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Abstract. We have characterized an unusual cell 
phenotype in third passage cultures of a human ker- 
atinocyte strain derived from newborn foreskin 
epidermis. The cells had the same DNA fingerprint 
pattern as the second passage, morphologically normal, 
keratinocytes; they formed desmosomes and expressed 
the keratin profile characteristic of normal keratino- 
cytes in culture. However, unlike normal keratinocytes, 
the cells did not grow as compact colonies and did not 
stratify or undergo terminal differentiation, even after 
TPA treatment or suspension culture. For these rea- 
sons we named them ndk for "nondifferentiating ker- 
atinocytes" The ndk cells also differed from normal 
keratinocytes in that they did not require a feeder layer 
and were not stimulated by cholera toxin to proliferate. 

The ndk cells had an absolute requirement for 
hydrocortisone and their growth rate was increased 
when epidermal growth factor was added to the 
medium. Although ndk failed to undergo terminal 
differentiation in culture, they were not transformed, 
since they were still sensitive to contact inhibition of 
growth, did not proliferate in soft agar, and had a 
limited lifespan in culture. The appearance of the ndk 
phenotype was correlated with a doubling of chromo- 
some number and the presence of a l p  marker chro- 
mosome. We suggest that these cells are a useful ex- 
perimental adjunct to cultures of normal keratinocytes, 
in which proliferation and terminal differentiation are 
tightly coordinated, because in ndk cells there appears 
to be a block in terminal differentiation. 

number of techniques have been developed that allow 
the growth of normal human epidermal keratino- 
cytes in culture (reviewed by Fusenig, 1986). One 

widely used method is to grow the cells with a feeder layer 
of mouse 3T3 cells in medium supplemented with cholera 
toxin, hydrocortisone, and epidermal growth factor (EGF) ~ 
(Rheinwald and Green, 1975; Rheinwald, 1980). Under 
these conditions, the cells form stratified colonies and retain 
many of the properties of the tissue from which they were 
derived. Proliferation is restricted to the basal layer and cells 
that leave it enlarge and undergo terminal differentiation 
(reviewed by Green, 1980; Watt, 1988). 

Strains of human keratinocytes can be grown for ~50 gen- 
erations before they senesce (Rheinwald and Green, 1975). 
This contrasts with the observed properties of rodent kerati- 
nocyte cultures, in which spontaneous immortalization and 
transformation is a relatively frequent phenomenon (San- 
ford and Evans, 1982). The greater stability of the human ge- 
nome has been invoked as an explanation for this difference 
(DiPaolo, 1983). Recently, however, two lines of spontane- 
ously immortalized human keratinocytes have been reported 
(Baden et al., 1987; Boukamp et al., 1988). Both lines strat- 
ify and undergo terminal differentiation. One of the lines ex- 
hibits reduced growth factor dependency and can grow in soft 
agar (Boukamp et al., 1988), but neither line is tumorigenic. 

1. Abbreviations used in this paper: EGF, epidermal growth factor; ndk, 
nondifferentiating keratinocytes; PNA, peanut lectin. 

We describe here an unusual human keratinocyte strain 
that arose in cultures derived from a normal newborn fore- 
skin epidermis, prepared and cultured under the standard 
conditions used in this and other laboratories (Rheinwald 
and Green, 1975; Allen-Hoffman and Rheinwald, 1984; 
Watt, 1984). These cells differed in morphology and growth 
requirements from normal keratinocytes and failed to stratify 
or undergo terminal differentiation. Nevertheless, they ex- 
pressed the profile of keratins characteristic of cultured ker- 
atinocytes and were not transformed. Karyotypic analysis 
showed that the appearance of this phenotype was correlated 
with a doubling of chromosome number. We discuss the im- 
plications of our findings for studies of keratinocyte terminal 
differentiation. 

