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Abstract

Objective: To investigate whether a unified brain system manages one’s orienta-

tion to different places, events and people in one’s environment, and test the

hypothesis that failure of this system (disorientation) is an early sign of Alzhei-

mer’s disease (AD). Methods: A total of 46 participants (patients along the AD

continuum and cognitively normal control subjects) were tested in a personal-

ized, ecologically valid task of orientation relating to the participant’s own world

in space, time and person under high–density electroencephalography. As a first

step, we used evoked potential mapping to search for brain topography corre-

lated with participants’ performance in orientating themselves to different places

(space), events (time) and people (person) (Experiment 1). We then compared

behavioral and electrophysiological changes in patients along the AD continuum

(Experiment 2). Results: We identified a specific brain topography (“orientation

map”) that was active for orientation in space, time and person in correlation to

participants’ performance. Both performance and the map’s strength gradually

decreased from health to mild cognitive impairment (MCI) and from MCI to

AD. Another map, immediately preceding the orientation map, showed the

longest activity in patients with MCI, significantly more than both patients with

AD and cognitively normal controls. Interpretation: Our findings demonstrate

that the same brain topography accounts for orientation in the different

domains of space, time and person and provide a nexus between deterioration

in patients’ orientation with the aggravation of Alzheimer’s disease.

Introduction

Alzheimer’s disease (AD) accounts for an estimated 60–
80% of dementia cases, laying an enormous burden –
mental, physical and financial – on individuals, families

and societies.1 Accurately diagnosing the disease at an

early stage is critical as it provides the opportunity to

intervene before extensive neuronal death takes place.

This has been proven difficult largely due to the long pre-

clinical phase of the disease, with the initial deposition of

AD pathology estimated to begin more than a decade

prior to the onset of clinical symptoms.2 Consequently,

research criteria for the disease have been recently rede-

fined to be based exclusively on neuropathological

changes detected by biomarkers.3 Nevertheless, how may

preclinical-AD be screened on a phenomenological or

neuropsychological basis?

Emerging evidence suggests that deficits in the cognitive

faculty of mental-orientation have high sensitivity and

specificity to AD.4 Mental-orientation is defined as the

“tuning between the subject and the internal representation

of the corresponding public reference system”5 and is the

bedrock of clinical neuropsychiatric evaluation. Current

evaluations of so-called orientation test the patient’s knowl-

edge about the current location and present date, which

carry very low sensitivity for AD.4,6,7 However, recent

investigative efforts gave rise to several ecologically valid

personalized tests for orientation and navigation with very-

high sensitivity to AD.8 For instance, Monacelli and col-

leagues tested AD patients’ landmark orientation with a

real–world navigational task in the hospital’s lobby.6 The

four-mountains test9, which examines allocentric spatial

memory through manipulation of a computer-generated

landscape, was found to be highly accurate (100%
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sensitivity and 78% specificity) classifying whether AD

biomarkers were present in a cohort of mild cognitive

impairment (MCI) patients.10 Performance of patients

along the AD continuum in virtual-reality and real–world
navigation tests was found to correlate with clinical

aggravation.11 Similarly, the Sea Hero Quest, a spatial cog-

nition test applied on more than 4 million people world-

wide, showed high efficacy in discriminating healthy aging

from genetically at-risk individuals of AD.12–14 The so-

called orientation task added personalization and ecological

Figure 1. The orientation paradigm. Multi-channel (64 electrodes) electroencephalography (EEG) was recorded while subjects performed an

individually tailored mental-orientation task. In this task subjects were presented with two stimuli from the same orientation domain (space, time,

person), and were asked to determine which of the two stimuli was closer to them: spatially closer to their current location (for space stimuli),

temporally closer to the current time (for time stimuli), or personally closer to themselves (for person stimuli). Additionally, subjects performed a

similar lexical control condition in which they were required to determine which of the two words contained the letter ‘A’. Response times (RTs)

and success rates (SRs) were recorded and efficiency scores (ESs) were calculated.

