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Objective: Heart failure remains a global public health problem linked to rising

morbidity and mortality. RNA-binding proteins (RBPs) are crucial regulators in

post-transcriptionally determining gene expression. Our study aimed to

comprehensively elucidate the diagnostic utility and biological roles of RBPs

in heart failure.

Methods: Genomic data of human failing and nonfailing left ventricular

myocardium specimens were retrieved from the GEO datasets. Heart

failure-specific RBPs were screened with differential expression analyses,

and RBP-based subtypes were clustered with consensus clustering

approach. GSEA was implemented for comparing KEGG pathways across

subtypes. RBP-based subtype-related genes were screened with WGCNA.

Afterwards, characteristic genes were selected through integrating LASSO

and SVM-RFE approaches. A nomogram based on characteristic genes was

established and verified through calibration curve, decision curve and clinical

impact curve analyses. The abundance of immune cell types was estimatedwith

CIBERSORT approach.

Results: Heart failure-specific RBPs were determined, which were remarkably

linked to RNA metabolism process. Three RBP-based subtypes (namely C1, C2,

C3) were established, characterized by distinct pathway activities and

PANoptosis gene levels. C2 subtype presented the highest abundance of
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immune cells, followed by C1 and C3. Afterwards, ten characteristic genes were

selected, which enabled to reliably diagnose heart failure risk. The characteristic

gene-based nomogram enabled to accurately predict risk of heart failure, with

the excellent clinical utility. Additionally, characteristic genes correlated to

immune cell infiltration and PANoptosis genes.

Conclusion:Our findings comprehensively described the roles of RBPs in heart

failure. Further research is required for verifying the effectiveness of RBP-based

subtypes and characteristic genes in heart failure.

KEYWORDS

heart failure, RNA binding protein, subtype, characteristic gene, nomogram, immune
cells, PANoptosis

Introduction

Heart failure is a frequent complex clinical syndrome of

symptoms and signs triggered by structural or functional

abnormality that leads to impaired cardiac output (Packer

et al., 2021b), which remains a growing public health issue

affecting about 26 million individuals globally (Heidenreich

et al., 2022a). Typically, in accordance with left ventricular

ejection fraction (LVEF), heart failure is categorized as

preserved (HFpEF) and reduced ejection fraction (HFrEF)

(Heidenreich et al., 2022b). HFpEF is a filling issue because

of muscle stiffness reducing left ventricular chamber size or

left atrial dilation, while HFrEF is usually described as a

mechanical left ventricular pump issue (Mascolo et al.,

2022). Therapeutic strategies of above two types differ.

Substantial evidence suggests that sequential drug treatment

improves clinical outcomes in patients with HFrEF (Berg et al.,

2021). Differently, no treatment options show prognostic

benefits and symptom controlling as the sole management

regimen of HFpEF patients (Packer et al., 2021a). Reduction of

associated hospital readmission rate and clinical and economic

burden remains a pivotal issue in modern cardiovascular

medicine (Piepoli et al., 2022). Biomarkers that reflect the

pathophysiological processes of heart failure progression can

aid clinicians in the early diagnosis and management of heart

failure patients.

RNA binding proteins (RBPs) control RNA fate from

synthesis to decay, the expression and roles of which are

highly determined by detailed networks of transcriptional,

post-transcriptional as well as post-translational machinery

(Liu et al., 2022). They are implicated in pathological

manifestations of heart failure. For instance, RBPs have

widespread translational control of human cardiac fibroblast

activation (Chothani et al., 2019). RNA binding protein

24 loss enables to disrupt global alternative splicing as well as

results in heart failure (Liu et al., 2019). RNA-binding protein

RBM20 weakens splicing to orchestrate cardiac pre-mRNA

processing, and contributes to the pathogenesis of heart

failure (Maatz et al., 2014). RBP HuR-mediated SCN5A

mRNA stability represses arrhythmic risk in heart failure

(Zhou et al., 2018). Knockdown of RNA binding motif-20-

based titin splicing system can upregulate compliant titins,

and thus ameliorates diastolic function and exercise tolerance

in heart failure (Methawasin et al., 2016). Despite this,

comprehensive analyses of RBPs in heart failure are lacking.

Accumulated evidence demonstrates that PANoptosis

(apoptosis, necroptosis, together with pyroptosis) mediates

heart failure progression and possesses promising therapeutic

implications (Zhang et al., 2016; Zeng et al., 2019; Gao et al.,

2020). Nonetheless, the mechanisms of RBPs underlying

PANoptosis remain indistinct in hear failure. Our study

comprehensively evaluated RBP-based molecular subtypes and

relevant characteristic genes for heart failure, unveiling the

crucial roles of RBPs in pathophysiological process of heart

failure as well as providing reliable targets for diagnosing

heart failure risk.

