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Computational meta-analysis can link environmental chemicals to genes and proteins involved in human
diseases, thereby elucidating possible etiologies and pathogeneses of non-communicable diseases. We used
an integrated computational systems biology approach to examine possible pathogenetic linkages in type 2
diabetes (T2D) through genome-wide associations, disease similarities, and published empirical evidence.
Ten environmental chemicals were found to be potentially linked to T2D, the highest scores were observed
for arsenic, 2,3,7,8-tetrachlorodibenzo-p-dioxin, hexachlorobenzene, and perfluorooctanoic acid. For
these substances we integrated disease and pathway annotations on top of protein interactions to reveal
possible pathogenetic pathways that deserve empirical testing. The approach is general and can address
other public health concerns in addition to identifying diabetogenic chemicals, and offers thus promising
guidance for future research in regard to the etiology and pathogenesis of complex diseases.

M
ore than 35 million deaths per year – 60% of all global deaths – are attributed to non-communicable
diseases (NCDs), including diabetes, cardiovascular disease, metabolic syndrome and chronic lung
disorders1. In 2008, more than 180 million people had diabetes, and this number is expected to double

by 2030. While diet, overweight, and exercise are important risk factors, new evidence suggests that envir-
onmental chemicals may contribute importantly to the pathogenesis of diabetes2,3. Genetic factors play a role
as well, although each of several heterogeneities identified seems to contribute only minor risk4. Gene-envir-
onment interaction analysis is an option that has not yet been explored due to the very large number of chemical
substances that may interact with several dozen genes involved in diabetes pathogenesis.

Emerging evidence suggests that a number of environmental chemicals may play a causative role, but this has
not been screened systematically. Increased diabetes risk has been shown to result from mass food poisoning5,
occupational exposures6, and associations gleaned from cross-sectional population studies7,8. Experimental stud-
ies have mainly addressed lipophilic halogenated pollutants and diabetogenicity testing is not commonly con-
ducted, although some methodological approaches appear promising9. Given the magnitude of the public health
problem that the diabetes epidemic represents, new approaches are needed to identify chemical exposures that
may deserve attention by the research community and regulatory agencies.

In silico modeling would thus seem attractive. Our recent study of the pesticide DDT10 demonstrated the
potential of using an integrated chemical biology approach to link environmental chemicals to possible disease
outcomes. While previous studies, such as ours, examined individual compounds and identified their possible
effects via possible protein interactions, we now propose to link genes known to confer risk to a particular disease
to environmental chemicals through protein interactions modeled by meta-analysis of multiple data sources. This
method is therefore hypotheses generating and does not constitute formal testing of diabetogenicity.
Confirmation of hypothetical effects require experimental testing targeted toward substances identified by the
in silico approach.

The proposed methodology involves integration of three layers of information. Figure 1 shows how the
different types of data are integrated: (1) a genome-wide association (GWA) layer that links single-nucleotide
polymorphisms (SNP) to the disease; (2) a disease similarity layer that integrates information of diseases similar
(in term of genes) to the disease of interest; and (3) a literature-based approach to identify chemicals that have
shown relationship with the disease. Each of these layers involves uncertainty and incomplete data, but by
integrating the total information from all three sources, we demonstrate the complementarity of the data and
the usefulness in regard to identifying possible chemical causes of type 2 diabetes and the possible pathogenesis.
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Results
To evaluate the proposed meta-analysis approach in regard to a
major non-communicable disease, we applied it to T2D with the
aim to identify potential diabetogenic chemicals. The three different
layers of evidence exploit the potential complementarities in avail-
able sources of information.

From the GWA layer, a total of 60 SNPs were extracted from the
scientific literature4 and the Online Mendelian Inheritance in Man
(OMIM) database11 (access as of January 2012) (Table S1). Of these
genes, 54 were linked to a total of 159 chemicals in the ChemProt
database12,13. Figure S1 shows a Heatmap visualization of these asso-
ciations [Ploner, A. Heatplus: Heatmaps with row and/or column
covariates and colored clusters. R package version 2.1.0 (2011)].

In the disease similarity layer, 22 different diseases are connected
to diabetes in the human diseasome14 (Table S2). We extracted
information for the eight of them considered most relevant to the
specific disease of interest, i.e., diseases known to be directly related
to T2D, abnormal glucose metabolism and/or metabolic syndrome.
From the Comparative Toxicogenomics Database (CTD) (access as
of January 2012)15, 183 chemicals were identified with an interaction
with at least one of the eight related diseases and with CTD score
minimum of five. Figure 2 represents the connections between the
eight diseases and the chemicals.

For the literature layer, all chemicals considered in the National
Toxicology Program (NTP) review were extracted8 (Tables S3). This
systematic and high-quality review represents the current epidemio-
logic and experimental evidence on associations between exposures
to environmental chemicals and T2D.