ª 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 2469

A. Dafni-Merom et al. Disruption of Orientation in the Brain and in AD



validity by testing subject’s relations to personally signifi-

cant events, people and places.15 In light of the role of ori-

entation in AD, the aforementioned task differentiated

patients along the AD continuum with higher accuracy

than the Addenbrooke’s Cognitive Examination and the

Mini-Mental State Examination MMSE (95%, 71% and

70% of accuracy, respectively).4 Together, these results

point at real-world, self-referenced, egocentric–allocentric
transforming tests to be highly responsive to AD pathology,

thereby holding considerable diagnostic potential.

Functional neuroimaging further supported the central

role of orientation and navigation in AD. For example,

young adults at genetic risk for AD (APOE-e4 carriers)

exhibited reduced grid-cell-like representations under

functional magnetic resonance imaging (fMRI) and

altered navigational behavior in a virtual arena.16 Admin-

istrating the orientation task under fMRI revealed that

orientation in space, time and person is managed by a

specific brain system with a highly ordered internal orga-

nization, closely related to the default-mode network

(DMN),15 a network involved in self-referential pro-

cesses17 that was previously associated with AD.18 More-

over, the orientation task selectively recruited brain

regions exhibiting early AD–related atrophy.4

Previous functional neuroimaging data showed how the

orientation system consists of distinct domain–specific
subdivisions and a common functional core.15 Accord-

ingly, we used here high-density electroencephalography

(HD-EEG) and evoked potential (EP) mapping with

high-temporal resolution to, first, identify a “core” orien-

tation topography common to all domains; and then

detect its characteristics in patients along the AD contin-

uum from cognitively normal (CN) to MCI to AD.

Materials and Methods

Experiment 1 – characterizing the brain
topography of mental-orientation

Participants

Eighteen healthy volunteers (see supplemental material).

Stimuli and procedures

In the mental-orientation task4,15 participants were pre-

sented with pairs of stimuli consisting of names of

either two cities, two events, or two people, and were

asked to determine which of the two was closer to

themselves (See Fig. 1 for study design): spatially closer

to their current location (which location is physically

closer to you: “Tel-Aviv” or “Haifa”), chronologically

closer to the present time (which event occurred more

recently: “Retirement party” or “Silver wedding”), or

personally closer to themselves (which person do you

feel closer to: name of sister or name of colleague).

Therefore, the task and instructions were similar for

each orientation domain (space, time and person). Stim-

uli were presented in separate blocks for the space, time

and person orientation domains, with each block con-

taining 80 consecutive trials in randomized order. In

addition, in a separate block, subjects performed a lexi-

cal control task, in which they viewed similar stimuli,

but were instructed to determine which of the two

words contained the letter ‘A’. For stimuli presentation

see supplemental material.

To obtain stimuli, 1–2 weeks prior to performing the

task, participants were presented with a list of potential

stimuli and regarding each were asked to approximate

either its location (for space stimuli) or year (for time

stimuli). Space stimuli consisted of names of cities in

Israel, distanced 7–175 km from the experimental loca-

tion (Jerusalem, Israel). Time stimuli consisted of two-

word descriptions of common events from the subject’s

personal life (e.g., “College Graduation”) or nonper-

sonal world/national events (e.g., “Barak Elected”). Fail-

ing to reference both the relevant region of the country

and at least one nearby landmark (space) or misevalu-

ating by more than 5 years (time), resulted in the

specific stimuli to be removed from further testing. In

addition, participants were asked to generate a list of

10 close family members and best friends (e.g. name of

life-partner), 10 colleagues, friends and distant relatives

(e.g. name of colleague from work) and 10 acquain-

tances (e.g. name of barber).

Analysis of behavioral data

See supplemental material.

