data Analysis Software
(Qiagen, Hilden, Germany).

Quantitative real-time PCR (qRT-PCR) amplifications were performed using SYBR GREEN qPCR
Master Mix (Fisher Molecular Biology, Roma, RM, Italy) on an AB7500 instrument (Life Technologies,
Carlsbad, CA, USA) according to the manufacturer’s instructions. The thermal cycling profile featured
a pre-incubation step of 94 ◦C for 10 min, followed by 40 cycles of denaturation (94 ◦C, 15 s), annealing
(55 ◦C, 30 s) and elongation (72 ◦C, 20 s). Melting curves were subsequently generated (94 ◦C for
15 s, 50 ◦C for 30 s, slow heating to 94 ◦C in increments of 0.5 ◦C). Melting-curve analyses confirmed
that only single products had been amplified. The primer sequences are shown in Table S3. All data
were normalized by reference to the amplification levels of the actin; a reference dye was included
in the SYBR master mix. RNA of all samples was analysed in triplicate. The thresholds calculated
using the software were used to calculate specific mRNA expression levels using the cycle-at-threshold
(Ct) method, and all results are expressed as fold changes (compared to control) for each transcript,
employing the 2−∆∆Ct approach.

4.11. Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were performed as previously described [34].
Hippocampi were homogenized in 200 µL lysis buffer containing 1% SDS, 50 mM Tris-HCl pH 8.0,
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and 10 mM EDTA and sonicated on ice with six 10-s pulses with a 20-s interpulse interval. Sample
debris was removed via centrifugation, and supernatants were precleared with protein-G Sepharose
4B beads (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 4 ◦C. 2 µg of anti-CREB, anti acetil H3K9
or control IgG were added overnight at 4 ◦C. Immune complexes were collected via incubation with
protein-G Sepharose 4B beads for 2 h at 4 ◦C. After seven sequential washes, immune complexes were
eluted from beads by vortexing in elution buffer (1% SDS and NaHCO3 0.1 M; pH 8.0). NaCl was
added (final concentration 0.33 M), and cross-linking was reversed via incubation overnight at 65 ◦C.
DNA fragments were purified using a PCR DNA fragments purification kit (Geneaid Biotech Ltd.,
New Taipei City, Taiwan). The primer sequences are shown in Table S3.

Bioinformatic analysis to identify putative cAMP response element (CRE) regions was performed
online (http://natural.salk.edu/CREB/) using the CREB Target Gene Database [51]. PCR conditions
and cycle numbers were determined empirically and each PCR reaction was performed in triplicate.
Data are expressed as percentage of input calculated by the “adjusted input value” method according
to the manufacturer’s instructions (ThermoFisher Scientific ChIP Analysis, Carlsbad, CA, USA).
To calculate the adjusted input the Ct value of the input was subtracted by 6.644 (i.e., log2 of 100).
Next, the percent input of samples was calculated using the formula 100*2ˆ(Adjusted input—Ct(ChIP).
The percent input of IgG samples was calculated using the formula 100*2ˆ(Adjusted input—Ct(IgG).

4.12. Exosome Labelling and Immunofluorescence

To track the EVs in the brain, the isolated EVs were labelled with the red fluorescent membrane
dye kit ExoGlowTM (ExoGlowTM Membrane EV Labeling Kit, System Biosciences, Palo Alto, CA,
USA), following the manufacturer’s instructions. Briefly, exosomes were incubated with a mixture
of reaction buffer and labelling dye for 30 min at RT. Labelled exosomes were then separated from
unbound fluorescent dye through PD-Spintrap G-25 (GE Healthcare, Chicago, IL, USA) following
manufacturer’s instructions.

For in vivo localization of exo-NSC, mice were intranasally treated 3 times (8 µg per nostril) at half
an hour from each other. Six hours after the last administration the animals were deeply anesthetized
with ketamine and xylazine and were transcardially perfused with PBS (0.1 M, pH 7.4) followed by
4% paraformaldehyde (PFA). Brains were collected, post-fixed overnight at 4 ◦C in PFA, and then
transferred to a solution of 30% sucrose in 0.1 M PBS. Sagittal sections (40 µm) were then obtained
using a cryostat (SLEE, Mainz, Germany) and subsequently stored at 4 ◦C in PBS until use.

Immunohistochemistry was performed as previously described [10]. After permeabilization and
blocking (1-h incubation with 0.3% Triton X-100 (Sigma, St. Louis, MO, USA) in PBS and 5% Normal
Goat Serum), tissues were incubated overnight at 4 ◦C with MAP-2 antibody (1:400, Sigma, St. Louis,
MO, USA). The next day, tissues were incubated for 90 min at RT with the secondary antibody:
Alexa Fluor 488 donkey anti-mouse (1:500; Invitrogen, Carlsbad, CA, USA). Finally, nuclei were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI, 0.5 µg/mL for 10 min; Invitrogen, Carlsbad,
CA, USA), and slices were coverslipped with ProLong Gold anti-fade reagent (Invitrogen, Carlsbad,
CA, USA). Images (1024 × 1024 pixels) were acquired at 60× magnification with a Nikon A1 MP
confocal system (Tokyo, Japan) and an oil-immersion objective (N.A. 1.2). For some images, additional
3×magnification was applied.

4.13. Statistical Analysis

Sample sizes were chosen with adequate power (0.8) according to results of prior pilot data
sets or studies, including our own, which used similar methods or paradigms. Sample estimation
and statistical analyses were performed using SigmaPlot 14 software. Data were first tested for
equal variance and normality (Shapiro-Wilk test) and the appropriate statistical tests were chosen.
The statistical tests used (i.e., Student’s t-test, two-way ANOVA) are indicated in the main text and in
the corresponding figure legends for each experiment. N numbers are reported in the figure legends.
Degrees of freedom are n-1 for each condition in both the unpaired t-test and ANOVA tests. Post-hoc

http://natural.salk.edu/CREB/
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multiple comparisons were performed with Bonferroni correction. All statistical tests were two-tailed
and the level of significance was set at 0.05. Results are shown as mean ±SEM.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/23/8994/s1.
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