Materials and methods

Heart failure expression profiling

This study downloaded the expression profiling of human

heart failure from the Gene Expression Omnibus (GEO)

repository. The GSE5406 dataset comprised microarray

expression profiles of 194 human failing left ventricular

(LV) myocardium specimens and 16 human nonfailing

control LV myocardium specimens on the Affymetrix

platform (Hannenhalli et al., 2006). Additionally, we

acquired microarray expression profiles of 177 human

failing LV myocardium specimens and 136 human control

specimens from the GSE57338 dataset on the basis of the

Affymetrix platform (Liu et al., 2015). Above expression

profiles were merged, and removal of batch effects was

implemented utilizing sva package (Leek et al., 2012). Four

independent datasets were utilized as external verification sets

as follows: the GSE76701 dataset comprising expression

profiles of 4 non-failing and 4 failing LV hearts (Kim et al.,
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2016); the GSE55296 dataset containing RNA-seq data of

human hearts from 26 heart failure patients and 10 healthy

controls (Tarazón et al., 2014); the GSE86569 dataset

with expression profiling of LV hearts from 12 HFrEF and

20 HFpEF patients; the GSE3585 dataset including expression

profiles of 5 non-failing and 7 failing LV hearts.

Screening heart failure-specific RBPs

Totally, 1,542 RBPs were collected from previously

published literature (Supplementary Table S1) (Gerstberger

et al., 2014). Expression values of RBPs were compared

between human failing and nonfailing LV myocardium

specimens through limma package (Ritchie et al., 2015).

RBPs with adjusted p < 0.05 and |fold-change|>1.5 were

regarded as heart failure-specific RBPs. Targets of RBPs

were predicted through starBase database.

Functional enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses of RBPs with adjusted

p < 0.05 were implemented utilizing clusterprofiler package (Yu

et al., 2012). Terms with adjusted p < 0.05 were regarded as

significant enrichment.

Consensus clustering analyses

Through ConsensusClusterPlus package (Wilkerson and

Hayes, 2010), on the basis of RBPs with adjusted p < 0.05,

consensus clustering analyses of heart failure specimens were

run in accordance with the following parameters: item

resampling, proportion of items to sample: 80%; gene

resampling, proportion of features to sample: 80%; a

maximum evaluated k, maximum clustering number to

evaluate: 9; resampling, number of subsamples: 1,000;

agglomerative hierarchical clustering algorithm): ‘hc’

(hclust); and distance: ‘pearson’ (1 - Pearson correlation).

The RBP-based subtype classification was verified through

principal component analyses (PCA).

Gene set enrichment analyses

GSEA methodology (Subramanian et al., 2005) was

utilized for the comparisons of KEGG pathways across

RBP-based subtypes. The “c2.cp.kegg.v7.4.symbols” gene set

from the Molecular Signatures Database (Liberzon et al., 2015)

was employed as a reference set, with the criteria of

p-value<0.05.

Weighted gene co-expression network
analyses

Expression profiling of the merged GSE5406 and

GSE57338 datasets was extracted for conducting WGCNA

utilizing WGCNA package (Langfelder and Horvath, 2008).

Sample clustering was implemented for testing whether there

were outlier specimens. Soft threshold power value was

determined for constructing a scale-free topology network.

Afterwards, the adjacency matrix was converted to the

topological overlap matrix (TOM). In accordance with the

TOM-based dissimilarity, distinct co-expression modules

were clustered. Associations of modules and RBP-based

subtypes were then evaluated. The module with the

strongest correlation to RBP-based subtypes was screened,

and the genes in this module were regarded as RBP-based

subtype-related genes.

Protein-protein interaction analyses

RBP-based subtype-related genes were imported into the

Search Tool for the Retrieval of Interacting Genes (STRING)

online platform (https://www.string-db.org) (Szklarczyk et al.,

2021). The interactions between their protein products were

retrieved according to the default criteria. Utilizing MCODE

plug-in of Cytoscape software (Doncheva et al., 2019), PPI

subnetwork and hub genes were obtained following the

selection criteria of degree cutoff = 2, node score cutoff = 0.2,

haircut = true, Fluff = false, K-core = 2 Max, and depth from

seed = 100.

Selection of characteristic genes with two
machine learning approaches

Characteristic RBP-based subtype-related genes were

selected utilizing two machine learning approaches: least

absolute shrinkage and selection operator regression (LASSO)

as well as support vector machine recursive feature elimination

(SVM-RFE). Through glmnet package (Engebretsen and Bohlin,

2019), LASSO was run and penalty parameter λ tuning was

implemented using ten-fold cross-validation. Additionally, the

best variables were selected with ten-fold cross-validation

utilizing SVM-RFE algorithm. Afterwards, characteristic genes

were determined through intersection of LASSO- and SVM-

RFE-derived results.

