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Abstract: Optical gas imaging through multispectral cameras is a promising technique for mitigation
of methane emissions through localization and quantification of emissions sources. While more
advanced cameras developed in recent years have led to lower uncertainties in measuring gas
concentrations, a systematic analysis of the uncertainties associated with leak rate estimation have
been overlooked. We present a systematic categorization of the involved uncertainties with a focus
on a theoretical analysis of projection uncertainties that are inherent to this technique. The projection
uncertainties are then quantified using Large Eddy Simulation experiments of a point source release
into the atmosphere. Our results show that while projection uncertainties are typically about 5% of
the emission rate, low acquisition times and observation of the gas plume at small distances from
the emission source (<10 m) can amount to errors of about 20%. Further, we found that acquisition
times on the order of tens of seconds are sufficient to significantly reduce (>50%) the projection
uncertainties. These findings suggest robust procedures on how to reduce projection uncertainties,
however, a balance between other sources of uncertainty due to operational conditions and the
employed instrumentation are required to outline more practical guidelines.

Keywords: gas imaging; error analysis; source rate quantification; natural gas; methane emission;
remote measurements

1. Introduction

With technological advances in extraction techniques [1], the production of Natural
Gas (NG) in the United States underwent a steady increase in the 2010s and reached a new
record high in 2019 [2]. Operational and accidental emissions at NG production, processing
and transmission facilities release methane, the major component of NG, into the atmo-
sphere, posing risks associated with climate change and health and safety [3]. Therefore,
mitigation of emissions has become a top priority in the United States, highlighted by the
introduction of periodic leak detection and repair (LDAR) surveys for methane by the U.S.
Environmental Protection Agency (EPA) in the 2016 updates to the New Source Perfor-
mance Standards [4]. In practice, LDAR programs following U.S. EPA’s Method 21 or using
optical gas imaging (OGI) are effective for component-level leak detection, however, they
are labor and resource intensive, which prevents frequent survey and prompt mitigation
efforts. While the focus of LDAR programs has been on leak detection and localization,
quantification of emission sources can lead to more effective emission mitigation by pri-
oritizing repair for larger leaks. Furthermore, quantification of small and medium-sized
emission sources adds depth to our understanding of emission profiles associated with the
NG supply chain that can lead to further mitigation efforts.

In recent years, new measurement systems and technologies have been developed to
quantify emissions of methane from equipment and operations with reduced cost and/or
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improved spatial coverage. Examples include portable methane analyzers [5], open-path
laser spectrometers [6], remote sensing of methane from aircraft and satellite [7–9], ground-
based mobile sensing [10,11] , and airborne mobile sensing approaches using unmanned
aerial vehicles (UAVs) [12–15]. Use of portable methane analyzers is an accurate method
for quantifying known emission sources, but localization efforts are often labor intensive
with the requirement of investigating entire facilities at a slow pace. Open-path laser
spectrometers are used to quantify emissions from facilities, but require equipment for
wind measurement in addition to knowledge of location of emitting components that neces-
sitates accompanied use of detection methods such as OGI. Satellite and airborne methods
allow coverage of large areas and detection of relatively large emission sources (e.g., de-
tection limit for the Airborne Visible/Infrared Imaging Spectrometer—Next Generation is
240 kg CH4/day) [9]. However, such high detection limits prevent identification of low-
and moderate-emission sources under typical meteorological conditions. Ground-based
mobile sensing approaches are useful in quantifying emissions from facilities without
offering solutions for component leak localization [16,17]. While the use of UAV systems
has been promising for leak detection, localization and quantification, large uncertainties
arise from the reliance on lightweight sensors and simplistic dispersion models [12,14]. It is
worth noting that many non-invasive approaches including transient test-based techniques
(TTBTs) have shown success in leak detection and quantification in water systems [18–20].
Future studies that employ these methods in natural gas systems could shed a light on
their applicability in estimating methane emissions.