Materials and Methods  

Cell Culture 

Human keratinocytcs were isolated from newborn foreskin epidermis as de- 
scribed by Rheinwald and Green (1975). Briefly, the dermis was removed 
by dissection and the epidermis cut into small pieces and digested with 
0.125% trypsin, 0.01% EDTA, at 37°C. At 30-min intervals for up to 3 h 
released cells were collected and fresh trypsin/EDTA added. The cells were 
pooled and plated onto 3T3 cells that had been pretreated for 2 h with 4 
I.tg/ml mitomycin C (Sigma Chemical Co., Poole, England), in medium 
composed of 1 part Ham's FI2 and 3 parts DME, supplemented with 10% 
FCS (Sera-Laboratories, Crawley Down, Sussex, England), 1.8 × 10 -4 M 
adenine, 5 ~g/ml insulin (Sigma Chemical Co.), 0.5 gg/ml hydrocortisone 
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(Calbiochem, Cambridge Bioscience, Cambridge, England), 10 -~° M 
cholera toxin (ICN Biomedicals, High Wycombe, Bucks, England), and 10 
ng/ml human EGF (a generous gift from Dr. George-Nascimento, Chiron 
Corporation, Emeryville, CA) (FAD + FCS + HICE; Allen-Hoffman and 
Rheinwald, 1984). 

The nondifferentiating keratinocytes (ndk) described in this paper arose 
from strain h keratinocytes. The ndk passage numbers given in the text count 
the primary strain h cultures as passage 1. The first passage to consist en- 
tirely of cells with the ndk phenotype was passage 4. 

Normal keratinocytes used in comparative experiments were of strain c 
(Magee et al., 1987; Morrison et al., 1988). SVK-14 cells, a line of SV-40- 
transformed human keratinocytes, were obtained from Joyce Taylor-Papadi- 
mitriou (Taylor-Papadimitriou et al., 1982) and grown in FAD + FCS + 
HICE without 3T3 feeder ceils. 

All cultures were maintained at 37°C in a humidifed 5% CO2 atmo- 
sphere. The medium was changed every 2-3 d and the cells were passaged 
when close to confluence, as described previously (Watt and Green, 1981). 

Soft Agar Growth Assay 
Triplicate 60-mm-diam bacteriological plastic dishes (Sterilin, Feltham, 
England) were seeded with 103, 104, or 105 cells in 1 ml of FAD + FCS 
+ HICE containing 0.3% Noble agar (Difco Laboratories, Inc., Detroit, 
MI) over 4 ml of a 0.6% agar base (McPherson and Montagnier, 1964). The 
cultures were maintained at 37°C and fed each week with 1 ml of 0.3% agar 
medium. Colony formation was assessed by microscopical examination at 
2 and at 4 wk. 

Induction of Premature Terminal Differentiation 
Premature terminal differentiation of normal keratinocytes was induced in 
two ways. In the first, cells were harvested and cultured in suspension in 
FAD + FCS + HICE supplemented with 1.45% methylcellulose (4,000 
centipoises; Aldrich Chemical Co., Milwaukee, WI) for 3 d (Green, 1977). 
In the second method, adherent cells were treated for 3 d with 5 x 10 -9 
M 12-0-tetradecanoyl-phorbol-13-acetate (TPA; Sigma Chemical Co.; Par- 
kinson et al., 1983). 

Karyotyping 
Chromosome spreads were made from cells in log phase growth. Where 
necessary, 3T3 feeder cells were first removed by EDTA treatment. Fresh 
medium was added to the cultures and the cells were incubated with 0.5 
lag/ml colcemid for 1-2 h, harvested, and subjected to hypotonic shock. 
Chromosome spreads were prepared and G banding carried out by standard 
methods (Worton and Duff, 1979). 

