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Background: Heart failure (HF) combined with hypertension is an extremely

important cause of in-hospital mortality, especially for the intensive care unit

(ICU) patients. However, under intense working pressure, the medical staff

are easily overwhelmed by the large number of clinical signals generated

in the ICU, which may lead to treatment delay, sub-optimal care, or even

wrong clinical decisions. Individual risk stratification is an essential strategy

for managing ICU patients with HF combined with hypertension. Artificial

intelligence, especially machine learning (ML), can develop superior models

to predict the prognosis of these patients. This study aimed to develop a

machine learning method to predict the 28-day mortality for ICU patients with

HF combined with hypertension.

Methods: We enrolled all critically ill patients with HF combined with

hypertension in the Medical Information Mart for IntensiveCare Database-IV
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(MIMIC-IV, v.1.4) and the eICU Collaborative Research Database (eICU-

CRD) from 2008 to 2019. Subsequently, MIMIC-IV was divided into

training cohort and testing cohort in an 8:2 ratio, and eICU-CRD was

designated as the external validation cohort. The least absolute shrinkage

and selection operator (LASSO) Cox regression with internal tenfold cross-

validation was used for data dimension reduction and identifying the most

valuable predictive features for 28-day mortality. Based on its accuracy

and area under the curve (AUC), the best model in the validation cohort

was selected. In addition, we utilized the Shapley Additive Explanations

(SHAP) method to highlight the importance of model features, analyze

the impact of individual features on model output, and visualize an

individual’s Shapley values.

Results: A total of 3,458 and 6582 patients with HF combined with

hypertension in MIMIC-IV and eICU-CRD were included. The patients,

including 1,756 males, had a median (Q1, Q3) age of 75 (65, 84) years.

After selection, 22 out of a total of 58 clinical parameters were extracted

to develop the machine-learning models. Among four constructed models,

the Neural Networks (NN) model performed the best predictive performance

with an AUC of 0.764 and 0.674 in the test cohort and external validation

cohort, respectively. In addition, a simplified model including seven variables

was built based on NN, which also had good predictive performance

(AUC: 0.741). Feature importance analysis showed that age, mechanical

ventilation (MECHVENT), chloride, bun, anion gap, paraplegia, rdw (RDW),

hyperlipidemia, peripheral capillary oxygen saturation (SpO2), respiratory rate,

cerebrovascular disease, heart rate, white blood cell (WBC), international

normalized ratio (INR), mean corpuscular hemoglobin concentration (MCHC),

glucose, AIDS, mean corpuscular volume (MCV), N-terminal pro-brain

natriuretic peptide (Npro. BNP), calcium, renal replacement therapy (RRT),

and partial thromboplastin time (PTT) were the top 22 features of the NN

model with the greatest impact. Finally, after hyperparameter optimization,

SHAP plots were employed to make the NN-based model interpretable

with an analytical description of how the constructed model visualizes the

prediction of death.

Conclusion: We developed a predictive model to predict the 28-day mortality

for ICU patients with HF combined with hypertension, which proved superior

to the traditional logistic regression analysis. The SHAP method enables

machine learning models to be more interpretable, thereby helping clinicians

to better understand the reasoning behind the outcome and assess in-hospital

outcomes for critically ill patients.

KEYWORDS

MIMIC-IV, interpretable machine learning, neural networks, heart failure,
hypertension

Introduction

Cardiac diseases are among the leading causes of overall
mortality and hospitalization globally. Amongst them, heart
failure (HF) is of the highest socio-economic relevance, and

it is a global epidemic with high morbidity, mortality, and
readmission rates, affecting more than 64 million people
worldwide (1–4). In the United States, the estimated prevalence
of HF is expected to increase by 24% to approximately
8.5 million in 2030 (5, 6). Hypertension, the most frequent
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comorbidity of HF, promotes the development of the disease
and contributes to its progression and poor outcome (7). In the
United States, around 10–51% of hospitalized patients with HF
have been documented with ICU admission, and ICU-admitted
patients have significantly higher adjusted in-hospital mortality
compared with those admitted to the general medical floor
(8–10). In addition, the in-hospital mortality rate for patients
treated in the ICU was 10.6%, compared with 4.0% for all HF
patients (11). Because ICU physicians receive large amounts
of data from many patients stored in electronic patient-data
management systems (PDMS) surpassing the amount limits of
the human brain to process information, it is often difficult for
physicians to extract the most important information in a short
period to make the best decisions for patient care. In addition,
the limited ability of humans to process this vast amount of
data makes them prone to data overload, change blindness, and
task fixation (12), which also increases the risk of clinicians
failing to identify and interpret relevant information and act
accordingly (13, 14). Low nurse-to-patient ratios in the ICU
and insufficient numbers of ICU physicians are associated with
higher ICU mortality in patients whose conditions deteriorate
and who do not receive timely and appropriate treatment (15–
18). Despite recent advances in diagnosis and treatment as
well as evidence-based management, the results regarding HF
remain unsatisfactory (19).

Risk stratification as a common method for risk
classification, deciding the duration of intervention, and
assessing the mortality in patients with HF combined with
hypertension provide not only a fundamental strategy for
clinical decision-making but also practical information for
health policy and insurance services (20). For this reason,
several in-hospital mortality prediction models have been
developed and evaluated for risk stratification and mortality
prediction of HF patients in the ICU (21–30). However, an
interpretable machine learning (ML) model has not been
established to predict 28-day in-hospital mortality for ICU
patients with HF combined with hypertension.

Artificial intelligence, such as ML techniques, is excellent
at analyzing complex signals in data-rich environments
(31). The large amount of data collected in ICU and the
public availability of datasets such as MIMIC-III (32) and
emergency intensive care unit (eICU) (33) are critical to
developing ML in this context. ML is the use of computational
algorithms that can learn to identify underlying patterns
and classes from large amounts of data. It is an alternative
method of using previous or existing data to train computer
models to make predictions about the outcome. In this
study, we aimed to develop and validate an interpretable
prediction model to predict 28-day in-hospital mortality
in patients admitted to the ICU with HF combined with
hypertension using ML algorithms and leveraging data from
the Medical Information Mart for Intensive Care (MIMIC-IV)
and eICU database.