Establishment of a nomogram

A nomogram was established on the basis of characteristic

genes via rms package. The accuracy of the nomogram in
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FIGURE 1
Analyses of heart failure-specific RBPs. (A) Integration of two heart failure expression profiling datasets (GSE5406, and GSE57338). (B) Removal
of batch effects of the merged datasets. (C) Volcano plots of RBPs with differential expression between human failing and nonfailing control LV
myocardium specimens following adjusted p < 0.05 and |fold-change|>1.5. (D)Heatmap of expression values of heart failure-specific RBPs in human
failing (blue) and nonfailing control (red) LV myocardium specimens. (E) Potential downstream targets of RBPs with adjusted p < 0.05 that were
differentially expressed in heart failure LV myocardium specimens than nonfailing controls. (F–K) The first ten biological processes, cellular
components, and molecular functions of up- and down-regulated RBPs. (L,M) KEGG pathways enriched by up- and down-regulated RBPs.
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predicting risk probabilities was evaluated with calibration curve.

Decision curve analyses represent a novel approach for assessing

clinical usefulness, which were utilized to evaluate the clinical

utility of the nomogram. Clinical impact curves were drawn for

assessing the clinical usefulness and applicability net benefits of

the nomogram with the optimal diagnostic value.

Immune cell estimations

CIBERSORT (Newman et al., 2015) is an approach on the

basis of the gene expression matrix for reliably estimating the

relative abundance of 24 immune cell types in tissue

specimens. CIBERSORT analyses were utilized for

comparing differences in distinct immune cell types

between groups. Spearman correlation analyses were

implemented for exploring interactions between infiltrating

immune cell types and characteristic genes.

Connectivity map (CMap) analysis

Heart failure-specific RBPs were utilized to query the CMap

database (https://clue.io/). Compounds with p < 0.05 were

selected as potential therapeutic drugs for heart failure based

upon transcriptome data. The mode of action (MoA) of these

compounds was then analyzed.

Statistical analyses

R software (www.r-project.org; version 3.6.1) was employed

for all statistics analysis processes. Comparison analyses between

groups were implemented utilizing Wilcoxon or Kruskal-Wallis

test. The diagnostic efficacy of characteristic genes or nomogram

was evaluated with receiver operator characteristic (ROC) curves

along with area under the curve (AUC) calculation. Pearson or

Spearmon correlation test was implemented for interactions

between variables. p < 0.05 was considered statistically

significant for all analysis process.

Results

Analyses of heart failure-specific RBPs

Our study collected and merged two heart failure

expression profiling datasets (GSE5406, and GSE57338),

and batch effects were corrected for subsequent analyses

(Figures 1A,B). To determine heart failure-specific RBPs,

differential expression analyses were implemented. In

accordance with adjusted p < 0.05 and |fold-change|>1.5,
five RBPs (EIF1AY, RPS4Y1, DDX3Y, RNASE2, and

CSDC2) were found in heart failure LV myocardium

specimens in comparison to nonfailing controls (Figures

1C,D). Afterwards, we predicted potential downstream

targets of RBPs with adjusted p < 0.05 through starBase

database. As depicted in Figure 1E, 18 targets (SERPINA3,

FCN3, LUM, ASPN, IL1RL1, SFRP4, CD163, MYOT, OGN,

MXRA5, LYVE1, MYH6, PLA2G2A, CYP4B1, SERPINE1,

HBB, NPPA, and EIF1AY) had the potential binding sites

of RBPs, which were differentially expressed in heart failure

LV myocardium specimens in contrast to nonfailing controls.

Biological functions and pathways of RBPs with adjusted p <
0.05 were then probed. Biological processes such as RNA/

mRNA/peptide/ncRNA metabolic processes, RNA processing,

and translation were both remarkably linked to up- and down-

regulated RBPs (Figures 1F,G), indicating their essential roles

in modulating gene expression. Additionally, RBPs with

adjusted p < 0.05 closely correlated to multiple cellular

components (nuclear part and lumen, protein-containing

complex, nucleoplasm, etc.), as illustrated in Figures 1H,I.

Up- and down-regulated RBPs also possessed the molecular

functions of nucleic acid binding, RNA binding, catalytic

activity acting on RNA, etc. (Figures 1J,K). To probe

signaling pathways involved in RBPs with adjusted p <
0.05, KEGG enrichment analyses were implemented. In

Figures 1L,M, RNA transport/degradation/polymerase,

spliceosome, mRNA surveillance pathway, etc. were

remarkably enriched by up- and down-regulated RBPs.

Establishment of RBP-based subtypes for
heart failure

Consensus clustering analyses were employed for

identifying RBP-based subtypes across heart failure

specimens in accordance with RBPs with adjusted p < 0.05.

