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Abstract: Background and Aims: The aim of our study was to create an accurate patient-level
combined algorithm for the identification of ulcers on CE images from two different capsules.
Methods: We retrospectively collected CE images from PillCam-SB3′s capsule and PillCam-Crohn’s
capsule. ML algorithms were trained to classify small bowel CE images into either normal or
ulcerated mucosa: a separate model for each capsule type, a cross-domain model (training the model
on one capsule type and testing on the other), and a combined model. Results: The dataset included
33,100 CE images: 20,621 PillCam-SB3 images and 12,479 PillCam-Crohn’s images, of which 3582
were colonic images. There were 15,684 normal mucosa images and 17,416 ulcerated mucosa images.
While the separate model for each capsule type achieved excellent accuracy (average AUC 0.95 and
0.98, respectively), the cross-domain model achieved a wide range of accuracies (0.569–0.88) with an
AUC of 0.93. The combined model achieved the best results with an average AUC of 0.99 and average
mean patient accuracy of 0.974. Conclusions: A combined model for two different capsules provided
high and consistent diagnostic accuracy. Creating a holistic AI model for automated capsule reading
is an essential part of the refinement required in ML models on the way to adapting them to clinical
practice.

Keywords: machine learning; capsule endoscopy; Crohn’s disease

1. Introduction

Capsule Endoscopy (CE), in clinical use since 2000, is a reliable and noninvasive diag-
nostic tool that revolutionized the assessment of small-bowel mucosa [1–5]. CE is a sensitive
and accurate clinical tool for diagnosing and monitoring Crohn’s disease (CD) [3,4,6–10]
and has good prognostic value for relapse in clinical remission [11]. CE is recommended
in international Crohn’s disease guidelines together with cross-sectional imaging [12,13].
Despite the well-described merits of CE, the clinical performance of this modality may
be further augmented by shortening reading time, improving interobserver variability,
and implementing precise scoring algorithms. In the past few years, artificial intelligence
(AI) deep learning algorithms, termed convolutional neural networks (CNN), have revolu-
tionized the computer vision field, offering remarkable near-human accuracy in different
image analysis tasks, including medical image analysis [14]. Several research groups have
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tested the ability of AI algorithms to diagnose various lesions in the small intestine by
CE, including bleeding [15–17], angioectasia [18–20], intestinal stricture [21], celiac disease
signs [22,23] and hookworm infection [24], achieving high sensitivity and specificity. In
CD, deep learning has been proven accurate in detecting and grading ulcers and strictures
on CE [21,25–33]. There is still a long way to go before the implementation of AI-based
capsule reading algorithms in clinical practice, and there are several challenges. The main
potential obstacles for patient-level implementation are the marked variability of images
between examinations with marked dissimilarities in image characteristics such as color
hue, brightness and contrast, the difference in ulcer shape and size, and the quality of
preparation. Another challenge in developing machine learning algorithms is the adap-
tation of algorithms to various platforms and capsule types (one-head capsule, two-head
capsule, different manufacturers, and future capsule endoscopies).

The aim of our study was to create an accurate cross-domain model algorithm for the
identification and grading of ulcers on CE, using two models of CE (PillCam Crohn and
PillCam SB3, Medtronic) in CD patients.

2. Materials and Methods
2.1. Study Design

We randomly selected CE videos from patients diagnosed with CD as well as healthy
subjects from our database and downloaded de-identified images from both ulcerated
and normal mucosa. All patients were diagnosed and followed by the department of
gastroenterology at Sheba Medical Center. The images were obtained by PillCam SB3
capsule and PillCam Crohn capsule (Medtronic Ltd., Dublin, Ireland) and reviewed with
Rapid 9 (Medtronic Ltd., Dublin, Ireland) capsule reading software. The extracted images
were labeled by gastroenterology fellows supervised by capsule experts. Both ulcers and
erosions were considered “ulcerated mucosa.” For patients diagnosed with CD, we aimed
to extract a comparable number of pathological and normal images. An institutional review
board granted approval for this retrospective study.

Identification of small bowel ulcerated mucosa (Experiments 1–3):
Classification of CE images of the small bowel into normal mucosa and ulcerated

mucosa was evaluated through 3 experiments:
Experiment 1: The model was trained on CE images from each of the capsules sepa-

rately and was tested on images from the same capsule type.
Experiment 2 and experiment 3 evaluated “domain transfer”:
Experiment 2: The model that had been trained on CE images from each capsule type

(in experiment 1) was tested on CE images from the other capsule type, i.e., the model was
trained on CE images from the PillCam SB3 capsule and was tested on CE images from
PillCam Crohn capsule, and vice versa (cross-domain).