Materials and methods

Data source and outcome

This study was a retrospective cohort study based on
cohort data extracted from the MIMIC-IV (v.1.4) database,
which contains over 70,000 ICU admissions across the
United States collected from 2008 to 2019. The database is a
large, single-center, publicly available, and de-identified patient
database containing comprehensive patient information
[e.g., demographics, admission records, International
Classification of Diseases-9th and Diseases-10th (ICD-9
and ICD-10) revision diagnoses, laboratory tests, medications,
procedures, fluid balance, discharge summaries, vital sign
measurements undertaken at the bedside, caregivers notes,
radiology reports, and survival data] (34, 35). In addition,
the eICU-CRD database (version 2.0), a multicenter database
of more than 200,000 ICU admissions in the United States,
was used as an independent external validation set. We
studied these courses in depth and obtained permission to
use the database (record ID:42039823). The requirement
for individual patient consent and an ethical approval
statement was waived as the program does not affect
clinical practice and all patient privacy information in the
database was de-identified. The selected primary outcome
for this study was the all-cause mortality within 28 days of
patients with HF combined with hypertension who were
admitted to ICU.

Study patients and definitions

All adult patients in the MIMIC-IV database with a
diagnosis of HF who were admitted to the ICU were recruited
(only the first admission was included for analysis). The
diagnosis was identified by a manual review of ICD-9 and ICD-
10 codes. The exclusion criteria for participation in the study
were as follows: (1) patients without hypertension, (2) patients
with ICU length of stay less than 24 h or more than 28 days,
(3) patients with severe liver disease, (4) patients with malignant
cancer, and (5) patients with more than 30% missing data. In
this study, the patient’s first hospitalization time was taken as the
starting point for statistics on whether he died, and the patient’s
death or whether the patient did not die within the period
recorded in the database was taken as the statistical endpoint.
The primary outcome of this study was in-hospital mortality,
defined as the survival status at the time of hospital discharge.

Data collection and variable extraction

Following the variable selection method of Deshmukh
et al. (35), 58 candidate variables that were associated
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with the results were selected. The extracted variables
included the general demographic variables of patients
and other important variables, as follows: gender, age,
ethnicity, body weight, comorbidities, vital signs, laboratory
findings, medical treatments, and first care unit. The
severity of the disease was assessed using Sequential
Organ Failure Assessment (SOAF), Simplified Acute
Physiology Score II (SAPS-II), Oxford Acute Severity of
Illness Score (OASIS), and Logistic Organ Dysfunction
System scoring system.

Charlson comorbidity index was used, and the
comorbidities included hyperlipidemia, atrial fibrillation,
paraplegia, renal disease, aids, dementia, diabetes without,
diabetes with, peripheral vascular disease, cerebrovascular
disease, dementia, chronic pulmonary disease, rheumatic
disease, peptic ulcer disease, myocardial infarction, and
congestive heart failure. For vital signs, the mean values in
the ICU for the following variables were selected: respiratory
rate, heart rate (HR), body temperature, mean blood pressure,
diastolic blood pressure, systolic blood pressure, creatine kinase
MB isoenzyme, creatinine phosphokinase, Troponin, and
N-terminal prohormone of B-type natriuretic peptide (NT-
proBNP). For the results of the first laboratory examination after
admission to the ICU, the mean value for the following variables
were selected: RBC, hematocrit, hemoglobin, platelets, MCV,
WBC, MCHC, MCH, RDW, anion gap, bicarbonate, BUN,
creatinine, calcium, chloride, sodium, potassium, PT, PTT, and
INR. Medical treatments included MECHVENT and RRT.
Finally, the cumulative urine output within the first 24 h. To
reduce the impact of missing data on classification, a modified
KNN-based (K-nearest neighbor) classification algorithm
to fill in the missing values was proposed. Considering a
large number of features still presented in the cohort, the
least absolute shrinkage and selection operator (LASSO)
regression in the variable selection was utilized to effectively
prevent overfitting.

Missing data handling

Missing data with < 30% in each feature was processed
by KNN-based classification algorithm using the " DMwR2"
package in R. KNN-based classification algorithm is used as a
missing value estimation method, which is a non-parametric
ML algorithm based on neighbors. The imputed value is the
average of the neighbor’s measurements or multiple neighbors’
measurements. The estimation of missing values is obtained by
using the average of the non-missing values of its neighbors,
and in addition, the case where all neighbors in a given set
are missing can be circumvented by averaging the overall
column for that particular feature. Therefore, this technique
is advantageous for dealing with data sets that contain a large
number of variables with missing values (36).

Machine learning model building

The original raw data included gender, age, vital signs,
laboratory tests, and comorbidities. The processed data included
58 characteristics. In our study, five common algorithms, i.e.,
logistic regression (LR), Neural Networks (NN), Multi-Layer
perceptron (MLP), Naive Bayes (NB), and Random Forest (RF),
were applied to build models for predicting 28-day in-hospital
mortality of ICU patients with HF combined with hypertension.
To improve the stability of the prediction models, all continuous
variables were rescaled to a distribution with a mean of 0 and
a standard deviation of 1 with scale transformation. Threefold
cross-validation of the ML models to be tuned (LR, NN, MLP,
NB, and RF) was performed to select the best prediction model
for each algorithm with different tuning parameters. During
the search process, the accuracy or ROC was set as the metric.
The test set was not used during model tuning and was used
only for model evaluation after the entire model selection and
training process.

Model assessment

The final models were evaluated using the confusion matrix
metrics such as sensitivity, specificity, positive prediction value
(PPV), negative prediction value (NPV), accuracy, and the area
under the curve (AUC) of the receiver operating characteristic
(ROC). ROC curves were constructed based on the prediction
probabilities and the area under the curve (AUC) values of the
models in the testing dataset were compared to identify the
model with the best predictive performance.