One newly developed technique that allows for quantification and localization is
ground-based remote sensing via gas imaging cameras [21–23]. Gas imaging includes
capturing video images of methane plumes in the environment to quantify emission rates.
Briefly, this technique involves the comparison of the at-sensor radiant energy in the IR
part of the electromagnetic spectrum in the presence and absence of the gas plume [23,24].
This difference in radiance is then related to the depth integrated concentration of the
gas (also known as the concentration-path length) in ppm×m through the use of Beer-
Lambert law and the temperature contrast between the gas and the background scene.
This technique shows promise as it offers high spatiotemporal resolution in mapping gas
concentrations as well as possibility of automation and continuous monitoring of sites.
In addition, ancillary equipment for wind measurement is not required, since with high
frequency imaging (e.g., >1 Hz) gas velocities inside the plume can be approximated
by tracking plume features in consecutive images using velocimetry algorithms such as
minimum quadratic differences [25], cross-correlation between consecutive images [26],
and block-matching [21]. With the measured methane concentration and the estimated
flow velocity, the emission rates can be computed based on the principle of mass balance.
However, a systematic analysis focusing on the uncertainty of such estimates has been
lacking in the literature.

The effectiveness of gas imaging techniques in quantifying unknown leak rates is
tied to the level of uncertainty in leak quantification. Furthermore, lower uncertainties in
leak rate quantification lead to lower false alarm rates and promote effective mitigation of
emissions and reduced costs [27]. An in-depth understanding of the sources of uncertainty
is essential for increasing the accuracy and precision of leak quantification. To this end, we
divide the uncertainties into the following categories: (1) instrumentation, (2) operational
and (3) two-dimensional projection uncertainties. Lower uncertainties can generally be
achieved through technological advances in equipment and instrumentation. For exam-
ple, increased spatial and temporal resolution of imaging cameras translate into lower
uncertainty in concentration measurement and velocity estimation which in turn leads
to lower total uncertainty in leak quantification [27]. Instrumentation uncertainties are
usually reported by manufacturers and have been previously studied in detail [21,22,26,28].
Meanwhile, the transformation of concentrations and velocities into emission rates is also
an uncertain process. The uncertainties of this transformation process can be due to operat-
ing conditions (operational uncertainty) or arise from approximating the three-dimensional
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(3D) methane plume, using a two-dimensional (2D) view as seen by the camera (projection
uncertainties). Operating conditions such as distance between camera and leak, back-
ground temperature, changes in wind speed and direction can affect uncertainty levels
by affecting detection capabilities of the cameras (e.g., the minimum leak size that can be
detected) and have been previously investigated for leak detection through simulations
and experiments [29,30]. On the other hand, projection uncertainties have been largely
ignored in the literature. It is worth noting that while operating conditions and instru-
mentation uncertainties can affect the magnitude of projection uncertainties, projection
uncertainties are ubiquitous irrespective of other uncertainties. In other words, even with
perfect equipment and algorithms accurately measuring concentrations and velocities,
projection uncertainties will still be present.

In this paper, we formulate the projection uncertainties related to the transformation
of gas imaging measurements into emission rates through a rigorous theoretical analysis
that couples mass balance and spatial Reynolds decomposition. Our analysis is first
carried out through comparison of a 3D instantaneous plume transport model and its
2D projection which models an emission scene as observed through the lens of a camera.
Our analysis divides the projection uncertainties into two distinct uncertainty expressions.
These two expressions are then quantified and compared against each other using Large
eddy simulations (LES) of a point source plume dispersion under neutral atmospheric
conditions. Furthermore, the effects of acquisition time and downwind distance from leak
on projection uncertainties are quantified. Finally, we discuss the implications of these
results on the viability of gas imaging techniques on leak rate quantification.

It is worth noting that this article focuses on fugitive emissions of methane due to
the recent incentives for accurate quantification, namely the DOE ARPA-E’s Methane
Observation Networks with Innovative Technology to Obtain Reduction (MONITOR)
program [31], however, our theoretical analysis stands true for video observations of any
release of a conserved scalar into the environment.