Figure 2A illustrated the consensus matrix heatmap at k = 3.

We found that heart failure specimens could be clearly

categorized as three RBP-based subtypes, namely C1,

C2 and C3. Consistent cumulative distribution (CDF) plot

showed that when k = 3, CDF reached an approximate

maximum (Figure 2B). As depicted in delta area plot, when

k = 4, the area under the CDF curve increased only slightly,

and thus 3 was an appropriate k value (Figure 2C). Tracking

plot was also established for visualizing the sample

classification. When k = 3, this classification had relatively

high stability (Figure 2D). By reason of the foregoing, three

RBP-based subtypes were finally identified across heart failure

samples. The accuracy of this classification was verified

through PCA plot. In Figure 2E, heart failure samples were

clearly classified as three subtypes. Additionally, RBPs with

adjusted p < 0.05 presented different expression values across

three RBP-based subtypes (Figure 2F). Differentially expressed

genes among three RBP-based subtypes were analyzed, and we
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FIGURE 2
Establishment of RBP-based subtypes for heart failure. (A) Consensus matrix heatmap at k = 3. The rows and columns are samples, with
consensus values on a white to blue color scale. (B) Consensus CDF curves at k = 2–9. (C) Delta area plot. (D) Tracking plot. The rows are samples,
and the columns are k values. (E) PCA plot of three RBP-based subtypes. (F)Heatmap of expression values of RBPswith adjusted p < 0.05 across three
subtypes. (G) The top 30 up-regulated marker genes in each subtype. (H) The top 30 down-regulated marker genes in each subtype. (I,J)
Number of RBPs of up- and down-regulated marker genes in three subtypes.
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identified the top 30 up- or down-regulated genes in each

subtype compared with others, which were considered as

specific marker genes of each subtype (Figures 2G,H).

Potential RBPs of up- and down-regulated marker genes

were predicted, respectively. As illustrated in Figures 2I,J,

no notable differences in number of RBPs of up- and

FIGURE 3
Different molecular mechanisms across RBP-based subtypes. (A,B) GSEA for comparing KEGG pathways between C1 and C2 subtypes. (C,D)
GSEA for comparing KEGG pathways between C1 and C3 subtypes. (E,F) GSEA for comparing KEGG pathways between C2 and C3 subtypes.
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down-regulated marker genes were found across three

subtypes.

Different molecular mechanisms across
RBP-based subtypes

Through GSEA, we dissected the differences in molecular

mechanisms between distinct RBP-based subtypes. Compared to

C2 subtype, RNA degradation, terpenoid backbone biosynthesis,

mismatch repair, oocyte meiosis, proteasome, and ubiquitin

mediated proteolysis were remarkably activated in C1 subtype

(Figure 3A). Meanwhile, activation of RIG I like receptor

signaling pathway, ribosome, JAK-STAT signaling pathway,

type II diabetes mellitus, MAPK signaling pathway and

aldosterone regulated sodium reabsorption was found in

C2 subtype (Figure 3B). Molecular mechanisms between

C1 and C3 subtypes were then compared. In Figure 3C,

C1 subtype presented the remarkable activation of cytokine-

cytokine receptor interaction, cell adhesion molecules CAMS,

JAK-STAT signaling pathway and Toll-like receptor signaling

pathway than C3 subtype. In comparison to C1 subtype,

ubiquitin mediated proteolysis, oxidative phosphorylation,

nucleotide excision repair, basal transcription factors, RIG I

like receptor signaling pathway, and spliceosome were

significantly activated in C3 subtype (Figure 3D). Additionally,

we found the significant activation of cytokine-cytokine receptor

interaction, JAK-STAT signaling pathway, ECM receptor

FIGURE 4
Distinct PANoptosis features across RBP-based subtypes. (A–C) Levels of apoptosis, necroptosis and pyroptosis genes in human failing and
nonfailing control LV myocardium specimens. (D–F) Levels of apoptosis, necroptosis and pyroptosis genes across three RBP-based subtypes (*p <
0.05; **p < 0.01; ***p < 0.001).
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FIGURE 5
Identification of RBP-based subtype-related genes. (A)Clustering dendrogram of heart failure specimens on the basis of Euclidean distance. (B)
Scale independence and mean connectivity at different power values. (C) Cluster dendrogram of distinct modules through dynamic tree cut
approach and merged dynamic approach. The gray module represents unclassified genes. (D) Correlations between modules and RBP-based
subtypes. The color indicates the strength of the correlation, and the number in parentheses indicates p-value. (E) Scatter plot of the
relationship between module membership of blue module and gene significance for RBP-based subtypes. (F–H) The first ten biological processes,
cellular components, and molecular functions of RBP-based subtype-related genes. (I) KEGG pathways significantly linked to RBP-based subtype-
related genes. (J) The PPI subnetwork of key RBP-based subtype-related genes. (K) Box plot of the expressions of key RBP-based subtype-related
genes in human failing and nonfailing control LV myocardium specimens. *p < 0.05; **p < 0.01; ***p < 0.001.
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interactions, leukocyte trans-endothelial migration, cell adhesion