After compilation of all chemicals retrieved from the three layers, a
total of 262 unique chemicals were identified (Table S4). After exclu-
sion of drugs and natural compounds, all environmental chemicals
were ranked (Table 1). Among them, ten chemicals are present in all
three layers. Most of these are commonly present in human expo-
sures16. Some of these chemicals, such as bisphenol A and phthalates
have a short elimination half-life that complicates exposure assess-
ment and may therefore not be as relevant as chemicals that are more
likely to accumulate in the body17. Another compound is also
retrieved, dichlorodiphenyltrichloroethane (DDT), was already the
focus of our previous study10. We focused on four remaining chemi-
cals, persistent substances to which humans are commonly exposed,
i.e., arsenic, hexachlorobenzene (HCB), perfluorooctanoic acid
(PFOA), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

For these four substances, additional exploration of the possible
pathogenesis was carried out by extracting the curated chemical-
gene-T2D interactions from the CTD database15. A total of 16 genes
were found for arsenic, 8 genes for HCB, 65 genes for TCDD, and 27
for PFOA (Table S5). Following the identification of these possible
links, their impact was evaluated with T2D and related disorders as
diverse biological outcomes. For each chemical, the list of proteins
was considered as a small biological network. Diseases and pathways
were independently integrated in each biological network in order to
identify significant enrichment of proteins. A source of protein-
disease information, the GeneCards database (access as of August
2012) was used for the disease data integration18. Two sources of
pathway information were used: the KEGG pathway database (access
as of August 2012)19 and the Reactome database (access as of August

Figure 1 | Workflow of the meta-analysis approach for identifying chemicals connected to Type II diabetes (T2D). Three data sources represent

evidence layers (1–3), which allow ranking chemicals to prioritize chemicals likelihood to be involved in T2D.
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2012)20. This integrative step allows linking a chemical to human
disorders and pathways via the proteins.

The analysis using the GeneCards database allowed linkage of all
four chemicals to diabetes, TCDD, PFOA and arsenic being the most
significantly associated chemicals (Table 2). When focusing on non-
insulin dependent diabetes mellitus (NIDDM), similar associations
were found for TCDD, PFOA and arsenic. Using the KEGG pathway
database, the association between TCDD and Type 2 diabetes melli-
tus pathway is highly significant (corrected p-value of 5.29 3 10-7).
Results obtained for PFOA, arsenic and HCB show less obvious links
with the diabetes pathogenetic pathways. The diverse structural
diversity of these chemicals is notable. Arsenic is a metalloid that
occurs in different oxidation states, HCB and TCDD are chloride
substituted aromatic compounds, and PFOA is a perfluorinated alkyl
compound. This structural diversity may explain the difference in
terms of the variety of proteins perturbed by the chemicals.

Discussion
The present study explores the potential use of existing gene and
protein databases to identify environmental chemicals that may be
involved in the pathogenesis of important diseases. Type 2 diabetes is

Figure 2 | Disease layer: Disease-chemical associations. Green nodes are the eight diseases, which have common genes to T2D (from the human

diseasome). Chemicals (grey nodes) are connected to at least one of these diseases (data from CTD, only score . 5). The edges between a chemical and a

disease represent the evidence e.g. blue edge is literature-based, red edge is therapeutic and green edge is marker/mechanism. The six clusters show the

chemicals the most connected to diseases. The green cluster contains only one chemical linked to six diseases. The purple cluster group the chemicals

having associations to five diseases. The orange cluster shows association between chemicals and four diseases, and the blue ones between chemicals and

three diseases. All other chemicals are connected to one or two diseases only.

Table 1 | Ten chemicals with the strongest links to diabetes (includ-
ing all three layers of information). D Score is from the disease
similarity layer, GWAS score is based on SNPs information, the
Combined score includes both computational layers, and the NTP
evidence relies on literature documentation from a recent published
review

D score
GWAS
score

Combined
score

NTP
evidence*

TCDD 0.250 0.574 0.412 1
HCB 0.500 0.019 0.259 1
Bisphenol A 0.250 0.167 0.208 1
DDT 0.375 0.019 0.197 1
PFOA 0.250 0.130 0.190 1
PFOS 0.250 0.130 0.190 1
MBP 0.250 0.019 0.134 1
Arsenic 0.125 0.111 0.118 1
Dioxins 0.125 0.019 0.072 1
MEHP 0.125 0.019 0.072 1
*1 if the association T2D-chemical has been reported in the literature.
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particularly useful for this study, as many genes are thought to be
related to the development of this disease, and because diabetes also
occurs in connection with other common diseases, for which genetic
predisposition exists. While exposure to several environmental che-
micals has been reported to increase the risk of developing diabetes8,
the epidemiological evidence is limited, and no systematic studies in
experimental toxicology have been carried out. Thus, the need for
alternative approaches is obvious.