2. Theory

To evaluate the projection uncertainties in leak rate quantification through gas imag-
ing, we need to derive expressions for the error terms involved. To this end, in Section 2.1
we describe an instantaneous view of plume transport and use it to formulate an exact
solution to a point source leak rate problem. This formulation has been previously used
to characterize point sources through mobile sensor data with details available in [32].
In Section 2.2, we introduce a 2D projection of the transport formulation to model images
captured in gas imaging experiments. We use these 2D projections to formulate an approxi-
mate solution to the leak rate problem. The difference between the exact and approximate
solutions explicitly describes the projection uncertainties present in leak rate quantification
as shown in Section 2.3.

2.1. Instantaneous 3D View of Plume Transport

We consider the release of a gas (e.g., methane) from a point source into the environ-
ment. The release is happening in the surface-layer of the atmospheric boundary layer
(ABL) where the assumptions of stationary and horizontally homogeneous turbulence
hold [33]. Without loss of generality, we assume that the x-axis of the coordinate system
is directed along the mean wind, and we refer to the y and z directions as “depth” and
“height” directions, respectively. This setup is shown in Figure 1a, with the point source
located at (xp, yp, zp). In this setup, u, v and w are defined as velocity components in x, y
and z directions, respectively. A control volume is defined starting from the origin O
and extending in the three principal directions up to downwind sampling positions xm,
from ymin to ymax in depth, and zmin to zmax vertically. The control volume contains the
source and is defined such that the plume generated from the point source only exits the
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face on the y− z plane at x = xm. Conservation of mass states that the source rate (mass
per time), Q can be expressed as

Q = F(xm, t) +
dS(t)

dt
, (1)

where S(t) is total mass of the emitted gas in the control volume, t is time, and F(xm, t) is
the mass flow rate out of the control volume.

The total mass of the emitted gas in the control volume at any time, t, is calculated by
integrating the above-ambient concentration over the full control volume as follows

S(t) =
∫ xm

0

∫ ymax

ymin

∫ zmax

zmin

c(x, y, z, t)dzdydx, (2)

where c is the above-ambient gas concentration. In the ABL, the flow is highly turbulent
so that molecular diffusion can be ignored relative to turbulent transport [34]. Therefore,
the mass flow rate exiting the downwind face of the control volume is related to the gas
concentration and velocity as

F(xm, t) =
∫

Lz

∫
Ly

c(xm, y, z, t)u(xm, y, z, t)dydz, (3)

where Ly and Lz are the plume depth and height, respectively.
Equations (1)–(3) allow for quantification of the source rate with knowledge of the

gas concentration and plume velocity as functions of space and time. These expressions
are considered the benchmark to which we will compare other formulations to evaluate
their intrinsic uncertainties. Note that the precise local gas concentrations and velocities
are not readily available through gas imaging techniques; therefore, we simulate the
image sampling process in a 2D model framework so as to quantify the truncation errors
introduced by the measurements and analytics.
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Figure 1. A control volume containing a continuous source with a mass flow rate of Q located at(
xp, yp, zp

)
in (a) a three-dimensional view, with a cross-plane view of the plume mass flow rate,

F(xm, t) at downwind distance, xm and (b) a two-dimensional snapshot modeling an image obtained
via gas imaging leading to an estimate of the mass flow rate, Fest(xm, t) at downwind distance, xm.
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2.2. 2D Modeling of Instantaneous Plume Transport

In order to model the images of plume transport, the control volume introduced above
is projected such that the y-axis is collapsed and only the x and z principal directions
are resolved (Figure 1b). In this scenario, it is not possible for a camera to obtain the
velocity and concentration variations with depth (i.e., variations in y-direction). Instead,
a depth-integrated concentration profile is observed [22,23], which is denoted by cy and
defined as

cy(x, z, t) =
∫

Ly
c(x, y, z, t)dy. (4)

Equation (4) can be utilized to show that in the 2D model the total mass of the emitted gas
within the control volume S(t) can be evaluated exactly.