molecules CAMS, and focal adhesion in C2 subtype in

comparison to C3 subtype (Figure 3E). Meanwhile, ubiquitin

mediated proteolysis, nucleotide excision repair, propanoate

metabolism, RNA degradation, basal transcription factors,

DNA replication, mismatch repair, and oxidative

phosphorylation were markedly activated in C3 subtype

(Figure 3F). Above data indicated the distinct molecular

mechanisms across RBP-based subtypes.

Distinct PANoptosis features across RBP-
based subtypes

Next, we focused on PANoptosis features in heart failure.

Deregulation of PANoptosis (apoptosis, necroptosis and

pyroptosis) genes was found in heart failure LV myocardium

specimens versus nonfailing controls (Figures 4A–C), indicating

that PANoptosis might be linked to heart failure. In addition,

PANoptosis features were assessed across three RBP-based

subtypes. The widespread heterogeneity in PANoptosis

(apoptosis, necroptosis and pyroptosis) genes was observed

across RBP-based subtypes (Figures 4D–F).

Identification of RBP-based subtype-
related genes

WGCNA approach was utilized for determining RBP-based

subtype-related genes. Hierarchical clustering analyses

demonstrated no outlier specimens (Figure 5A). Soft-

thresholding power is an import process of WGCNA. To

establish a scale-free co-expression network, soft-thresholding

power was set as 9 following scale independence and mean

connectivity (Figure 5B). Genes were clustered through

dynamic tree cut approach to obtain 16 modules (Figure 5C).

Associations between modules and RBP-based subtypes were

then evaluated. As a result, blue module presented the strongest

correlation to RBP-based subtypes (Figure 5D). Additionally, we

found the remarkable correlation between module membership

of blue module and gene significance for RBP-based subtypes

(Figure 5E). Thus, 1,460 genes in blue module were regarded as

RBP-based subtype-related genes. Their biological functions and

pathways were then probed. In Figure 5F, RBP-based subtype-

related genes were remarkably linked to biosynthetic process.

Also, they presented the associations with cellular components

such as nuclear part, protein-containing complex, cytosol

(Figure 5G). In Figure 5H, they possessed the molecular

functions of catalytic activity acting on a protein, sequence-

specific DNA binding, and double-stranded DNA binding, etc.

RNA transport, mRNA surveillance pathway, nucleotide excision

repair, proteasome and DNA replication were remarkably

enriched by RBP-based subtype-related genes (Figure 5I).

Above data proved their key roles in pathophysiologic

processes of heart failure. Through MCODE approach, 31 key

RBP-based subtype-related genes were selected, comprising

KRR1, DNTTIP2, NGDN, DDX52, RPF1, FTSJ3, RRS1,

GTPBP4, RIOK2, DDX5, MPHOSPH10, PAK1IP1, NOC3L,

BRIX1, FCF1, DHX15, RRP7A, EBNA1BP2, WDR3, LSG1,

DDX10, POLR1D, GNL2, DDX51, RSL24D1, MAK16,

GRWD1, RRP15, UTP3, BCCIP, RSL1D1 (Figure 5J). Most

key RBP-based subtype-related genes presented the down-

regulation in failing than nonfailing control LV myocardium

specimens (Figure 5K).

Identification of characteristic genes for
heart failure viamachine learning analyses

Two machine learning approaches LASSO and SVM-RPE

were employed for selecting characteristic genes among RBP-

based subtype-related genes. 17 and 10 characteristic genes were

separately selected by LASSO (Figures 6A,B) and SVM-RPE

(Figure 6C) methods. After intersection, ten characteristic

genes were finally determined, including DDX52, DHX15,

EBNA1BP2, FCF1, GNL2, GRWD1, LSG1, POLR1D, RRS1,

and RSL24D1 (Figure 6D). C3 subtype presented the highest

expressions of above characteristic genes, followed by C1 and C2

(Figure 6E). To assess the predictive efficacy of characteristic

genes, ROC curves were plotted. As illustrated in Figures 6F–O,

the AUC values (95%CI) of DDX52, DHX15, EBNA1BP2, FCF1,

GNL2, GRWD1, LSG1, POLR1D, RRS1, and RSL24D1 were 0.68

(0.73–0.63), 0.67 (0.72–0.62), 0.64 (0.69–0.58), 0.57 (0.63–0.52),

0.64 (0.70–0.59), 0.70 (0.75–0.66), 0.68 (0.73–0.63), 0.60

(0.66–0.55), 0.73 (0.78–0.67), 0.56 (0.62–0.51), proving the

excellent performance in diagnosing heart failure.