The use of chemical biology databases is advantageous, as hypo-
thetical associations can be explored, whether or not such links have
been examined before. However, only documented protein affinities
should of course be evaluated, and the non-hypothesis driven assess-
ment therefore does depend on the availability of basic chemical data.
Also, the genes examined are the ones currently assumed to confer
most of the increased risk of the disease, and other genes may be of
importance but have not yet been documented. Still, the computa-
tional chemistry approach may be repeated with additional genes or
protein affinities added from updates of the databases, without major
costs, especially in comparison with the costs incurred in experi-
mental toxicology studies. Nonetheless, the in silico findings must
be considered hypotheses, as interactions can be agonistic or ant-
agonistic, and because metabolism or other binding of the parent
chemical may affect the likelihood of protein binding.

While we relied on the reports from the National Toxicology
Program8,21, another listing of possible chemical causations is avail-
able from the Collaborative on Health and the Environment (http://
www.healthandenvironment.org/tddb). Both sources emphasize
that arsenic is strongly connected to T2D, as documented from stud-
ies of populations with increased arsenic exposures from contami-
nated drinking water22.

The substance that appears to be the most clearly connected to T2D
is TCDD, a highly persistent environmental chemical that has been
linked to T2D in numerous studies of populations exposed to elevated
TCDD levels, e.g., from contaminants in the Agent Orange herbicide7.

HCB is a fungicide formerly used for seed treatment, though
now banned. One study of adult Native Americans show a positive

association with diabetes and HCB, but this study did not distinguish
between diabetes type 1 and 222. A study of US nurses showed that
development of diabetes was associated with increased HCB concen-
trations in serum collected at baseline22. In support of HCB as a
possible diabetogenic substance, the KEGG linkage to the T2D path-
way via the IRS1 gene has been documented experimentally23.

Occupational exposure to perfluorinated alkylates is associated
with an increased diabetes mortality24–26 though not uniformly so27.
However, diabetes as a cause of death on death certificates is not a
reliable way of obtaining information on diagnoses. In a general
population study, serum-PFOA concentrations in adults were posi-
tively associated with their beta cell function (possibly as a sign of
compensation for insulin resistance)28. Thus, PFC-induced insulin
insensitivity deserves attention8.

Our findings show excellent agreement between three sources of
information and therefore suggest a reasonable robustness of the in
silico assessment of environmental chemical causations of a common
non-communicable disease. The calculations are non-demanding
and unbiased, although they must rely on the experimental evidence
available, thus perhaps overlooking causal associations due to lack of
data. However, the chemical databases are now of considerable size
and are likely to provide more extensive coverage, as compared to
incomplete epidemiological information. Likewise, toxicological
testing for diabetogenicity is not a required component of routine
chemical testing, and current knowledge on possible chemical dia-
betes etiologies is therefore deficient. Thus, as already recommended
by a National Research Council committee29, computational mod-
elling should be considered an integral part of the toxicology testing
for the future. Our findings suggest that such approaches may be
useful in the exploration of the pathogenesis of complex diseases,
such as type 2 diabetes.

Methods
Data sources. For the GWA layer, we included accepted common variants [minor
allele frequency (MAF) above 5%] associated with diabetes, as extracted from recent
publications4. In addition, we included genes listed in the Online Mendelian
Inheritance in Man (OMIM) database11. From ChemProt, a disease chemical biology

Table 2 | Disease and pathway enrichment, p values and genes

DISEASE

GeneCards (diabetes mellitus) GeneCards (niddm)

Arsenic 5.281e-06 0.0076
(9 genes: GCK;HMOX1;LEP;LEPR;NFKB1;

PPARA;TNFRSF1A;CAT;ADIPOQ)
(7 genes: PPARGC1A;GCK;LEP;LEPR;PPARA;CAT;ADIPOQ)

PFOA 2.451e-08 2.824e-09
(12 genes: CPT1A;GCK;HMOX1;LEPR;NFKB1;PPARA;

PPARG;SLC2A2;TNFRSF1A;C3;UCP2;CAT)
(13 genes: PPARGC1A;CPT1A;GCGR;GCK;GCKR;GPD2;

LEPR;LIPC;PPARA;PPARG;SLC2A2;UCP2;CAT)
TCDD 1.904e-19 2.785875e-18

(26 genes: CPT1A;EDN1;AKT2;GCK;HMOX1;
HNF4A;HP;IRS1;KCNJ11;LEP;LEPR;NFKB1;ENPP1;
PPARA;PPARG;RETN;PTPN1;SLC2A1;SLC2A2;SLC2A4;
TNFRSF1A;C3;UCP2;WFS1;CAT;ADIPOQ)