Experiment 3: The model was trained and tested on a combined dataset of CE images
from both capsule types (combined model).

Identification of colonic ulcerated mucosa (Experiment 4):
Classification of CE images of the colon into normal mucosa and ulcerated mucosa

was done by training and testing the model on CE images from the PillCam Crohn capsule.
Ulcer grading (Experiment 5):
The model was trained and tested on a combined dataset of CE images of the small

bowel from both capsule types. Differentiation between Grade 1 (mild) ulceration and
Grade 3 (severe) ulceration was evaluated. Grade 2 (intermediate) ulcerations were omitted
due to anticipated label noisiness. As they have intermediate properties, according to a
previous study [28], the performance of machine learning (ML) algorithms is expected to
be lower in their definition, and even the agreement among readers is lower.

Software and hardware:
The models were developed on Python (ver. 3.6.5, 64 bits) utilizing the open-source

Pytorch and Pytorch Lightning libraries as the backend for CNN algorithms and the open-
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source Scikit-Learn library (ver. 0.20.2) for evaluation metrics algorithms. Models trained
and evaluated on an Intel i7 CPU and Tesla V-100 GPU.

2.2. Neural Network Model

Deep learning is a subtype of AI mainly involving artificial neural networks. CNN,
a subtype of deep learning, is optimized for solving computer vision tasks by employing
pattern recognition [34]. EfficientNet is a CNN architecture and scaling method that
uniformly scales all dimensions of depth/width/resolution using a compound coefficient.
The compound scaling method is justified by the intuition that if the input image is bigger,
then the network needs more layers to increase the receptive field and more channels
to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0
network is based on the inverted bottleneck residual blocks of MobileNetV2, in addition to
squeeze-and-excitation blocks. We used EfficientNet-B4 as the training network. Google’s
EfficientNet networks family has shown state-of-the-art results on the ImageNet dataset [35].
The network’s weights were initialized using weights from the 1.2 million ImageNet
everyday color images. All the computer vision tasks in the study were binary classification
tasks using binary cross-entropy loss. The models’ final neurons were sigmoid neurons
for outputting class probabilities. The network was trained on capsule endoscopy images.
In experiments 1 and 2, only a single type of capsule was used for training, while in the
multi-domain case (experiment 3), both the PillCam SB3 capsule and the PillCam Crohn
capsule images were used for training, thus letting the network learn from 2 different
modalities. The preprocessing of capsule images included cropping of images’ borders and
legends. Images were then resized into a 516 × 516 matrix, and pixels were normalized
into 0–1 by dividing by 255.

The following parameters were used for training the network:

- For ulcer identification: 3 epochs; batch size 12; Adam optimization with a learning
rate of 5 × 10−5. The network output was a binary classification layer: non-ulcerated
mucosa versus ulcerated mucosa images.

- For ulcer grading: 3 epochs; batch size 12; Adam optimization with a learning rate
of 5 × 10−5. The network output was a binary classification layer: grade 1 (mild)
ulcerations vs. grade 3 (severe) ulcerations.

2.3. Class Activation Maps

Class activation maps [CAM] were used to analyze which image regions led to the
network’s classification decisions of ulcers. For this purpose, we have applied gradient-
weighted class activation mapping [Grad-CAM] [36]. This algorithm uses the gradients of
the target label, flowing into the final convolutional layer, to produce a coarse localization
map highlighting the important regions in the image.

2.4. Metrics

Accuracies were calculated using a cut-off probability of 0.5. Receiver operating curves
[ROC] were plotted for the network results by varying the operating threshold. The area
under the ROC curve [AUC] and accuracies were calculated both patient-wise and for each
of the 5 folds. Sub-analyses included the AUCs of ulcerated mucosa vs. non-ulcerated
mucosa images and grade 1 vs. grade 3 ulceration images.

3. Results
3.1. Study Population

The entire dataset included 33,100 CE images. There were 20,621 PillCam SB3 CE
images and 12,479 PillCam Crohn CE images, of which 3582 are from the colon. Considering
the findings, there were 15,684 normal mucosa images and 17,416 ulcerated mucosa images.
Data regarding small bowel CE images are presented in Table 1.
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Table 1. Small bowel CE images.

PillCam SB3 PillCam Crohn Total

Normal 10,248 3839 14,087
Ulcer grade 1 5398 2147 7545
Ulcer grade 2 3006 1527 4533
Ulcer grade 3 1969 1384 3353
Total 20,621 8897 29,518

For the colon, we collected PillCam SB3 CE images: 1597 normal mucosa images and
1985 ulcerated mucosa images. Colonic ulcerated mucosa images were not graded.