Establishment of a characteristic gene-
based nomogram for heart failure

To facilitate the clinical performance of characteristic genes,

a nomogram was established for heart failure (Figure 7A). As

illustrated in calibration curve, the nomogram-predicted risk

probabilities were close to the actual probabilities of heart

failure (Figure 7B). Decision curve analyses demonstrated that

the nomogram possessed the preferred prediction efficacy, with

the higher net benefit (Figure 7C). Clinical impact curves were

drawn for evaluating clinical applicability of the risk predictive

nomogram. As illustrated in Figure 7D, the nomogram showed

the superior overall net benefit within the wide and practical

ranges of threshold probabilities and influenced patients’

outcome, indicating that the nomogram possessed excellent

predictive performance. Above data proved that the

nomogram was clinically useful. Moreover, the AUC value

(95%CI) of the nomogram was 0.84 (0.88–0.80) (Figure 7E),
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FIGURE 6
Identification of characteristic genes for heart failure via machine learning analyses. (A) Relationships between log-transformed lambda and
regression coefficients. Each line indicates a variable. (B) LASSO regression profiling. The line represents 95% CI, and the dotted line represents the
optimal number of variables. (C) Selection of characteristic genes through SVM-RPE approach. (D) Venn plot of characteristic genes shared by LASSO
and SVM-RPE approaches. (E) Box plot of the expression of characteristic genes across three RBP-based subtypes (***p < 0.001). (F–O) ROC
curves for assessing the predictive efficacy of characteristic genes: (F)DDX52, (G)DHX15, (H) EBNA1BP2, (I) FCF1, (J)GNL2, (K)GRWD1, (L) LSG1, (M)
POLR1D, (N) RRS1, and (O) RSL24D1.
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FIGURE 7
Establishment of a characteristic gene-based nomogram for heart failure. (A)A nomogram comprising characteristic genes for predicting risk of
heart failure. (B) Calibration curve for actual and nomogram-predicted probability of heart failure. (C) Decision curve analyses for the net benefit
curves of the nomogram. X-axis shows the threshold probability for heart failure and Y-axis represents the net benefit. (D) Clinical impact curves of
the nomogram. Red curves indicate the number of patients classified as positive (high risk) by the nomogram at different threshold probabilities.
Blue curves show the number of true positives at different threshold probabilities. (E) ROC curve for estimating the predictive efficacy of the
nomogram.
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FIGURE 8
Landscape of immune cells and PANoptosis features in heart failure. (A,B) The abundance of 24 immune cell types in human failing (blue) and
nonfailing control (red) LVmyocardium specimens. (C) Associations between distinct immune cell types. (D) The abundance of 24 immune cell types
across three RBP-based subtypes. (E) Associations between 24 immune cell types and characteristic genes. (F–H) Associations of characteristic
genes with apoptosis, necroptosis and pyroptosis genes. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 9
External verification of characteristic genes in heart failure in the GSE76701 dataset. (A) Box plot of the expressions of characteristic genes in
human failing (red) and nonfailing control (blue) LVmyocardium specimens (*p < 0.05). (B–K) Evaluation of diagnostic performance of (B)DDX52, (C)
DHX15, (D) EBNA1BP2, (E) FCF1, (F) GNL2, (G) GRWD1, (H) LSG1, (I) POLR1D, (J) RRS1, and (K) RSL24D1 in heart failure through ROC curves.
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which was higher than any one of characteristic genes,

demonstrating that the predictive efficacy of the nomogram

was better compared with a single characteristic gene.

Landscape of immune cells and
PANoptosis features in heart failure

CIBERSORT was employed for estimating the abundance of

24 immune cell types. Firstly, the abundance of immune cell

types was compared between human failing and nonfailing

control LV myocardium specimens. As illustrated in Figures

8A,B, failing myocardium tissues presented the enhanced

abundance of B cell naïve, T cells CD8, T cells CD4 naïve,

T cells gamma delta, NK cells resting/activated, macrophages

M0, dendritic cells resting/activated, and fibroblasts. Meanwhile,

the reduced abundance of B cells memory, T cells CD4 memory

activated, macrophages M2, eosinophils, endothelial cells was

found in failing myocardium. Additionally, the positive

interactions across immune cell types were found, as

illustrated in Figure 8C. We also assessed the differences in

immune cell types across three RBP-based subtypes.