Antibodies and Lectins 
The following antibodies and lectins were used for indirect immunofluores- 
cence or Western blotting. Mouse monoclonals: Vim 13.2, reactive with 
vimentin (P and S Biomedicals Ltd., Liverpool, England); AE-1, reactive 
with l/eratins 10, 14, 16, and 19 (Woodcock-Mitchell et al., 1982); LP34, 
reactive with keratins 10, 18, and complexes of keratins 5 and 14, 6 and 16 
(Lane et al., 1985); LE61, reactive with keratin 18 (Lane, 1982); LL001 
reactive with keratin 14 (a generous gift from E. B. Lane, Imperial Cancer 
Research Fund). Mouse polyclonal: BL10, reactive with keratins 5 and 6 
(a generous gift from E. B. Lane, CRF). Guinea pig polyclonal: anti- 
230/205, reactive with desmoplakins; (Cowin and Garrod, 1983; Watt et 
al., 1984). Rabbit polyclonals: anti-PNA-gp, reactive with the peanut 
lectin-binding glycoproteins of keratinocytes (Morrison et al., 1988); anti- 
involucrin (Dover and Watt, 1987). FITC-conjugated peanut agglutinin 
(PNA-FITC) was obtained from Vector Laboratories Inc. (Peterborough, 
England) and FITC-conjugated second antibodies were obtained from ICN 
Biomedicals. 

Indirect Immunofluorescence 
For indirect immunofluorescence cells were grown on glass coverslips, 
washed in PBS, and fixed as follows: 1:1 methanol/acetone for staining with 
antibodies to intermediate filaments; 10 min on ice in absolute methanol for 
staining with anti-230/205; 10 min in PBS containing 3.7% formaldehyde 
for staining with anti-PNA-gp; 10 min in PBS containing 3.7% formalde- 
hyde followed by 10 rain on ice in absolute methanol for staining with anti- 
involucrin. 

Cells were incubated with the first antibody or PNA-FITC for 45 rain at 
room temperature, washed extensively in PBS, incubated with the appropri- 

ate FITC-conjugated second antibody as before, washed again in PBS, 
mounted in Gelvatol (Monsanto Co., St. Louis, MO), and examined using 
a Zeiss Axiophot microscope. 

Transmission Electron Microscopy 
Confluent cultures of ndk cells were fixed in 2.5 % glutaraldehyde in 0.7 M 
cacodylate buffer, pH 7.3, 0.002 M calcium acetate for 2-4 h, postfixed in 
1% osmium tetroxide in cacodylate buffer for 1 h, and dehydrated sequen- 
tially in 70%, 90%, and absolute ethanol. Specimens were embedded in 
Araldite resin and sections were cut both parallel and perpendicular to the 
culture substrate using a Reichert OMC14. Sections were stained with ura- 
nyl acetate and lead citrate, and viewed in a Zeiss EM10 Electron Micro- 
scope. 

DNA Fingerprinting 
DNA was prepared from passage 2 strain h keratinocytes and passage l0 
ndk by standard procedures (Maniatis et al., 1982) and digested with Hinf 
I (Boehringer Corp., London, England) in the presence of 4 mM sper- 
midine trichloride. Fragments were resolved on a 0.8 % agarose gel, trans- 
ferred to Hybond-N membrane (Amersham International, Amersham, En- 
gland) and fixed by UV irradiation. Filters were prehybridized at 57°C in 
phosphate buffer (Church and Gilbert, 1984) and hybridized overnight at 
57°C in the same buffer containing 1 ng/ml of a 32P-labeled eDNA probe 
(specific activity "¢109 cpm/ktg DNA) corresponding to a hypervariable se- 
quence 3' to the human ct-globin gene (Higgs et al., 1981). Filters were 
washed for 5 min each at 57°C in phosphate buffer and then in 1× SSC, 
0.1% SDS, and autoradiographed for 1-7 d at -70°C. 