3.2. Identification of Small Bowel Ulcerated Mucosa (Experiments 1–3)

The dataset included 20,621 PillCam SB3 CE images and 12,479 PillCam Crohn CE
images of the small bowel.

Experiment 1: Separate models
The model was trained and tested separately on CE images from each capsule type.

In both capsule types, there was excellent accuracy in classification, with the area under
the curve (AUC) over 0.95 in the majority. For each capsule type, over five different folds,
with non-overlapping patients in each, ROC AUC, accuracy, and mean patient accuracy are
presented in Table 2 and shown in Figure 1.

Table 2. Experiment 1-Identification of small bowel ulcerated mucosa according to capsule type.

Pillcam SB3 CE Images PillCam Crohn CE Images

Fold Accuracy
Mean

Patient
Accuracy

ROC_AUC Fold Accuracy
Mean

Patient
Accuracy

ROC_AUC

0 0.966 0.977 0.993 0 0.935 0.893 0.982
1 0.978 0.976 0.995 1 0.915 0.908 0.967
2 0.974 0.985 0.996 2 0.978 0.977 0.997
3 0.935 0.98 0.983 3 0.954 0.954 0.991
4 0.975 0.982 0.997 4 0.924 0.918 0.974
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Experiment 2: Cross Domain
To justify the need for a global model, the models trained on each of the capsule

types (“domains”) separately and were tested on the other capsule-type images. With the
model trained on the PillCam SB3 CE images and tested on the PillCam Crohn CE images,
the accuracy and mean patient accuracy were 0.569 and 0.545, respectively. However, it
accomplished a high AUC of 0.921 (Figure 2a). With the model trained on the PillCam
Crohn CE images and tested on the PillCam SB3 CE images, it achieved high accuracy
(0.877) and a mean patient accuracy of 0.88, with an AUC of 0.948 (Figure 2b).
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Figure 2. Experiment 2: (a) Classification of PillCam Crohn CE images by a model trained on PillCam
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images.

Experiment 3: Combined model
The model was trained and tested on a combined dataset of CE images from both

capsule types and achieved excellent accuracy in the identification of ulcerated mucosa with
an area under the curve (AUC) of over 0.98. Over five different folds, with non-overlapping
patients in each, the ROC AUC, accuracy, and mean patient accuracy are presented in
Table 3 and shown in Figure 3.

Table 3. Classification of PillCam Crohn CE images by a combined model.

Fold Accuracy Mean Patient
Accuracy ROC_AUC

0 0.941 0.978 0.984
1 0.975 0.975 0.998
2 0.958 0.982 0.989
3 0.963 0.967 0.991
4 0.963 0.968 0.992

3.3. Identification of Colonic Ulcerated Mucosa (Experiment 4)

The model was trained and tested on 3582 CE images of PillCam Crohn capsule: 1597
Normal mucosa images and 1985 Ulcerated mucosa images. There was excellent accuracy
in the identification of colonic ulcerated mucosa with an area under the curve (AUC) of
over 0.98 in the majority. Over five different folds, with non-overlapping patients in each,
the ROC AUC, accuracy, and mean patient accuracy are presented in Table 4 and shown in
Figure 4.
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Table 4. Experiment 4—Identification of colonic ulcerated mucosa.

Fold Accuracy Mean Patient
Accuracy ROC_AUC

0 0.896 0.951 0.98
1 0.478 0.74 0.77
2 0.937 0.948 0.989
3 0.931 0.905 0.986
4 0.828 0.795 0.946
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3.4. Ulcer Grading (Experiment 5)

This experiment included 10,898 CE images of small bowel ulcerated mucosa from
both capsule types. The model was pre-trained on both types as the combined model led
to the best results in ulcer identification. There was excellent accuracy in classification
ulcerations to grade 1 and grade 3 with an area under the curve (AUC) of 0.99. Over five
different folds, with non-overlapping patients in each, the ROC AUC, accuracy, and mean
patient accuracy are presented in Table 5, and ROC curves for each fold are shown in
Figure 5.

Table 5. Experiment 5—Grading of small bowel CE mucosal ulcerations images.

Fold Accuracy Mean Patient
Accuracy ROC_AUC

0 0.972 0.979 0.995
1 0.965 0.954 0.992
2 0.960 0.925 0.990
3 0.950 0.916 0.950
4 0.948 0.932 0.989
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Figure 5. Experiment 5—Grading of small bowel CE mucosal ulcerations images.