Generally, C2 had the highest abundance of most immune

cells, followed by C1 and C3 (Figure 8D). Figure 8E depicted

the associations between characteristic genes and immune cell

infiltration. Most characteristic genes were negatively linked to

the abundance of immune cells, but GRWD1 presented the

positive interactions with most immune cell types. In

addition, characteristic genes exhibited notable associations

with PANoptosis (apoptosis, necroptosis and pyroptosis)

genes (Figures 8F–H).

External verification of characteristic
genes in heart failure

Characteristic genes in heart failure were externally verified

in independent datasets. In Figure 9A, DDX52, RRS1, FCF1,

DHX15, POLR1D, GNL2, RSL24D1, and EBNA1BP2 presented

the low expressions in failing than nonfailing control heart.

Inversely, LSG1, and GRWD1 expressions were up-regulated

in failing compared with nonfailing control heart in the

GSE76701 dataset. The abnormal expression of characteristic

genes between human failing and nonfailing control LV

myocardium tissues was confirmed in the GSE55296 dataset

(Supplementary Figure S1). ROC curves were conducted for

evaluating the diagnostic efficacy of above characteristic genes

in heart failure in the GSE76701 dataset. The AUC values (95%

CI) of DDX52, DHX15, EBNA1BP2, FCF1, GNL2, GRWD1,

LSG1, POLR1D, RRS1, and RSL24D1 were 0.88 (1.00–0.59), 0.94

(1.00–0.76), 0.63 (1.00–0.14), 0.75 (1.00–0.35), 1.00 (1.00–1.00),

0.63 (1.00–0.14), 0.81 (1.00–0.43), 0.88 (1.00–0.59), 0.69

(1.00–0.25), and 0.75 (1.00–0.35), as illustrated in Figures

9B–K. However, no significant differences in characteristic

genes were observed between HFpEF and HFrEF heart tissues

in the GSE86569 dataset (Supplementary Figure S2). In addition,

the GSE3585 dataset was adopted to validate the diagnostic

efficacy of the characteristic genes. The excellent diagnostic

performance of each characteristic gene was proven, as shown

in Supplementary Figures S3A–H. Above evidence confirmed

that characteristic genes enabled to excellently diagnose heart

failure.

Prediction of potential therapeutic
compounds of heart failure

Based on heart failure-specific RBPs, CMap analysis was

adopted to screen potential compounds for the treatment of

heart failure with p < 0.05. In accordance with MoA analysis,

mebendazole, NPI-2358, vindesine, vincristine, flubendazole,

vinorelbine, nocodazole, and ABT-751 shared tubulin

inhibitor (Figure 10). GSK-3-inhibitor-IX, SB-415286, and SB-

216763 shared glycogen synthase kinase inhibitor. Roscovitine

and kenpaullone shared CDK inhibitor. GSK-3-inhibitor-II and

PKCbeta-inhibitor shared PKC inhibitor.

Discussion

RBPs have been described to be expressed andmodulated in a

variety of organs especially human heart (Gupta et al., 2018).

Despite this, little is known concerning the roles of RBPs in heart

failure. Thus, our study implemented comprehensive analyses of

RBPs in heart failure, and determined RBP-based subtypes, and

RBP-based subtype-related characteristic genes, unveiling the

crucial functions of RBPs in heart failure.

RBPs are crucial effectors of gene expression, and as such

their abnormal expressions underlie the origin of heart failure

(Gebauer et al., 2021). On the basis of the merged GSE5406, and

GSE57338 expression profiling datasets, we determined five

RBPs (EIF1AY, RPS4Y1, DDX3Y, RNASE2, and CSDC2) with

adjusted p < 0.05 and |fold-change|>1.5 in heart failure LV

myocardium specimens than nonfailing controls, which were

regarded as hear failure-specific RBPs. RBPs with adjusted p <
0.05 were closely linked to RNA metabolism processes (RNA/

mRNA/peptide/ncRNA metabolic processes, RNA splicing, and

translation) as well as pathways (RNA transport, mRNA

surveillance pathway, ribosome biogenesis in eukaryotes,

aminoacyl-tRNA biosynthesis, RNA degradation, etc.),

highlighting the crucial functions of RBPs in controlling gene

expression. Evidence has demonstrated that deregulation of RNA

metabolism leads to heart failure progression (Kim et al., 2018).

On the basis of RBPs with adjusted p < 0.05, three RBP-based

subtypes were established, characterized by distinct signaling

pathway activities. Additionally, RBP-based subtype-related
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genes were further determined, which might be modulated

by RBPs.

Previous studies have determined heart-specific RBPs

(RBM20, RBM24, HuR, etc.) that were not included in our

heart failure-specific RBPs. For instance, suppressing

RBM20 activity may improve diastolic dysfunction and

cardiac atrophy (Hinze et al., 2016). RBM24 loss destroys

global alternative splicing and contributes to dilated

cardiomyopathy (Liu et al., 2019). HuR-induced SCN5A

mRNA stability decreases arrhythmic risk in heart failure

(Zhou et al., 2018). Thus, our study offered novel heart-

specific RBPs. More experiments are awaited to validate the

biological functions of heart failure.