Electroencephalography (EEG) recording, evoked
potential (EP) mapping and source estimation

See supplemental material.

Experiment 2 – mental-orientation in clinical
groups along the AD continuum

Participants

Twenty-eight individuals (16 females, mean age:

75.32 � 6.81 years) participated in the study: 14 patients

along the AD continuum (seven with AD and seven with

MCI) and 14 age–matched cognitively normal subjects.

Participants underwent a full neurological examination as
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well as neuropsychological evaluation that included a

semistructured interview, the Addenbrooke’s Cognitive

Examination (ACE), the frontal assessment battery (FAB)

and Hachinski Ischemic Scores. Patients were recruited

from the memory disorders clinic at the Hadassah Medi-

cal Center and met the National Institute on Aging and

Alzheimer’s Association clinical criteria for AD and

MCI.19,20 All individuals with MCI met the research crite-

ria for amnestic MCI.21 All participants provided written

informed consent, and the study was approved by the

ethics committee of the Hadassah Medical Center.

Stimuli and procedures

The mental-orientation task was performed under contin-

uous EEG as described in Experiment 1, with adjustments

to the elderly population (see supplemental material).

Analysis of behavioral data

See supplemental material.

Electroencephalography (EEG) recording, evoked
potential (EP) mapping and source estimation

See supplemental material.

Results

Experiment 1: brain topography of mental-
orientation

Our behavioral data showed that efficiency scores (ES) for

the space domain (0.73 � 0.02, mean � standard error)

were significantly higher than the time domain

(0.57 � 0.01) but lower than the person domain

(0.89 � 0.03) (F(3,68) = 71.28, P < 0.001, one-way

ANOVA, F = 11.49 and P = 0.001 for both comparisons,

planned contrasts with Bonferroni correction; Fig. 2A),

corroborating previous behavioral results.4,15 EP mapping

of the group–averaged data revealed a distinct brain seg-

ment of stable topography (or EP map; Fig. 2B, orange)

appearing between 220 and 460 msec after stimulus pre-

sentation that had significantly higher global field power

(GFP) for orientation conditions (2.64 � 0.3 µV) com-

pared to the control condition (1.65 � 0.3 µV)
(F(3,60) = 3.31, P = 0.026, one-way ANOVA, F = 6.31,

P < 0.05, orientation vs. control planned contrast;

Fig. 2C), similar to the behavioral results (n.s.). Addition-

ally, this map showed higher global explained variance

(GEV) for the orientation conditions compared to the con-

trol condition (Table S3). No other map showed such

distinctions. We refer to this EP map as the “orientation

map” (Fig. 2D). There was no significant effect with respect

to the duration of brain activation in the orientation condi-

tions versus the control condition. A linear inverse solu-

tion22 (sLORETA) localized this map to the entorhinal

cortex, rostral anterior cingulate, lateral orbitofrontal, and

medial orbitofrontal cortices bilaterally (Fig. 2E).

Experiment 2: EP mapping of orientation
along the AD continuum

In experiment 2 we utilized the knowledge gained in

experiment 1 to investigate the differences in the identi-

fied orientation map between patients along the AD con-

tinuum. Behaviorally, cognitively normal (CN) subjects

(0.42 � 0.02, mean � standard error) showed signifi-

cantly higher mental-orientation ES compared to patients

along the AD continuum (AD-con) (0.26 � 0.02)

(F(2,25) = 22.47, P < 0.001, one-way ANOVA, F = 30.7,

P < 0.001, CN vs. MCI + AD planned contrast with Bon-

ferroni correction; Fig. 3A), corroborating previous

results4. Microstate analysis of the group average data

revealed an EP map appearing between 340 and 580 msec

after stimulus presentation (Fig. 3B, orange) which was

highly similar to the orientation EP map found in experi-

ment 1 (Fig. 3C, right) (see Fig. S2 for topographic analy-

sis of variance (TANOVA)23 between the topographies of

the two experiments). This orientation map showed

higher global field power for CN (2.1 � 0.21 µV) com-

pared to the AD-con group (1.37 � 0.11 µV)
(F(2,20) = 3.81, P = 0.039, one-way ANOVA; F = 11.8,