3.5. Class Activation Map

Class activation maps [CAM] were used to analyze which image regions led to the
network’s classification of images. The gradient-weighted class activation mapping [Grad-
CAM] produces a coarse localization map highlighting the important regions in the image.
Applying this algorithm to the images enables the visual presentation of the ulcer area in
the CE images (Figure 6).
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4. Discussion

In recent years several studies have examined the utility and efficacy of ML in the
identification of different pathologies in small bowel mucosa. Previous studies [25–33] have
demonstrated the high accuracy of ML models in the identification and grading of small
bowel ulcers in CE images in CD patients. Recent metanalysis showed a combined sensitiv-
ity of 93% and a combined specificity of 92% [37] in the identification of gastrointestinal
ulcers. These studies are almost exclusively limited to a single capsule type, meaning the
ML model is trained and tested on the CE images of one capsule type.

Our study shows that the CNN algorithm was able to detect ulcerations in established
CD patients with an AUC of 0.98 and above. Applying the same algorithm on CE images
originating in both types of capsules, PillCam SB3 and PillCam Crohn capsules, produced
an accurate diagnostic capability with high AUC.

The present study reinforces the results of previous studies on the ability of ML to
detect and rank small bowel ulcers of CD patients in two types of capsules commonly
used worldwide. In addition, it shows the same ability to detect ulcers in the colon. The
uniqueness of this study is in the development of a combined model for two different
capsules, which not only did not reduce its accuracy but also raised it. This is part of the
refinement required in ML models on the way to adapting them to clinical practice, where
we hope there will be one algorithm that can be adapted to all existing and future capsule
types.

Recently, Houdeville et al. [38] addressed this issue in a different clinical setting, the
detection of angiectasias in small bowel CE images. They evaluated an ML algorithm
trained on CE images from PillCam SB3 capsule on CE images from another manufacturer,
i.e., Mirocam’s capsule. The model achieved high sensitivity and specificity (96.1% and
97.8%, respectively). This resembles part of experiment 2 (cross-domain) in our study, but
with different lesions and with only one direction, meaning they did not check training
the model on Mirocam’s and testing it on PillCam SB3 CE images. In our study, the cross-
domain model revealed high accuracy when trained on the PillCam Crohn CE images and
tested on the PillCam SB3 CE images but with low accuracy (0.5) in the opposite situation.
Their study has the advantage of dealing with different manufacturers’ capsules. However,
in our study, we took another step and examined a combined model on a combined dataset
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of CE images from two capsule types, analyzing both identification of ulcers and grading
ulcers.

Another aspect examined in our study is the analysis of the performance of the model
on individual patients, i.e., the identification of ulcers in a set of images from the same
patient. The individual patient-level analysis provided high and consistent diagnostic
accuracy with shortened reading time. This is also more appropriate for clinical practice,
where the algorithm is supposed to read one capsule of one patient at a time.

As for misdetections, false negative errors may be secondary to the small diameter
of the ulcer or its suboptimal visibility due to contents in the bowel cavity. When it
comes to the diagnosis of ulcers and aphthae in Crohn’s disease, the clinical importance
of missing a single ulcer or aphthae is low and has significance only in the quantification
of the inflammation. The importance of misdetections can be more significant in the
diagnosis of other pathologies, such as angiodysplasias or polyps. Regarding visibility,
future algorithms should include an assessment of the degree of cleanliness so that the DL
will alert in case of low visibility.

This study had several limitations: first, the analysis was devoted to ulcerations and
aphthae only; any other given pathology will require similar training. In the future, there
might be a combined model that includes all the possible SB lesions. Second, although we
used CE images from two different capsule types, they both are from the same manufacturer,
suggesting they may have common imaging characteristics that contributed to the excellent
accuracy of the combined model. Future studies should include images from different
capsules from different manufacturers. Third, the number of evaluated colon images in
this study was substantially smaller than the number of evaluated small bowel images.
However, this is only a secondary outcome of this study since the colonic images are from
one capsule type, i.e., PillCam SB3, and a combined model for colonic images is out of the
scope of this study. Future studies should also focus on additional small bowel and colonic
pathologies, including other inflammatory etiologies. Finally, as in previous studies, we
also used separate still CE images in the analysis, but the next step should be to identify
and quantify signs of inflammation in an individual film.

5. Conclusions

While single capsule models performed well on validation sets from the same domain,
they performed poorly on the other capsule’s test sets. Developing a combined model for
two different capsules provided high and consistent diagnostic accuracy. Creating a holistic
AI model for automated capsule reading is an essential part of the refinement required in
ML models on the way to adapting them to clinical practice.
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