LASSO is a regression analysis approach that utilizes

regularization for improving the predictive accuracy (Xing

et al., 2022). SVM-RFE is a reliable feature selection approach

that determines the optimal variables through removing the

feature vectors produced by SVM (Zhao et al., 2020).

Through integrating two machine learning approaches, ten

characteristic genes were eventually determined, comprising

DDX52, DHX15, EBNA1BP2, FCF1, GNL2, GRWD1, LSG1,

POLR1D, RRS1, and RSL24D1. All of them accurately

predicted the risk of heart failure. Further, a characteristic

gene-based nomogram was established, which was capable of

accurately predicting heart failure risk, with the excellent clinical

usability. DDX52 is a type of DEAD/H box RNA helicase, and its

suppression exerts an anti-tumor effect (Yu et al., 2021). The

DEAH-box RNA helicase DHX15 has been identified as a

potential gene for pathological cardiac hypertrophy triggered

by excessive exercise (Zhou et al., 2020) and pulmonary arterial

hypertension (Wang et al., 2021). EBNA1BP2 functions as a

dynamic scaffold for ribosome biogenesis (Hirano et al., 2009).

FCF1 is a potential marker of circulating breast cancer cells for

detecting metastasis (Fina et al., 2022). The nucleolar GTP-

binding protein GNL2 is essential for retinal neurogenesis in

developing zebrafish (Paridaen et al., 2011). Cdt1-binding

protein GRWD1 acts as a histone-binding protein, which

triggers MCM loading via influencing chromatin architecture

(Sugimoto et al., 2015). LSG1 is a family member of essential

GTPases, in relation to the evolution of compartmentalization

FIGURE 10
MoA analysis for the shared mechanisms of potential therapeutic compounds of heart failure.
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(Reynaud et al., 2005). POLR1D is a component of RNA

polymerase I and RNA polymerase III complexes, mediating

the synthesis of ribosomal RNA precursor and small RNA

(Sanchez et al., 2020). RRS1 is a key factor of 5 S rRNA

binding activity (Kharde et al., 2015). RSL24D1 participates in

the biogenesis of the 60 S ribosomal subunit (Ni et al., 2022).

Heart failure is typically linked to cardiac remodeling, and

inflammatory response plays a crucial role. During cardiac

inflammation, immune cells invade the cardiac tissue as well

as modulate tissue-damaging response (Bacmeister et al., 2019).

In the present study, failing myocardium tissues exhibited the

enhanced abundance of B cell naïve, T cells CD8, T cells

CD4 naïve, T cells gamma delta, NK cells resting/activated,

macrophages M0, dendritic cells resting/activated, and

fibroblasts. Additionally, the decreased abundance of B cells

memory, T cells CD4 memory activated, macrophages M2,

eosinophils, endothelial cells was observed in failing

myocardium. For example, CD8+ effector T cells may prevent

cardioprotective macrophage differentiation in early heart failure

(Komai et al., 2021). Posttranscriptional control of mRNA

modulates inflammatory and immune responses. Several RBPs

have been extensively explored, and bind target mRNAs to

enhance or dampen above activities (Akira and Maeda, 2021).

RBP-based C2 subtype presented the highest abundance of most

immune cells, followed by C1 and C3. In addition, there was the

extensive heterogeneity in PANoptosis traits across three RBP-

based subtypes. Most characteristic genes presented negative

correlations to the abundance of immune cells in heart failure,

but GRWD1 was positively linked to most immune cell types,

indicating their functions in mediating cardiac inflammation.

Among them, evidence demonstrates that DHX15 may sense

double-stranded RNA in myeloid dendritic cells to activate the

immune response to RNA (Lu et al., 2014). Co-expression

network analyses have determined DHX15 RNA helicase as a

regulator of B cells (Detanico et al., 2019). DHX15 is a crucial

regulator of natural killer-cell homeostasis and function (Wang

et al., 2022). Additionally, characteristic genes exhibited

remarkable interactions to PANoptosis features across heart

failure. More experiments are required for verifying their

regulatory functions in inflammatory and immune responses

as well as PANoptosis in heart failure.

Conclusion

Collectively, our findings provided an overview of RBPs

involved in heart failure. Three RBP-based subtypes as well as

ten relevant characteristic genes were determined for heart

failure, elucidating the critical roles of RBPs in

pathophysiological process (especially immunity and

PANoptosis) of heart failure as well as offering reliable targets

for diagnosing heart failure risk. Despite this, in-depth research is

required for verifying the effectiveness of RBP-based subtypes

and characteristic genes in diagnostic utility of heart failure.
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