To calculate the mass flow out of the control volume, the velocities inside the plume
are also required. In practice, these velocities are measured by employing optical ve-
locimetry algorithms [21,25,26] that track the depth-integrated concentration profiles over
consecutive images. The mass flow out of the control volume can be estimated using these
inferred velocity profiles from plume tracking, labeled ui(xm, z, t), and the depth integrated
concentration profiles as follows

Fest(xm, t) =
∫

Lz
cy(xm, z, t)ui(xm, z, t)dz, (5)

where Fest is the estimated outward mass flow. A detailed discussion on the possibilities
for the inferred velocity is presented in Section 4.

2.3. Projection Uncertainty Formulation

The projection uncertainty associated with the 2D projection of the plume can be
formulated by comparing the leak rate quantification procedures of Sections 2.1 and 2.2.
We continue the analysis under the assumption that instrumentation uncertainties are negli-
gible, meaning that the depth-integrated concentrations measured through gas imaging are
without significant error. With this assumption, S(t) can be calculated exactly through the
2D measurement inference algorithm. Therefore, the projection uncertainties in quantifying
the leak rate are solely dependent on the difference between F and Fest.

The relationship between F and Fest can be written explicitly by applying Reynolds
decomposition to the dependent variables (u and c) and decomposing them into a spatial
mean and a fluctuating part, e.g., for the velocity, u(x, y, z, t) = u(x, z, t) + u′(x, y, z, t).
Here, u denotes the depth-averaged velocity measured across the depth of the plume,
and u′ is the corresponding fluctuating velocity. This decomposition directly leads to the
following results ∫

Ly
u′(x, y, z, t)dy = 0, (6)∫

Ly
c′(x, y, z, t)dy = 0, (7)∫

Ly
c(x, z, t) dy = cy(x, z, t). (8)

For simplicity of notation, x, y, z, t will be dropped for the remainder of this section.
By utilizing Reynolds decomposition, a relationship between F and Fest can be rigor-

ously derived. First, we apply the decomposition to u and c to rewrite F as follows
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F(xm, t) =
∫

Lz

∫
Ly

cudydz =
∫

Lz

∫
Ly
(c + c′)(u + u′)dydz

=
∫

Lz

∫
Ly

(
c.u + cu′ + uc′ + c′u′

)
dydz

=
∫

Lz
ucydz +

∫
Lz

∫
Ly

c′u′dydz (9)

where Equations (6)–(8) are used to simplify terms along the way. Subtracting Equation (5)
from Equation (9) yields the difference between F and Fest

F(xm, t)− Fest(xm, t) =
∫

Lz
(u− ui)cydz +

∫
Lz

∫
Ly

c′u′dydz. (10)

With the assumption that instrumentation uncertainties are negligible, the right hand
side of Equation (10) describes the projection uncertainties present in leak rate quantifi-
cation via gas imaging, since they are caused by using a 2D projection of the plume to
approximate the mass flow rate. We note that although such an assumption is not valid
in practice, it allows us to isolate and estimate the projection uncertainties. In practical
applications, the projection uncertainties should be added to other uncertainty estimates
for a better quantification of the total uncertainties. The first integral in Equation (10) scales
with the difference between the true depth-averaged velocity and the inferred velocity
estimate from the 2D image analysis. Therefore, prediction of the scale of this velocity
difference under typical application conditions indicates the importance of the first term.
The second integral describes the covariance of velocity and concentration fluctuations.
Hereafter, we will refer to the first integral as the “mean velocity error term” and the second
integral will be referred to as the “covariance error term”. To quantify the significance
of each error term compared to the leak rate, we define the “normalized covariance error”
(Φc) and the “normalized mean velocity error” (Φu) as follows

Φc(xm, t) =

∫
Lz

∫
Ly

c′u′dydz

Q
, (11)

Φu(xm, t) =

∫
Lz
(u− ui)cydz

Q
. (12)

Before exploring the scale of the error terms by analyzing a dataset acquired through
Large Eddy Simulations (LES), we will discuss a number of considerations related to the
inferred velocity.