Features important

Feature ranking evaluation is a measure that evaluates the
importance of each feature in a feature set through its impact
on the final classification result. We analyzed the importance
of features using the DALEX package, which explains the
predictions of any classifier in an interpretable and faithful
manner by learning an interpretable model locally around the
prediction. By calculating the relative importance of variables,
the impact of features on the prediction model was plotted.

Statistical analysis

Patients were divided into two groups based on whether
they died or survived during their 28-day stay in the ICU.
Then, categorical variables were presented as a percentage of
the total and continuous variables as mean ± SD or median
and IQR, according to the normality of the distribution. For
categorical and continuous variables, between-group differences
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were compared by using a two-sided Pearson’s χ2 test or
Fisher’s and two-sided one-way ANOVA or Wilcoxon rank
sum test, respectively. Logistic regression with the LASSO
penalization method was performed for predictor selection,
which helped to reduce the dimensionality of the prediction
model. LASSO regression shrinked the coefficient estimates
toward zero, with the degree of shrinkage dependent on an
additional parameter, lambda. To determine the penalty factor
(lambda), we constructed a tenfold cross-validated error plot
for the LASSO model. After that, the patients were randomly
divided into two groups, of which 80% were used as the
training cohort and the remaining 20% as the test cohort. Five
common ML methods were applied to develop the models in
the test cohort. The quantitative performance of the models
was assessed by comparing the AUC and accuracy in the test
cohort. The optimized model with the best mortality prediction
performance in the test cohort (i.e., the Neural Network-NN)
was defined as the final model. Then the top 7 most important
clinical features were screened out of the 22 most influential
features in the NN model, and they were used to build the best
NN model again and finally used for external validation. The
sensitivity performance analysis of the NN model was compared
with the seven most important clinical features in the LR model.
In addition, the Shapley additive explanations (SHAP) method
was adopted to improve the interpretability of the final model.
The SHAP values of features were evaluated by the lime package.
We selected four cases for the feature’s SHAP value evaluation.

All statistical analyses were carried out using R software (v.
3.6.3, R Foundation for Statistical Computing), and statistical
significance was set at p < 0.05.

Results

Baseline characteristics

As shown in Figure 1, data of 15,354 critically ill patients
were downloaded from the MIMIC-IV database. Among
them, 3,458 HF patients with hypertension were included in
our study. Among the included patients, 459 patients passed
away and 2,999 survived within 28 days, respectively. Table 1
summarizes the comparison of baseline characteristics, vital
signs, and laboratory parameters within 28 days between non-
survivors and survivors. In the non-survivor group, gender,
age, ethnicity, body weight, SOFA, SAPS II, OASIS, LODS,
Charlson comorbidity index, hyperlipidemia, atrial fibrillation,
paraplegia, cerebrovascular disease, congestive heart failure,
respiratory rate, HR, creatinine phosphokinase, Troponin,
NT-proBNP, platelets, MCV, WBC, MCHC, hematocrit,
RDW, anion gap, bicarbonate, bun, creatinine, calcium,
chloride, sodium, potassium, PT, INR, MECHVENT, RRT,
hematocrit, and the cumulative urine output within 24 h
differ significantly compared to those who survived. However,

dementia, diabetes and non-diabetes, peripheral vascular
disease, chronic pulmonary disease, rheumatic disease, peptic
ulcer disease, body temperature, mean blood pressure, diastolic
blood pressure, systolic blood pressure, creatine kinase MB
isoenzyme, RBC, hemoglobin, and MCH showed no significant
difference between the two groups. Figure 1 is the flow chart
describing the procedure for subject selection.

Features selected in models

The LASSO regularization process resulted in 22 potential
predictors based on 2,766 patients in the training cohort
(Figures 2A,B). Using MLP, NN, RF, NB, and LR, the 58
selected variables were used to identify patients who died
during their hospital stay in the training cohort. We show the
proportional importance of the top 22-ranked input variables
in the NN model and the LR model, respectively. Figure 2B
shows the LASSO-selected predictors (shrinkage parameter,
λ = 0.01914052).

Development and comparison of
machine learning models

A total of 58 clinical features were collected during the first
24 h after ICU admission. KNN was used to impute missing
data. LASSO regression was employed to identify signature
variables for hospital mortality in patients with HF combined
with hypertension. Ultimately, 22 out of 58 clinical features
were associated with prognosis, and these results are presented
in Table 2. In addition, we have constructed five ML binary
classifiers, namely MLP, NN, RF, NB, and LR, to predict the risk
of death in HF patients with hypertension (Figure 1). Then the
obtained hyperparameters were used to train the ML model with
the entire training data, and the performance of the model was
evaluated using the testing cohort. Figure 4 and Table 3 describe
the performance of these predictive models, showing that the
NN model with all available variables relatively outperformed
the other four models or predictive factors in testing cohorts
with an AUC of 0.764 and an accuracy of 0.8731 in the testing
cohort, compared with the other ML models (AUC: LR, 0.640;
RF, 0.748; NB, 0.751; MLP, 0.730). Therefore, we selected the NN
as the most promising approach among the five ML algorithms
for further prediction in this study.

Significant predictors and
development of the simplified model

We identified the 22 most significant predictors by
permuting feature importance techniques, transforming the NN
model and LR model into a universally applicable prediction
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FIGURE 1

A flow chart describing the procedure for subject selection.

model (Figure 3). The features specific to death included
age, MECHVENT, chloride, bun, anion gap, paraplegia, RDW,
hyperlipidemia, SpO2, respiratory rate, cerebrovascular disease,
HR, WBC, INR, MCHC, glucose, aids, MCV, NT-proBNP,
calcium, RRT, and PTT. For the convenience of clinical
providers and patients, the order of importance of these features
is not the same in the two models. Furthermore, we also
assembled a simplified ML model for HF risk stratification
by artificial intelligence with the top seven most important
high-ranking and readily available variables, namely bun,
paraplegia, anion gap, RDW, MECHVENT, chloride, and
age. The AUC of SMART-HF reached 0.741 and 0.674 in
the test cohort and external validation cohort, respectively
(Figure 4C).