P < 0.05, CN vs. MCI + AD planned contrast; Fig. 3D,

upper right). Applying linear inverse solution,22 the orien-

tation map was localized to regions of the right entorhi-

nal, rostral anterior cingulate, lateral orbitofrontal, and

bilateral medial orbitofrontal cortices (Fig. 3E). Interest-

ingly, an EP map preceding the orientation map which

appeared between 220 and 400 msec after stimulus pre-

sentation (Fig. 3B, purple) showed longer duration in

patients with MCI (184 � 42 msec) compared to AD

(42 � 12 msec) and CN (79 � 18 msec) (F(2,25) = 7.69,

P = 0.003, one-way ANOVA, F = 9.59 and F = 14.3,

P = 0.005 and P = 0.001, CN vs. MCI and MCI vs. AD

planned contrasts respectively; Fig. 3D, lower left). We

refer to this EP map as the “preorientation map”

(Fig. 3C, left). Applying linear inverse solution,22 the pre

orientation map was localized to the orbitofrontal cortex

bilaterally (Fig. S3C).

Discussion

EP mapping and electrical neuroimaging identified a

specific brain topography corresponding to the
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Figure 2. Experiment 1: Characterizing the brain topography of orientation. (A) Behavioral results. Efficiency scores showed significantly lower

results for the orientation conditions compared to the control condition (P < 0.05). (B) Microstate segmentation. Segments of stable map

topography in the three orientation domains and lexical control task under the global field power curve from 0 to 800 msec. A segment

representing an evoked potential (EP) map (“orientation map”) was found at 220–460 msec and had (C) significantly higher global field power

for the orientation conditions as compared to the control condition (P < 0.05). (D) The orientation EP map topography is shown. (E) Neural

generators of the orientation map were localized to the entorhinal, rostral anterior cingulate, lateral orbitofrontal, and medial orbitofrontal

cortices bilaterally.

Figure 3. Experiment 2: Mental-orientation in subjects along the Alzheimer’s disease continuum. (A) AD continuum (AD-con) patients had

significantly lower efficiency scores in the orientation task than cognitively normal age–matched control subjects. (B) Segments of stable map

topography in the three clinical groups under the global field power curve from 0 to 800 msec are shown. A segment (orange) representing an

EP map highly similar to the orientation map found in Experiment 1 (C, right) found at 340–580 msec, was found significantly higher for CN than

patients (D, upper right; P < 0.05). Another segment (purple) preceding the orientation map (“preorientation map”, 220–400 msec; C, left), was

found longer for the MCI condition than CN and AD (D, lower left; P < 0.05). (E) Neural generators of the orientation map were localized to the

right entorhinal, rostral anterior cingulate, lateral orbitofrontal, and bilateral medial orbitofrontal cortices.
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orientation system in space, time and person in CN

(“orientation map”). The orientation map was found to

be strongest in CN and appeared to deteriorate gradually

from CN to MCI to AD. Remarkably, another EP map

was found significantly longer in MCI, more than both

CN and AD. We discuss our results with respect to an

ongoing debate concerning the role of the orientation sys-

tem in the different domains of space, time and person,

and draw similarities between its disturbance in AD as

found here to emerging evidence demonstrating increased

neuronal activity at early stages of the disease.