2.4. Inferred Velocity Considerations

The mean velocity error term is a function of the inferred velocity, (ui), which is
dependant on the operational conditions and the velocimetry technique used to infer the
velocity from the gas imaging. There are numerous possibilities for the inferred velocities,
among which we analyse three possible cases:

Case 1: Concentration weighted average velocity (ideal case)

In this scenario, the inferred velocity is computed as a concentration weighted average
velocity (also referred to as plume-weighted advection velocity) [32]:

u(1)
i (xm, z, t) ≡

∫
Ly

ucdy∫
Ly

cdy
, (13)

where the superscript is used to show that these expressions are only valid for the corre-
sponding case of the discussion regarding the mean velocity error term. Equation (13) can
then be used to rewrite the mass flow out of the control volume
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F(xm, t) =
∫

Lz

∫
Ly

cudydz =
∫

Lz
u(1)

i

∫
Ly

cdydz =
∫

Lz
u(1)

i cydz = F(1)
est (xm, t). (14)

Therefore, with the concentration weighted average velocity as the inferred velocity,
the mean velocity error term cancels out the covariance term in the projection uncer-
tainty calculations, allowing for the mass flow out of the control volume to be computed
exactly. In practice, this case in unlikely to be achieved, hence we continue by establishing
an upper bound for the normalized mean velocity error.

Case 2: Maximum difference velocity (upper bound case)

To compute an upper bound for the normalized mean velocity error, the inferred
velocity can be expressed as follows

u(2)
i (xm, z, t) ≡ u + max

{
|u− u| : y ∈ yplume

}
, (15)

where yplume corresponds to the interval of length Ly where the plume at (xm, z) is instan-
taneously located.

Case 3: Maximum concentration velocity

A plausible estimation for the inferred velocity is the velocity of a portion of the
plume that has the highest concentration. In a gas flow, clumps of higher concentration
contribute more to the measured depth-integrated concentrations than other parts of the
plume. Therefore, it is expected that velocimetry techniques infer the gas velocity by
tracking these highly concentrated clumps [28]. As a result, another possibility for inferred
velocity can be defined as follows

u(3)
i (xm, z, t) ≡ u

(
xm, arg max

y
c(xm, y, z, t), z, t

)
. (16)

3. Large Eddy Simulation Data

Large Eddy Simulation is used to create a virtual test site for simulation of the dis-
persion of a passive scalar (e.g., methane) in the surface layer of the ABL. The LES tur-
bulent modeling is particularly useful for simulating high-Reynolds number flows in
the ABL. The LES code used in this study has been utilized and validated in numerous
studies [35–39]. In brief, the code numerically solves the resolved Navier-Stokes and mass
conservation equations on a Cartesian grid while the unresolved (sub-grid) dynamics are
closed in terms of the resolved scales [36].

LES has been previously used as a realistic proxy for the space-time evolution of
plumes in turbulent near-neutral environments [39–42]. Therefore, in this study, methane
release from a point source is simulated under near-neutral turbulent conditions in an
unobstructed flat homogeneous terrain.

The virtual site was set up with 0.469 m horizontal and 0.188 m vertical grid resolution
with a total simulation domain size of 60 m in x (along-wind) and y (crosswind) directions
and 15 m in z (vertical) direction (128× 128× 80 spatial resolution). The virtual site was
constructed to resemble the Methane Emissions Technology Evaluation Center (METEC)
well pads, a facility funded through the ARPA-E’s MONITOR program and built to provide
a location that models natural gas production sites. In the virtual site, the source is located
at a height of 2.25 m to match the average height of a typical leak as modeled in the METEC
facilities. A 30-min spin-up period found by trial and error was implemented to allow the
simulated turbulence to reach a stationary state. In this case, the average and standard
deviations of the wind and scalars approach a constant value [39]. For the analysis to
follow, 5 y− z intersects are created at non-dimensional downwind distances normalized
by the source height

(
xm/zp

)
of approximately 2, 3, 4, 8 and 12, on which the instantaneous



Sensors 2021, 21, 5683 8 of 14

velocities and concentrations are sampled (recorded) at a frequency of 1 Hz for the duration
of 15 min. A summary of parameters used in the LES is presented in Table 1.