Shapley additive explanations values
depending on variables

The impact of the top seven factors on the NN
model’s mortality risk prediction was further explored
using the SHAP dependency plot. The probability of death
in ICU patients with HF combined with hypertension
increases with the following indicators: age, increased
anion gap, elevated BUN, elevated RDW, increased serum
chloride level, and paraplegia (Figure 5). In contrast,
the mortality risk decreases with the increase of the
MECHVENT index.

Discussion

Given that HF patients with hypertension have a relatively
high chance of ICU admission, prioritization of patients who
require higher levels of care or immediate medical attention
is critical. Accurately predicting prognosis is the foundation of
both patient-centered care and shared decision-making, such
as selecting treatment strategies and informing patients. The
present study has shown the potential for the NN model to
assist physicians with predicting 28-day all-cause in-hospital
mortality. Using data derived from the MIMIC-IV database,
this study explored and validated five real-time diagnostic and
prognostic prediction models based on a ML algorithm for 28-
day in-hospital mortality in ICU patients with HF combined
with hypertension. These learning models incorporated static
and dynamic variables. Ultimately, it was found that an
NN model best-stratified patients’ risks with good external
validation. The algorithm showed that age, MECHVENT,
chloride, BUN, anion gap, paraplegia, RDW, hyperlipidemia,
SpO2, respiratory rate, cerebrovascular disease, HR, WBC, INR,
MCHC, glucose, AIDS, MCV, NT-proBNP, calcium, RRT, and
PTT were associated with an increased risk of death. The
NN prediction model may facilitate clinical decision-making
for advanced management of ICU-admitted HF patients with
hypertension. The proposed model has several advantages over
traditional clinical risk models. First, a highly specific cohort
of ICU patients with HF combined with hypertension we used,
rather than a more generalized cohort such as patients admitted
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TABLE 1 Baseline characteristics, vital signs, laboratory parameters and statistic results of mimic-IIV patients with HF combined with hypertension.

Variables Total (n = 3458) Survival (n = 2999) Death (n = 459) p

Gender, n (%) 0.032

0 1756 (51) 1501 (50) 255 (56)

1 1702 (49) 1498 (50) 204 (44)

Age, Median (Q1, Q3) 75 (65, 84) 74 (64, 83) 80 (70, 87) <0.001

Ethnicity, n (%) 0.005

0 923 (27) 775 (26) 148 (32)

1 2535 (73) 2224 (74) 311 (68)

Weight, Median (Q1, Q3) 79.5 (66.3, 95.9) 80 (67.1, 96.95) 74.2 (60.65, 91.1) <0.001

Hematocrit, Median (Q1, Q3) 33.6 (28.8, 38.3) 33.4 (28.6, 38.3) 34.5 (29.8, 38.45) 0.011

Hemoglobin, Median (Q1, Q3) 11 (9.4, 12.6) 11 (9.4, 12.6) 11.3 (9.8, 12.5) 0.261

Platelets, Median (Q1, Q3) 202 (152, 266) 202 (151, 264) 210.5 (163.5, 291) 0.003

wbc, Median (Q1, Q3) 10.8 (7.9, 14.8) 10.55 (7.8, 14.6) 12 (8.3, 16.45) <0.001

mch, Median (Q1, Q3) 30.1 (28.6, 31.5) 30.1 (28.6, 31.5) 30.1 (28.4, 31.4) 0.392

mchc, Median (Q1, Q3) 33 (31.9, 34) 33.1 (32, 34.1) 32.7 (31.5, 33.6) <0.001

mcv, Median (Q1, Q3) 91 (87, 95) 91 (87, 95) 92 (87, 97) 0.001

rbc, Median (Q1, Q3) 3.69 (3.16, 4.25) 3.69 (3.14, 4.25) 3.73 (3.27, 4.29) 0.178

rdw, Median (Q1, Q3) 14.4 (13.6, 15.6) 14.3 (13.55, 15.45) 14.9 (13.8, 16.4) <0.001

aniongap, Median (Q1, Q3) 14 (12, 17) 14 (12, 16) 16 (13, 19) <0.001

Bicarbonate, Median (Q1, Q3) 24 (22, 27) 24 (22, 27) 24 (20, 27) 0.002

Bun, Median (Q1, Q3) 21 (15, 29) 20 (15, 28) 27 (18.5, 39) <0.001

Calcium, Median (Q1, Q3) 8.5 (8.1, 8.9) 8.5 (8.1, 8.9) 8.5 (7.9, 8.9) 0.014

Chloride, Median (Q1, Q3) 104 (99, 108) 104 (100, 108) 102 (98, 106) <0.001

Creatinine, Median (Q1, Q3) 1 (0.8, 1.3) 1 (0.8, 1.2) 1.2 (0.8, 1.6) <0.001

Sodium, Median (Q1, Q3) 139 (136, 141) 139 (136, 141) 138 (135, 141) 0.027

Potassium, Median (Q1, Q3) 4.2 (3.8, 4.6) 4.1 (3.8, 4.6) 4.2 (3.8, 4.8) 0.001

inr, Median (Q1, Q3) 1.3 (1.1, 1.5) 1.3 (1.1, 1.5) 1.3 (1.1, 1.8) <0.001

pt, Median (Q1, Q3) 14.2 (12.6, 16.9) 14.1 (12.5, 16.7) 14.7 (12.8, 19.5) <0.001

ptt, Median (Q1, Q3) 31.5 (27.6, 38.2) 31.4 (27.5, 37.75) 32.2 (28.2, 40.65) 0.005