(26 genes: PPARGC1A;CPT1A;EDN1;GCK;GCKR;GPD2;
HNF4A;IRS1;KCNJ11;LEP;LEPR;LIPC;PAX4;
ENPP1;PPARA;PPARG;RETN;PTPN1;SLC2A1;SLC2A2;
SLC2A4;TCF7L2;UCP2;CAT;IRS2;ADIPOQ)

HCB 0.017 n.s.
(5 genes: HMOX1;HP;IRS1;TNFRSF1A;CAT) (3 genes: IL6;IRS1;CAT)

PATHWAY

Reactome (diabetes pathway) KEGG (Type II diabetes mellitus)

Arsenic n.s. (1 gene: ATF3) n.s. (2 genes: GCK;ADIPOQ)
PFAO n.s. (1 gene: ATF3) n.s. (2 genes: GCK;SLC2A2)
TCDD n.s. (2 genes: ATF3;WFS1) 5.292e-07

(8 genes:
GCK;HK1;IRS1;KCNJ11;SLC2A2;SLC2A4;IRS2;ADIPOQ)

HCB n.d n.s. (1 gene: IRS1)

Values 5 p-values corrected.
n.s. 5 p-val no significant n.d. 5 no data, no gene from HCB are associated to reactome/diabetes pathway.
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database12,13, a list of environmental chemicals annotated to the selected SNPs was
obtained, and the associations were illustrated by using Heatmaps [Ploner, A.
Heatplus: Heatmaps with row and/or column covariates and colored clusters. R
package version 2.1.0 (2011)]. The ChemProt database is a compilation of
experimental data, which allows prediction of new chemical-protein interactions. The
current version contains known chemical-protein annotations for more than
1,100,000 unique chemicals and more than 15,000 proteins. In the proposed study, we
only used the high confidence human information, meaning only interactions when
experimentally supported (binding data with IC50, gene expression levels). For the
GWA layer a weight score was calculated based on the sum of genes connected to
individual chemical and the total number of genes associated to T2D.

Disease similarity layer. To explore diseases genetically linked to T2D, we retrieved
records from the human disease network14. Chemicals linked to the most relevant
diseases associated with T2D were explored using the Comparative Toxigenomics
Database (CTD)15. The scores for the disease similarity layer were generated in a
similar way described above for the GWA layer. All chemical-disease links known as a
marker or a therapeutic agent in CTD were initially kept. However, in order to reduce
noise and to focus on the most relevant information, only chemical-disease data with
a CTD inference score above five were considered for the chemical-disease asso-
ciation inferred via curated gene interaction. The inference score in CTD reflects the
degree of similarity between CTD chemical–gene–disease networks and a similar
scale-free random network. Many biological networks, such as disease and metabolic
networks, have been shown to be scale-free random networks30. Thus, the score takes
into account the connectivity of the chemical, disease and each of the genes used to
make the chemical disease inference. The higher the score, the more likely the
inference network has a non-uniform connectivity as observed in scale-free random
networks. Filters (scripting) have been used to avoid unclear association, if present.
For example associations such ‘‘chemical X does not affect protein Z9 and compound
A co-treated with compound B affect protein Z9’’ were not taken into consideration.

For the literature-based layer, we used a recent authoritative literature review8. In
this review, the authors listed environmental exposures that have been linked to T2D,
as revealed by a keyword-search based strategy to identify relevant epidemiological
studies. In the replication, all chemicals initially identified in the NTP review were
recognized.

Integration of evidence layers. To identify relevant environmental pollutants, we
excluded drugs and natural compounds. A combined (mean) score was calculated
based on both computational scores (GWAS and disease similarity) by adding up
both scores, and dividing the total by the number of scores. To integrate the literature
information, we used a binary scoring scheme, i.e., 1 if the association chemical-T2D
was present, and 0 if the association was absent. The chemicals were then ranked
according to their combined score, and they were kept as potential candidates if
documented in the epidemiological literature.

Systems biology. For environmental chemicals widely prevalent in human expo-
sures17, we examined their curated interactions and gene/protein linkages extracted
from the CTD accessed of August 2012. These data were manually processed to keep
only relevant and unique information. Each protein network (one for each chemical)
was used for disease and pathways enrichment (Supplementary Material and
Methods and Table S6). Human disease information was extracted from the
GeneCards database, a comprehensive resource for gene-related information18, which
contains a total of 5515 genes associated to diseases. In GeneCards, 206 genes are
linked to diabetes mellitus, and 228 to NIDDM. We also determined the enriched
terms among pathways using the KEGG and Reactome databases19,20. Reactome
contains information for 5283 genes, and among them 309 are connected to the
diabetes pathways, while KEGG includes 6176 genes, of which only 48 are associated
with diabetes. Gene-disease and gene-pathway relationships were independently
evaluated. P-values were calculated using hypergeometric testing with Bonferroni
adjustment for multiple testing. To visualize chemicals interacting with selected
diseases, networks were constructed using Cytoscape31.
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