Table 1. Summary of parameters used in LES.

Name Value

Computational domain size (xmax, ymax, zmax) 60, 60, 20 (m)
Computational grid size (∆x, ∆y, ∆z) 0.469, 0.469, 0.188 (m)
Height of source (zp) 2.25 (m)
Sampling frequency ( fs) 1 (Hz)
Sampling duration (Ts) 900 (s)
Downwind distance of intersects (xm) 4.7, 7.0, 8.9, 17.9, 26.8 (m)
Normalized downwind distance of intersects (xm/zp) 2.1, 3.1, 4.0, 8.0, 11.9 (-)

4. Results and Discussion

In this section, we utilize the LES dataset to estimate the scale of the covariance and
velocity terms as functions of sampling distance to leak and sampling duration.

4.1. Covariance Error Term

To observe the significance of the covariance term the LES dataset is employed.
For each snapshot (saved at a frequency of 1 Hz), the normalized covariance error is
calculated at the y − z intersects located downwind of the emission source. Box plots
of populations of Φc calculated at each of the 5 y − z intersects distinguished by their
downwind distance from the source, are presented in Figure 2. The figure shows that at
all downwind distances from the source the covariance error term is almost always less
than 10% of the leak rate. Further, the significance of the covariance term drops as the
downwind distance from the source is increased. A possible explanation for this result is
through the assumption of local isotropy at the length scale of the plume. One consequence
of local isotropy is the vanishing of all correlations between velocity components and
scalars [43] leading to small values for Φc. Moreover, the drop in Φc with distance is due to
the fact that at larger distances, concentration fluctuations from the mean become smaller
as the plume widens, while the velocity fluctuations stay relatively constant. Meanwhile,
the smaller than zero median and mean values suggest that the covariance error term is
in a direction opposite to the total mass flow. This finding can be understood by noting
that a higher velocity compared to the mean can move the plume and lead to lower local
concentrations leading to observing opposite signs for u′ and c′ on average.

2 3 4 8 12
xm/zp

−0.10

−0.05

0.00

0.05

0.10

Φ
c

Figure 2. Distributions of the normalized covariance error shown at 5 downwind y− z intersects
from the emission source measured for every saved snapshot from the LES. Box and whiskers plots
show the median (red), 25th and 75th percentile (blue), the 5th and 95th percentile (black), and the
mean (purple diamond) values of each distribution.
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The tall whiskers in the box plots in Figure 2 indicate that in a single snapshot, Φc can
take values in a relatively large interval. Therefore, it is plausible that mass flow rates be
computed using multiple snapshots taken over a period of time, highlighting the effect of
time-averaging on Φc. Figure 3 depicts the effect of time averaging on Φc for a normalized
downwind distance of xm/zp = 4. In this figure, the y−axis is labeled by 〈Φc〉 to indicate
a time-averaged parameter, where the angle brackets denote time-averaging. It can be
seen that longer time-averages reduce Φc indicating that even short averaging times on
the order of tens of seconds can lead to a substantial decrease in the significance of the
covariance error term and therefore the projection uncertainty. It is worth noting that a
single well-defined wind direction (e.g., <10◦ variation in the mean wind direction) is
necessary for accurate velocity and concentration measurements and therefore emission
estimates. Moreover, the chance of observing larger variations in wind direction increases
as acquisition times are increased. Thus, averaging times longer than 30 s are not shown in
Figure 3, even though they lead to further decreases in the normalized covariance error.

1 5 10 20 30
Averaging Time (s)

−0.10

−0.05

0.00

0.05

0.10

〈Φ
c
〉

xm/zp = 4

Figure 3. Effect of time-averaging on Φc at a normalized downwind distance of xm/zp = 4. Box and
whiskers plots show the median (red), 25th and 75th percentile (blue), the 5th and 95th percentile
(black), and the mean (purple diamond) values of each distribution.