Preparation of Cytoskeletons 
Confluent cell cultures were treated with EDTA to remove 3T3 cells, rinsed 
in PBS, and lysed for 15 rain on ice in 20 mM Tris-HC1, pH 7.6, containing 
1% NP-40, 5 mM MgC12, and 50 p.g/ml leupeptin (Sigma Chemical Co.). 
Aliquots containing equal amounts of protein were incubated for 15 min on 
ice with DNase I (Boehringer Corp.; specific activity 20 x 103 U/ml: 
1 ~ used per 100 p.g of lysate) and then precipitated with 5 vol of acetone 
for 1 h on ice. After centrifugation at 14,000 rpm for 2 min, the pellet was 
air-dried, and cytoskeletal proteins were prepared by sequential extraction 
with low salt (10 mM Tris-HCl, pH 7.4, containing 150 mM NaCI, 3 mM 
EDTA, and 1% Triton X-100) and high salt (10 mM Tris-HCl, pH 7.4, con- 
taining 1.5 M KC1, 3 mM EDTA, and 1% Triton X-100) buffers, the pellet 
being vortexed and then incubated in each buffer for 10 min on ice. Proteins 
insoluble in high salt buffer were resuspended in electrofocusing sample 
buffer (O'Farrell, 1975) and separated by NEPHGE two-dimensional elec- 
trophoresis. 

Gel Electrophoresis 
One-dimensional SDS-PAGE was carried out according to the method of 
Laemmli (1970). 

Two-dimensional electrophoresis for analysis of keratins was performed 
according to the method of O'Farrell et al. (1977) using nonequilibrium pH 
gradient electrophoresis (NEPHGE) in the first dimension, in the presence 
of 9.5 M urea (Achtstaetter et al., 1986). 

Ampholines (pH range 3.5-10.0, LKB Instruments Inc., Bromma, Swe- 
den) were used to form the pH gradient in 100 mm × 3 mm rod gels. Elec- 
trophoresis was carried out at 200 V for 10 min, 300 V for a further 10 min, 
and 400 V for 5 h. The pH gradient established was measured by cutting 
rods run with sample buffer alone into 0.5 cm segments, eluting each seg- 
ment overnight with 1 ml of water, and measuring the pH of the eluant. Actin 
(4 ktg/rod), BSA (2.5 I.tg/rod), and yeast phosphoglycerate kinase (2 ptg/rod, 
all from Sigma Chemical Co.) were mixed with cytoskeletal preparations 
as internal standards. 

Western Blotting 
Proteins were transferred to nitrocellulose (0.45 I~m pore size; Schleicher 
& Schuell Inc., Dassel, FRG) at 0.25 A for 2 h at 4°C, using a Bio-Rad 
Transblot apparatus (Bio-Rad Laboratories, Watford, England) and transfer 
buffer consisting of 25 mM Tris base, 92 mM glycine, and 20% methanol 
(Towbin et al., 1979). Nonspecific protein binding sites were blocked by 
overnight incubation at 4°C in PBS containing 0.05% Tween 20 (Batteiger 
et al., 1982). Blots were incubated with specific antibody for l h at room 
temperature with vigorous shaking, washed three times over 5 min in tap 
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water, shaken with a 1:1,000 dilution of peroxidase-conjugated rabbit 
anti-mouse IgG (ICN Biomedicals Inc.) for 1 h and washed as above. Blots 
were briefly reblocked by 20 min incubation in PBS containing 0.1% BSA, 
0.05% Tween 20, and bound antibody visualized by incubation of blots in 
PBS containing 1 lag/ml 3,3'-diaminobenzidine (Sigma Chemical Co.), 
2 lal/rnl hydrogen peroxide. Total protein on blots was subsequently stained 
with India Ink (Glenney, 1986). Keratins were identified according to the 
catalogue of Moll et al. (1982). 

Immunoprecipitation of lnvolucrin 
Normal strain c keratinocytes and ndk were incubated overnight in medium 
containing 50 p, Ci/ml [35S]methionine (Amersham International; specific 
activity 30 Ci/mmol). Next day, cultures were washed in PBS and extracted 
for 15 min on ice in 50 mM Tris-HC1, pH 7.4, containing 5 mM EDTA, 
and 0.1% Triton X-100. Extracts were clarified by centrifugation at 14,000 
rpm for 2 min and aliquots containing 500,000 cpm of TCA-precipitable ma- 
terial were incubated on ice for 2.5 h with 2 ~l of normal rabbit serum, or 
2 Ixl of anti-involucrin serum. 30 I.tl of a l:l (vol/vol) suspension of protein 
A-Sepharose beads (Pharmacia Fine Chemicals, Uppsala, Sweden) was 
then added, and samples mixed end over end for 30 min at 4°C. Beads and 
associated immune complexes were collected by centrifugation and washed 
once in PBS containing 0.5 % Triton X-100, 0.1% SDS, once in PBS contain- 
ing 0.5% Triton X-100 and 0.5 M NaCl, and twice more in the first buffer. 
Pellets were resuspended in SDS-PAGE sample buffer containing 100 mM 
dithiothreitol (DTT), and boiled for 3 rain. Immunoprecipitated proteins 
were analyzed on a 7.5% SDS-PAGE gel. The gel was treated with "Ampli- 
fy" (Amersham International), dried, and autoradiographed at -70°C. 