ck.cpk, Median (Q1, Q3) 122 (82, 179) 123 (83.5, 180) 112.5 (71.5, 163) <0.001

ck.mb, Median (Q1, Q3) 5 (3.5, 6) 5 (3.5, 6) 5 (3, 7) 0.394

Tn.T, Median (Q1, Q3) 0.35 (0.29, 0.51) 0.35 (0.29, 0.5) 0.4 (0.27, 0.63) 0.004

Npro.BNP, Median (Q1, Q3) 2526.5 (1188.5, 4441) 2397 (1156.75, 4348.25) 3339 (1553.5, 4960.25) <0.001

heart.rate, Median (Q1, Q3) 84 (74, 97) 84 (74, 96) 87 (76, 102) <0.001

sbp, Median (Q1, Q3) 123 (106, 139) 123 (106, 140) 123 (105, 139) 0.538

dbp, Median (Q1, Q3) 64 (53, 76) 64 (54, 76) 64 (53, 77) 0.75

mbp, Median (Q1, Q3) 80 (70, 93) 80 (70, 93) 78 (67, 92) 0.099

resp.rate, Median (Q1, Q3) 18 (15, 22) 18 (15, 22) 20 (16, 24) <0.001

Temperature, Median (Q1, Q3) 36.67 (36.33, 37) 36.67 (36.33, 37) 36.61 (36.22, 36.94) 0.211

spo2, Median (Q1, Q3) 98 (95, 100) 98 (96, 100) 98 (95, 100) <0.001

Glucose, Median (Q1, Q3) 134 (109, 173) 133 (109, 169) 144 (113, 193.5) <0.001

myocardial.infarct, n (%) 0.89

0 2394 (69) 2078 (69) 316 (69)

1 1064 (31) 921 (31) 143 (31)

congestive.heart.failure, n (%) 0.005

0 897 (26) 803 (27) 94 (20)

1 2561 (74) 2196 (73) 365 (80)

peripheral.vascular.disease, n (%) 0.09 0.09

0 2900 (84) 2528 (84) 372 (81)

1 558 (16) 471 (16) 87 (19)

cerebrovascular.disease, n (%) <0.001

0 2912 (84) 2551 (85) 361 (79)

1 546 (16) 448 (15) 98 (21)

Dementia, n (%) 0.579

0 3327 (96) 2888 (96) 439 (96)

1 131 (4) 111 (4) 20 (4)

chronic.pulmonary.disease, n (%) 0.294

0 2152 (62) 1877 (63) 275 (60)

1 1306 (38) 1122 (37) 184 (40)

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 3458) Survival (n = 2999) Death (n = 459) p

rheumatic.disease, n (%) 0.654

0 3288 (95) 2854 (95) 434 (95)

1 170 (5) 145 (5) 25 (5)

peptic.ulcer.disease, n (%) 0.118

0 3383 (98) 2939 (98) 444 (97)

1 75 (2) 60 (2) 15 (3)

diabetes.without.cc, n (%) 0.39

0 2332 (67) 2031 (68) 301 (66)

1 1126 (33) 968 (32) 158 (34)

diabetes.with.cc, n (%) 0.291

0 3216 (93) 2795 (93) 421 (92)

1 242 (7) 204 (7) 38 (8)

Paraplegia, n (%) <0.001

0 3343 (97) 2914 (97) 429 (93)

1 115 (3) 85 (3) 30 (7)

renal.disease, n (%) 0.142

0 3375 (98) 2932 (98) 443 (97)

1 83 (2) 67 (2) 16 (3)

Aids, n (%) 0.048

0 3455 (100) 2998 (100) 457 (100)

1 3 (0) 1 (0) 2 (0)

mechvent, n (%) <0.001

0 1247 (36) 1131 (38) 116 (25)

1 2211 (64) 1868 (62) 343 (75)

uo.rt.24 h, Median (Q1, Q3) 1.13 (0.74, 1.55) 1.15 (0.78, 1.57) 0.9 (0.56, 1.4) <0.001

rrt, n (%) <0.001

0 3424 (99) 2979 (99) 445 (97)

1 34 (1) 20 (1) 14 (3)

Hyperlipidemia, n (%) <0.001

0 1633 (47) 1378 (46) 255 (56)

1 1825 (53) 1621 (54) 204 (44)

atrialfibrillation, n (%) <0.001

0 1776 (51) 1576 (53) 200 (44)

1 1682 (49) 1423 (47) 259 (56)

charlson.comorbidity.index, Median (Q1, Q3) 6 (5, 7) 6 (5, 7) 6 (5, 8) <0.001

lods, Median (Q1, Q3) 4 (2, 6) 4 (2, 6) 7 (4, 10) <0.001

sapsii, Median (Q1, Q3) 35 (29, 43) 35 (28, 42) 42 (34, 53) <0.001

oasis, Median (Q1, Q3) 32 (26, 39) 31 (26, 38) 39 (32, 46) <0.001

f.sofa, Median (Q1, Q3) 4 (2, 7) 4 (2, 7) 6 (4, 9) <0.001

to the general medical floor. Second, a simplified ML model for
HF risk stratification was also assembled by artificial intelligence
with the top seven most important high-ranking variables
to avoid the collection of a large number of variables for a
prognostic model in real clinical settings. In addition, improving
the model predictive performance can directly improve risk
assessment even before patients receive a more comprehensive
diagnostic evaluation in the ICU.

Hospitalized patients with HF often require admission to the
ICU, especially when their condition is complicated by various
comorbidities such as hypertension. Data from 341 hospitals in
the USA showed a median ICU admission rate of 10% (IQR, 6–
16%) for hospitalized HF patients (8). Numerous studies have
shown that in-hospital mortality in patients with advanced HF
admitted to the ICU is significantly higher than that of HF

patients admitted to hospital wards only. All-cause in-hospital
mortality was 10.6% for HF patients admitted to the ICU,
compared with 4.0% for all HF patients in the ADHERE study
(11). Meanwhile, 17.3% mortality among ICU patients versus
6.5% among all hospitalized HF patients was reported in the RO-
AHFS study, and 17.8% death rate among ICU patients versus
4.5% among all hospitalized HF patients was observed in the
ALARM-HF study (37, 38). It is noteworthy that a decision
on whether a patient with HF requires intensive care depends
on both clinical judgment and resource availability, which adds
unmeasured differences to outcome studies.