4.2. Mean Velocity Error Term

The normalized mean velocity error is quantified using the LES data in a similar
manner to Φc. We use Φu

u to refer to the upper bound of the normalized mean velocity
error, which is computed by employing Equation (15) to compute the normalized mean
velocity error. Boxplots of populations of Φu

u at each of the y− z intersects are illustrated in
Figure 4a.

As the distance from the source is increased, the plume becomes wider, hence we
expect the difference term,

(
u− u(2)

i

)
, to grow. However, as the plume grows wider

through diffusion the depth-integrated concentrations at each height are decreased. As a
result, Figure 4a shows that at closer distances to the source the rate of increase in Φu

u is
faster compared to larger distances, with Φu

u almost staying constant between xm/zp of 8
and 12. The effect of time averaging on Φu

u is presented in Figure 5a highlighting that the
range of uncertainties significantly drops as the averaging times are increased in a similar
manner to the normalized covariance error. Further, the median value for Φu

u is under 0.20
which is a promising result for leak quantification using gas imaging based on current
standards [31], given that this is the worst case scenario for the inferred velocity.
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2 3 4 8 12
xm/zp

0.0

0.1

0.2

0.3

0.4

0.5

Φ
u u

(a)

2 3 4 8 12
xm/zp

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Φ
c u

(b)

Figure 4. Distributions of (a) the upper bound of the normalized mean velocity error and (b) the
normalized mean velocity error based on using the maximum concentration velocity as the inferred
velocity at 5 downwind y− z intersects from the emission source. Box and whiskers plots show
the median (red), 25th and 75th percentile (blue), and the 5th and 95th percentile (black) values of
each distribution.
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Figure 5. Effect of time-averaging on (a) Φu
u and (b) Φc

u at a normalized downwind distance of
xm/zp = 4. Box and whiskers plots show the median (red), 25th and 75th percentile (blue), and the
5th and 95th percentile (black) values of each distribution.

We use Φc
u to refer to the normalized mean velocity error computed with u(3)

i as
the inferred velocity with boxplots of populations of Φc

u at 5 y− z intersects illustrated
in Figure 4b. In this scenario, the population distribution of Φc

u becomes wider with
increasing distances from the source before reaching a plateau at normalized distances of 8
and 12 in a similar manner to Φu

u. For all considered distances, while the mean velocity
error term can reach up to 15% of the leak rate in value, the most likely scale of the error
is between ±3 percent. Moreover, the median value of the distributions is within 1%
of zero, suggesting that high acquisition times would result in minimal mean velocity
errors. Figure 5b shows the effect of averaging time on the population distribution of
Φc

u at xm/zp = 4, highlighting a significant drop of 50% in the width of the distribution
(according to the 5–95 percentiles) when the averaging time is increased to 5 s. This finding
alongside the effect of averaging times on the magnitude of the covariance error term,
underlines the importance of longer acquisition times in order to reduce the projection
uncertainties related to leak quantification. A more formal investigation of the total
projection uncertainty is discussed in the next section.



Sensors 2021, 21, 5683 11 of 14

4.3. Total Projection Uncertainty

Here, we define the normalized projection uncertainty as the ratio of the total projec-
tion uncertainty to the leak rate. By this definition, the normalized projection uncertainty
ratio, denoted by Φt, can be computed by the addition of the normalized covariance and
mean velocity errors. We use the inferred velocity from case (3) above to estimate Φt,
with population boxplots depicted in Figure 6. The results indicate that the projection
uncertainty typically lies within 5% of zero and drops as the outgoing surface of the control
volume is constructed further away from the point source at xm/zp of 8 and 12. However,
the reduction in the uncertainty range does not occur monotonically and the range only
slightly varies between normalized distances of 2, 3 and 4. Generally, the covariance error
term accounts for at least a quarter of the total projection uncertainty depending on the
downwind distance of observations. Increasing the averaging time leads to narrower
distributions of 〈Φt〉 as presented in Figure 7 in a similar manner to the normalized covari-
ance and mean velocity errors. A noteworthy observation is the diminishing returns of
increasing the averaging time from 20 to 30 s with a relative drop of 17% (absolute drop of
0.02) compared to a relative drop of 54% (absolute drop of 0.22) when the averaging time is
increased to from 1 to 5 s.