Investigation of orientation in young CN participants

enabled us to characterize an EP map reflecting mental-

orientation in space, time and person. The behavioral

results showed lower ES for the time domain with

respect to the person and space domain, corroborating

previous studies.4,15,24,25 These differences may be related

to different construal levels required to perform each

condition successfully, with the person domain requiring

an abstract and schematic mental representation of peo-

ple (high-level construal) and the time domain requiring

a more contextualized and detailed mental representation

of events (low level construal).26–28 This suggestion is

supported by the posterior-anterior organization of

space-person-time activation as identified in high-resolu-

tion fMRI,15 compatible with recent investigations sug-

gesting a general cortical organization scheme, where

information gradually progresses from sensory regions to

form high-level cognitive representations in the

DMN.29,30 Alternatively, the time domain may require

additional resources such as episodic memory retrieval,

reflected by the related temporal activation,4,15 which

may slow participants’ response, though the nature of

the task does not allow much time for reflection. The

amplitude of the orientation map for each domain com-

plemented the behavioral results, suggesting that more

complex orientation processing requires higher activation

of the orientation system. The question of whether ori-

entation in space, time, and person relies on a common

brain system is under debate.5,31 While several previous

studies investigated orientation–related activity,32–35 most

of them investigated each domain (space, time, or per-

son) separately. A recent fMRI study of the orientation

system in these three domains revealed a common

“core” network for orientation with segregation of the

network to domain–specific regions, adjacent to each

other.15 Comparison of each domain to a lexical control

task revealed a significant overlap between the different

orientation domains, supporting a model of a general

orientation system with distinct domain–specific divi-

sions and a common functional core. The design applied

in experiment 1 compares a common activity for all

three domains as well as activity for each domain to the

control task. The current results therefore are in-line

with the fMRI studies since the same EP map accounts

for orientation though its expression in the different

domains is different. These findings can be explained by

the general function of orientation, which processes the

relations between the self and externally cued stimuli in

general, though differences are evident in between

domains.15,36

fMRI studies of orientation have revealed the orienta-

tion system to include activations in the precuneus and

posterior cingulate cortex, inferior parietal lobe, medial

prefrontal cortex, and lateral frontal and lateral temporal

cortices. These regions have been implicated in self-re-

lated aspects of space (navigation),32 time (autobio-

graphical memory),35,37 and person (representation of

self and others).34,38 In addition, these regions are

involved in specifying relations between landmarks in

each domain: cognitive mapping of the spatial environ-

ment, recency judgments of life-events, and social prox-

imity and hierarchy judgments.32,36 Neural generators of

the orientation map as found here were localized to

temporal and frontal brain regions including the

entorhinal, rostral anterior cingulate, lateral orbitofron-

tal, and medial orbitofrontal cortices bilaterally. While

these results should be taken cautiously in view of the

limited spatial resolution of scalp EEG, event–related
potential (ERP) studies of self-other discrimination sug-

gest that the activation captured at this specific time

segment involves self–related anterior regions, potentially

related to the P300 ERP component,34,39 more than pos-

terior regions, which are related to magnitude, distance

judgments or perspective taking.40

Comparison of the orientation map between the clini-

cal groups revealed a significant decrease in activation

despite heterogenous disease severity in the AD-con

group. This decrease in activation appears to progress

gradually from CN through MCI to AD, similar to the

monotonous decline pattern exhibited in the behavioral

performance. These findings might represent the increas-

ingly compromised orientation system as the disease pro-

gresses. Surprisingly, we identified a prolonged activation

of the preorientation map for the MCI group (compared

to both the AD and CN groups). Due to the small sam-

ple sizes of the MCI and AD subgroups this result should

be regarded as a preliminary finding inviting further

experimental support. Nonetheless, these results are in

congruence with a growing body of evidence reporting a

paradoxical increase in activity relative to baseline in

patients at high risk for AD, rather than a loss of activ-

ity.41–43 For example, MCI patients performing an asso-

ciative memory encoding task under fMRI showed

greater hippocampal activation compared to control.41

Similarly, asymptomatic genetically at-risk individuals
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such as carriers of familial early-onset AD (FAD)44 and