Our study population comprised ICU-admitted HF patients
with hypertension, and the in-hospital mortality rate was 15.3%
(n = 459 patients). This rate was substantially higher than
other prediction models for in-hospital mortality based on all
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FIGURE 2

Demographic and clinical feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model.
(A) Tuning parameter (λ) selection in the LASSO model used 10- fold cross-validation via minimum criteria. The partial likelihood deviance
(binomial deviance) curve was plotted versus log(λ). Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the
one SE of the minimum criteria (the 1-SE criteria). λ value of 0.01914052, with log(λ), −3.9545 was chosen (1- SE criteria) according to 10-fold
cross-validation. (B) LASSO coefficient profiles of the 58 features. A coefficient profile plot was produced against the log(λ) sequence. The
vertical line was drawn at the value selected using 10-fold cross-validation, where optimal resulted in 20 features with non-zero coefficients.

FIGURE 3

SHAP summary plot for the top 22 clinical features contributing to the NN (A) and LR (B) model. SHAP feature importance is measured as one
minus AUC loss after permutations. This matrix plot depicts the importance of each covariate in the development of the final predictive model.
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TABLE 2 Comparison of clinical characteristics between the training and testing cohort.

Variables Total (n = 3458) Testing (n = 692) Training (n = 2766) p

Age, Median (Q1, Q3) 75 (65, 84) 74 (65, 83) 75 (65, 84) 0.742

wbc, Median (Q1, Q3) 10.8 (7.9, 14.8) 10.8 (7.9, 14.83) 10.75 (7.93, 14.78) 0.999

mchc, Median (Q1, Q3) 33 (31.9, 34) 32.9 (31.9, 33.9) 33 (32, 34) 0.074

mcv, Median (Q1, Q3) 91 (87, 95) 91 (86, 95) 91 (87, 95) 0.104

rdw, Median (Q1, Q3) 14.4 (13.6, 15.6) 14.4 (13.7, 15.7) 14.4 (13.6, 15.5) 0.05

Aniongap, Median (Q1, Q3) 14 (12, 17) 14 (12, 17) 14 (12, 17) 0.804

Bun, Median (Q1, Q3) 21 (15, 29) 21 (16, 31) 21 (15, 29) 0.538

Calcium, Median (Q1, Q3) 8.5 (8.1, 8.9) 8.5 (8.1, 8.9) 8.5 (8.1, 8.9) 0.888

Chloride, Median (Q1, Q3) 104 (99, 108) 104 (99, 108) 104 (99, 108) 0.782

inr, Median (Q1, Q3) 1.3 (1.1, 1.5) 1.3 (1.1, 1.6) 1.3 (1.1, 1.5) 0.308

ptt, Median (Q1, Q3) 31.5 (27.6, 38.2) 31 (27.3, 37.1) 31.6 (27.7, 38.4) 0.168

Npro.BNP, Median (Q1, Q3) 2526.5 (1188.5, 4441) 2580.5 (1176.75, 4479.5) 2490 (1193.25, 4440.5) 0.677

heart.rate, Median (Q1, Q3) 84 (74, 97) 85 (74, 98) 84 (74, 97) 0.454

resp.rate, Median (Q1, Q3) 18 (15, 22) 18 (15, 22) 18 (15, 22) 0.66

SpO2, Median (Q1, Q3) 98 (95, 100) 98.5 (96, 100) 98 (95, 100) 0.339

Glucose, Median (Q1, Q3) 134 (109, 173) 137 (109.75, 175) 134 (109, 172) 0.534

cerebrovascular.disease, n (%) 0.978

0 2912 (84) 582 (84) 2330 (84)

1 546 (16) 110 (16) 436 (16)

Paraplegia, n (%) 1

0 3343 (97) 669 (97) 2674 (97)

1 115 (3) 23 (3) 92 (3)

Aids, n (%) 1

0 3455 (100) 692 (100) 2763 (100)

1 3 (0) 0 (0) 3 (0)

mechvent, n (%) 0.214

0 1247 (36) 235 (34) 1012 (37)

1 2211 (64) 457 (66) 1754 (63)

rrt, n (%) 0.574

0 3424 (99) 687 (99) 2737 (99)

1 34 (1) 5 (1) 29 (1)

Hyperlipidemia, n (%) 0.044

0 1633 (47) 351 (51) 1282 (46)

1 1825 (53) 341 (49) 1484 (54)

Dead, n (%) 0.087

0 2999 (87) 586 (85) 2413 (87)

1 459 (13) 106 (15) 353 (13)

HF patients, regardless of ICU admission. However, in the
ADHERE in-hospital mortality risk stratification model, the
in-hospital mortality rate of their study population was only
4.2% (27).In the optimized heart failure prediction model, the
GWTG-HF risk scoring model, and a single-center elderly
Chinese patient-based model established by Jia et al., the rates
were 3.8, 2.86, and 5.58%, respectively (28, 29, 39).

Our model contains only variables that are easily accessible:
its simplicity makes risk prediction applicable for different
purposes during the hospitalization of HF patients in the ICU.
For example, when the calculated risk of death for an individual

is high, it indicates the need for more aggressive monitoring or
resource allocation, which can help assign patients to different
levels of care. This is particularly useful when healthcare
resources are limited. The discriminative performance of the
model is very high, and its validation was confirmed by testing
the model in a cohort of HF patients with hypertension in
the eICU database.