2 3 4 8 12
xm/zp

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Φ
t

Figure 6. Distributions of the normalized projection uncertainty shown at 5 downwind y− z intersects
from the emission source. Box and whiskers plots show the median (red), 25th and 75th percentile
(blue), and the 5th and 95th percentile (black) values of each distribution.
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〈Φ
t
〉

xm/zp = 4

Figure 7. Effect of time-averaging on Φt at a normalized downwind distance of xm/zp = 4. Box and
whiskers plots show the median (red), 25th and 75th percentile (blue), and the 5th and 95th percentile
(black) values of each distribution.
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With the projected uncertainties being smaller at farther distances from the point
source, it may seem desirable to observe gas plumes far downstream of the point source
for the purpose of leak quantification (especially when long acquisition times are not
possible). In practice however, the plume may be difficult to detect and quantify at large
distances away from the source due to detection limits of the gas imaging instrument [29].
On the other hand, in addition to higher projection uncertainties, imaging close to the point
source can lead to underestimation if the saturation limit of the instrument in observing
the depth-integrated concentrations is reached. Therefore, a plausible approach in leak rate
estimation would be to employ several control volumes with control surfaces located at
varying distances from the point source. The estimated leak rates from the control volumes
can be averaged after removing the outliers created due to detection and saturation limits,
to compute a final leak rate estimate. Moreover, the acquisition time should be as long
as the wind conditions allow, since longer acquisition times are translated into lower
projection errors.

5. Summary and Conclusions

In this paper, we presented an approach for expressing and quantifying the projection
uncertainties in estimating fugitive source emission rates through gas imaging techniques.
The projection uncertainties arise from observing the dispersion of a 3D plume in the
atmosphere through 2D video images. We developed a theoretical analysis that led to
two separate terms associated with the projection uncertainties, the covariance and mean
velocity error terms. A simulated dataset generated through Large eddy simulations was
used to quantify the significance of each of the projection uncertainty terms under varying
imaging constraints of acquisition time, and downwind distance from the leak source.

We found that low acquisition times and instantaneous estimates of the leak rate
are prone to high projection uncertainties that can amount up to 20% of the emission
rate. However, the typical projection uncertainty is expected to be between ±5 percent
highlighting the potential of gas imaging techniques in leak quantification. In these
cases, the covariance error term is responsible for between a quarter to a third of the
projection uncertainties depending on the observed downwind distance from the leak
source. Furthermore, we found that increasing the acquisition time by a few seconds (∼5 s)
can cause substantial (>50%) decreases in the projection uncertainties leading to much more
robust estimates for the leak rate. The employment of long acquisition times and imaging
far away from leak sources may prove difficult to achieve in real life releases. In particular,
variations in wind direction that are more likely to occur over longer periods can impede
the emission estimation process by moving the plume away from the view of the camera.
Meanwhile, at farther distances downwind of leak sources the gas concentrations within
the plume are likely to drop below the detection limit of gas imaging cameras which can
lead to underestimation of the leak rates. Consequently, for practical applications, we
suggest the use of multiple control volumes at varying distances coupled with the longest
acquisition times as allowed by the environmental conditions.

Altogether, the remote sensing approach based on the use of gas imaging technol-
ogy is a promising technique that has the capacity for accurate leak quantification. This
approach allows for non-intrusive leak quantification without the need for additional
equipment for wind measurements. To the best of our knowledge, previous studies on
leak quantification via gas imaging have only used a single control volume close to the
source, whereas our findings suggest that estimates can be improved by employing multi-
ple control volumes [21,22]. With the development of new hyperspectral cameras recording
images at high spatial and temporal resolutions and more efficient velocimetry algorithms,
it is expected that the accuracy and speed in leak quantification can further improve as
long as projection uncertainties are kept in check with our suggested guidelines.
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