APOE-e4 carriers45 demonstrated greater mean entorhi-

nal41 or hippocampal44,45 task–related activation com-

pared to noncarriers. Patients who had progressed to the

AD stage exhibited decreased task–related hippocampal

activity bilaterally46 correlating with deteriorating mem-

ory performance.47 Notably, increased activity was found

not only on the neurocognitive level but also in the

molecular and cellular level.43 It remains unclear whether

these increased activations play a compensatory role to

maintain performance in the early stages of AD or a cau-

sal role, acting as a harbinger of imminent neuronal fail-

ure. While reports of increased activity in early stages of

AD have mainly implicated the hippocampus, this phe-

nomenon has been documented in the prefrontal cortex

as well.46,48 For instance, AD patients who had higher

activity in prefrontal areas were better able to perform

tasks of semantic and episodic memory.48 Nevertheless,

while previous studies have identified hyperactivation of

AD–related regions under fMRI,41,44–46 the high temporal

resolution of our EEG data suggests two processes to be

involved: one is a decrease in orientation–related activity

along the AD continuum, while the other is a parallel

increase of a distinct activity. The latter may be related to

the previously reported MTL hyperactivity, which was

found to be distinguished from orientation–related activ-

ity in previous studies. Further research involving multi-

modal functional neuroimaging in larger groups of

preclinical AD population is needed to shed more light

on this remarkable finding.

While behavioral results in CN and deterioration

along the AD continuum were correlated with the

strength of the orientation map, the increased activity in

the preorientation map was associated to map duration.

The GFP amplitude refers to the average strength of the

potentials being recorded across all electrodes.23 There-

fore, a GFP decrease in maps sharing the same topogra-

phy reflects a proportional decrease of map strength in

all active neural sources.49 On the other hand, prolonged

brain activation patterns have been proposed to depend

on increased backward (top-down) connections, reflect-

ing reentry dynamics of neuronal transients to lower-tier

processing areas.50,51 The prolonged activity found in

this study might therefore represent pathological process-

ing in prefrontal regions related to altered top-down sig-

nals in MCI patients. Alternatively, extended activation

at these regions may also be due to degraded functional

connectivity between these regions. However, neuroimag-

ing studies have highlighted increased functional connec-

tivity within the prefrontal cortices in early AD patients

compared to control.48 Furthermore, as a stable map

across time indicates that the same brain generators are

active and functionally connected across this time seg-

ment,52 it is improbable that degradation in connectivity

would prolong a stable topographic map. Taken

together, we propose the monotonic decrease in orienta-

tion is compensated by another prolonged process repre-

sented by the preorientation map.

A major limitation of this study is that while we

recruited an overall large number of subjects for both

experiments (n = 46) and while the total number of

patients was comparable to other neuroimaging studies

(n = 14),41,45,46 the subdivision into MCI and AD groups

(n = 7) makes conclusions at this level of limited value.

Another limitation is that the increase in familywise error

rate across the reported EEG statistical analyses was not

controlled. Nevertheless, here we are interested in testing

a specific time period in between groups and analyzed

data accordingly. Different reading speeds between the

different clinical groups may pose an additional limita-

tion, however this is less likely to significantly influence

results since stimuli were restricted to 2-word phrases and

EP maps were highly similar.

To conclude, we have identified a single brain topog-

raphy underlying orientation in space, time and person.

We provide functional neuroimaging evidence from

patients along the AD continuum supporting the role

of disorientation as a fundamental deficit in Alzhei-

mer’s disease. Our data also suggest a prolonged activa-

tion of another system prior to the recruitment of the

orientation system for MCI patients. These findings

invite novel insights into the core cognitive deficits in

Alzheimer’s disease and suggest increased activity as a

functional biomarker to the disease’s early stages.

Future research incorporating key AD–related cognitive

deficits and their underlying neuronal biomarkers may

trailblaze the way to a better understanding of the dis-

ease pathology, and ultimately, to effective diagnostics

and therapies.
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