Although several published studies provide a wealth of
computational tools or predictive models that can be easily
used in a variety of settings to assess risk in patients with
HF (21, 24, 40–45). Such calculators unfortunately require
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FIGURE 4

The receiver operator characteristic (ROC) curves for the ML models predict in-hospital mortality (The training cohort and testing cohort). ROC
curves for five ML models predicting in-hospital mortality in the training (A) and testing cohort (B), respectively; (C) ROC curves for in-hospital
mortality in the test set predicted by the un-simplified NN model and the ROC curves for in-hospital mortality in the test set and external
validation set predicted by the simplified NN model, respectively.

TABLE 3 Predictive performances of the five machine learning models for predicting in-hospital mortality.

ML Accuracy AUC Sensitivity Specificity 95% CI

NN

Training cohort 0.8731 0.746 0.048159 0.993784 0.8727(0.8601,0.8853)

Testing cohort 0.841 0.764 0.028302 0.988055 0.83955(0.8116,0.8675)

LR

Training cohort 0.8515 0.654 0.17935 0.95458 0.85115(0.8377,0.8646)

Testing cohort 0.8333 0.640 0.12088 0.94157 0.8319(0.8034,0.8604)

NB

Training cohort 0.8577 0.713 0.11413 0.97167 0.8573(0.8441,0.8705)

Testing cohort 0.858 0.751 0.16484 0.96327 0.85645(0.8297,0.8832)

RF

Training cohort 1 0.1 1.0000 1.0000 0.999355(0.9987,1)

Testing cohort 0.8681 0.748 0.0000 1.0000 0.86655(0.8406,0.8925)

MLP

Training cohort 0.8671 0.716 0.0000 1.0000 0.86665(0.8538,0.8795)

Testing cohort 0.8681 0.730 0.0000 1.0000 0.86655(0.8406,0.8925)

tedious data entry. Real-time processing of the predictive model
directly from the Electronic Health Record (EHR) provides
immediate and seamless calculation, and the score from this
calculation is well suited to support clinical decision-making
and prioritization when the healthcare system is overloaded.
An accurate prognosis is a basis for many clinical decisions
regarding patients admitted to the ICU with HF (24). To
avoid the shortcomings of using traditional LR analyses such
as overfitting and predictor variables with skewed distributions,
data on demographic characteristics, vital signs, comorbidities,
and laboratory variables were used in the present study for
LASSO regression analysis to screen for independent risk factors
for in-hospital mortality.

Other predictive models have been published previously,
and many variables have been reported to correlate with

mortality in HF patients. Variables, such as gender, BUN level,
BMI, age, sodium levels, health status, systolic blood pressure,
diabetes mellitus, serum creatinine levels, low SBP, chronic
obstructive lung disease, NYHA (New York Heart Association)
classification, left ventricular ejection fraction (LVEF), smoking,
not receiving ACEIs/ARBs (Angiotensin-Converting Enzyme
Inhibitors/Angiotensin II Receptor Blockers), and not receiving
beta-blockers, have been reported to explain the predictive
model (25, 44). Consistent with previous studies, our study
identified age as a strong prognostic predictor. When HF
worsens, especially in the elderly, it can lead to severe ischemia
and hypoxia, respiratory failure, and ultimately death. In
our model, BUN levels also substantially contributed to the
predicted probabilities, and elevated BUN levels substantially
contributed to increased in-hospital mortality, which is
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FIGURE 5

SHAP contribution values of different variables for a single sample of the NN model.

consistent with previously published studies (27–29). Elevated
BUN levels suggest a high probability of prerenal injury, which
may be related to reduced renal blood supply due to insufficient
effective blood volume or a decrease in cardiac output after
the onset of HF, as well as fluid management (urine output).
Some HF mortality prediction models believe that HR affects
prognosis strongly (28, 30), while some other models disagree
(27, 46, 47). In our study, HR was included in the final
model, in contrast to BMI, which was not included in the
final model because our study failed to prove that BMI was a
predictor of in-hospital mortality of ICU-admitted HF patients

with hypertension. This may be related to differences in study
populations and our relatively small sample size. Whether the
"obesity paradox" biases our results is uncertain, as the "obesity
paradox" presented for both critical care-related outcomes (48)
and HF (49). Therefore, further studies are still needed to
elaborate on the effect of obesity or BMI.

Our study showed that chloride and hyperlipidemia
correlated with an unfavorable outcome. Consistent with
previous findings, chloride has a more prominent contribution
to the pathophysiology and affects the prognosis of HR, which
may be related to hyperchloremia, acidosis, inflammation, and
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renal injury secondary to hyper chlorination. In clinical practice,
it is uncommon to focus on this one marker alone in patients
with HF, but it is often integrated with blood gas analysis
and evaluation of anion gap (50). Although several studies
in acute and chronic HF populations have demonstrated the
prognostic value of hypochlorhydria, interventional clinical
trials exploring serum chloride as a therapeutic target have
been inconclusive to date. Ongoing prospective randomized
controlled studies may shed light on the role of serum chloride
as a therapeutic target to improve outcomes in patients with
HF. These studies should clarify whether serum chloride
should be included in current models for predicting prognosis
in HF (51). In the general population and patients with
atherosclerotic cardiovascular disease, hypercholesterolemia has
consistently been shown to be associated with poor outcomes,
including mortality, cardiovascular events, and the development
of HF (52, 53). Conversely, in patients with established HF,
several analyses have now demonstrated an inverse relationship
between cholesterol levels and outcomes. That is, low cholesterol
levels have been shown to be independently associated with
increased mortality, while higher cholesterol levels have been
associated with improved survival. It is unclear whether low
cholesterol levels play a pathogenic role in adverse outcomes in
patients with HF or whether low cholesterol levels simply reflect
advanced disease status. Given the observed inverse relationship
between cholesterol levels and mortality in patients with HF, the
applicability of cholesterol treatment goals recommended for
the general population and patients with atherosclerotic CVD
to patients with HF is unclear and remains to be determined
(54). Consistent with previous studies (39, 55), our study also
identified the anion gap as a strong prognostic predictor and
found that this factor was independently associated with an
increased risk of death.

Our study also showed that the anion gap was also a
very important prognostic feature. The anion gap formula
(AnionGap=SNa+SK−SHCO3

_
−SCl

−) itself already shows an
interdependent relationship between serum chloride, sodium,
potassium, and bicarbonate (50), so it is not surprising why
hypochlorhydria often occurs in conjunction with metabolic
alkalosis. It is known as "chloride-depleted alkalosis," a state
of extracellular fluid volume constriction caused primarily by
diuretic-induced diuresis. Although the exact role of pH as a
prognostic indicator of HF has not been fully explored, pH is
influenced by chloride levels in the form of chloride-depleted
alkalosis or hyperchloremic metabolic acidosis (56). Chloride-
depleted alkalosis is an independent predictor of in-hospital
mortality in patients with decompensated HF (57). In HF,
electrolyte depletion is primarily the result of salt restriction and
cyclic and thiazide diuretic therapy, whereas metabolic alkalosis
often occurs as a result of diuretic usage (58).

Notably, our study found that the use of MECHVENT
improved the prognosis of patients with HF (Figure 5).
The use of MECHVENT often indicates that patients are

in serious conditions, such as the occurrence of acute HF
and respiratory failure, but the use of MECHVENT as
treatment improves the patient’s prognosis by rapidly improving
respiratory symptoms and ventilatory function compared to
conventional drug therapy. The previous study has shown that
in-hospital mortality in HF patients receiving non-invasive
ventilation (NIV) or non-invasive ventilation (NIV) + invasive
mechanical ventilation (IMV) decreases significantly over time,
even if the clinical profile is worsening (59).

In our model, paraplegia and high RDW were also high-
risk factors for ICU-admitted patients with HR combined
with hypertension. When paralysis, prolonged bed rest, and
reduced activity occur, the likelihood of thrombosis, crushing
pneumonia, and infection increases. Consistent with the
previous study (60), RDW is a powerful predictor of poor
long-term outcomes in HF patients with acute exacerbation
(AHF), and its prognostic value outperforms that of other well-
established risk variables or biomarkers.

In addition, we further enhanced the readability of the
model by using the SHAP framework, making the individual
variables that contribute to the overall prediction easily available
and understandable to physicians in real-time, along with the
model’s risk score.

In comparison with the reported GWTG-HF risk score
(29), a well-validated tool for predicting in-hospital mortality
in HF patients, both the NN model and the LR model showed
superiority in predictive power in our study population. Both
models showed good discrimination and calibration power in
both the derivation and validation sets. To obtain a more concise
and broader range of net benefit threshold probabilities, we
chose the NN model to develop our simplified ML model.

Neural networks are constructed from basic units called
neurons, which can be easily arranged into layers. The layers are
easily connected, and the entire network can be trained end-to-
end using a stochastic gradient descent algorithm (61). While
single-layer networks can approximate any function to arbitrary
accuracy [as implied by the general approximation theorem
(62)], the real power of these models lies in providing automatic
abstraction by stacking multiple layers into deep neural
networks (DNNs). Each layer abstracts its input, providing the
next layer with a representation of the data that is more likely
to work within the scope of the task being solved. The most
advanced models of NNs are DNNs models and have been
shown to provide superhuman performance (63, 64) on many
tasks involving difficult to abstract data, such as those involving
image and audio processing.

In recent literature (65, 66), shallow NNs have been
used to predict mortality in heart failure despite training on
unbalanced datasets, showing superior performance to other
learning methods. DNNs have been used to predict mortality
(67, 68) or the risk of heart failure and acute heart failure (69).
The authors of these two works compared DNNs with other
ML techniques and showed improved performance. Another
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interesting recent application of NNs in this field is exploiting
their ability to process very complex and related data. This is the
case with the Deep Cox Mixture Model (70), where NNs assist
the Cox Regression Model to fit the risk ratio of the regression.
This work is based on a sound statistical and ML background, is
fully disclosed, and provides state-of-the-art performance when
working with diverse groups of individuals.

Compared to traditional ML algorithms such as logistic
regression, neural networks typically require more data, at least
thousands or even millions of labeled samples. This is not an
easy problem to solve, but if other algorithms are used, the
related ML problem can be solved with less data. At the same
time, compared to traditional algorithms, neural networks are
computationally more expensive than traditional algorithms.
Advanced deep learning algorithms can take weeks to train
successfully. Whereas most traditional ML takes less than a few
minutes, hours, or days. Of course, the computational power
required by NN depends heavily on the size of the data and also
on the depth and complexity of the network. The smaller the
data set as well as the smaller the depth and complexity of the
network, the less computational power is required by the NN.

This study has several limitations: First, as a retrospective
study, selection bias was hardly avoidable. However, the
inclusion criteria were set strictly so that the cases included
in the study reflected the actual conditions as accurately as
possible. Second, data were collected from patient medical
records and the final performance of our predictive model
was strictly dependent on the accuracy of the records. Third,
as a single-center study, the scope and number of study
populations involved were relatively small. Fourth, the impact
of this predictive model on routine patient care in different
clinical settings has not been well investigated. Therefore, data
with mortality outcomes from other independent healthcare
systems will be required to fully assess its generalizability.
Finally, our model may only facilitate the rapid identification
of critical clinical situations at the bedside but does not provide
additional information about the underlying life-threatening
pathophysiological mechanisms.

Conclusion

Using ML techniques, we developed a predictive model to
predict the 28-day mortality for ICU-admitted patients with HF
combined with hypertension based on NN. It was proved with
a better predictive value than the traditional logistic regression
analysis. With a high AUC of 0.764 and an accuracy of 0.8731 in
the testing cohort, this model is promising for routine use in the
ICUs to automatically warn the staff at any stage of the disease.
The SHAP method enables ML models to be more interpretable,
thereby helping clinicians to better understand the reasoning
behind the outcome and evaluate in-hospital outcomes for
critically ill patients, especially those with uncertain survival

outcomes. Also, the model involves a small number of routinely
collected variables that can be easily used at the bedside.
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