Measurement of Cornified Envelope Formation 
To measure the percentage of cells with cornified envelopes, cells were har- 
vested, counted, washed in PBS, resuspended for 5 min in PBS containing 
1% SDS and 20 mM DTT, recentrifuged, and counted in a haemocytometer 
under phase optics (Sun and Green, 1976). In some experiments, cultures 
were treated with 0.8 M NaCl for 6 h to induce envelope formation (Rice 
and Green, 1979; Green and Watt, 1982) before harvesting. 

Results 

Derivation of ndk Cells 
2 x 10 6 keratinocytes were isolated from a newborn fore- 
skin epidermis and plated at 2 x 10 5 cells per 9-cm tissue 
culture dish on mitomycin C-treated 3T3 feeder cells. Over 
the next 10 d, colonies of  morphologically normal keratino- 
cytes grew to confluence. These were designated strain h. At 
this time, frozen cell stocks were made from 9 of the dishes 
and the cells in the tenth dish passaged. Second passage cells 
were still morphologically normal (Fig. 1 a), but 4-5 d after 
seeding the third passage, an additional cell type was dis- 
cernable in the cultures, located at the margins of keratino- 
cyte colonies (Fig. 1 b). These cells did not form compact 

Figure 1. Identification of  ndk cells. (a) Confluent strain h keratinocytes at passage 2. (b) Subconfluent strain h keratinocytes at passage 
3. As well as keratinocyte colonies of  normal morphology (K) surrounded by 3T3 feeder cells (F) ,  a third cell type, ndk, can be seen 
(arrowed). (c) Pure population of  ndk cells at passage 4, sparse culture. Note prominent  ruffled membranes .  (d) Dense ndk culture at 
passage 4. Bar, 50 txm. 
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Figure 2. Identification of keratins and desmosomes in ndk cells by 
indirect irrtmunofluoresence, a and b are keratin filaments stained 
with (a) LP34 and (b) LL001. Note alignment of filaments in areas 
of cell contact (a, arrowed). (c) Desmoplakins stained with an- 
ti-230/205. Arrow indicates desmosomes in regions of cell-cell 
contact. Bar, 10 lam. 

colonies and had a different morphology from normal ker- 
atinocytes with prominent ruffled membranes (Fig. 1 c). At 
high density, the cells formed a tighter sheet but there were 
no signs of stratification (Fig. 1 d). At this stage it was not 
clear whether the new cells had arisen through phenotypic 
conversion of the keratinocyte population or outgrowth of an- 
other cell type found in skin. As shown below, the former 
explanation appears to be correct, and we have therefore 
named the cells 'ndk" for 'nondifferentiating keratinocytes" 

In time, the normal keratinocytes present in the third pas- 
sage cultures were outgrown by the ndk cells. Unlike the 3T3 
feeder cells, ndk cells could not be detached by EDTA treat- 
ment, but they were more trypsin sensitive than normal ker- 
atinocytes. Thus, by a combination of overgrowth and selec- 
tive fanning, it was possible to obtain a pure population of 
ndk cells. Subsequently, ndk cells were transferred to dishes 
with or without 3T3 feeder cells; it was apparent that they 
grew more successfully without the feeder layer, and so the 
cells have been grown subsequently without feeder support. 
The in vitro lifespan ofndk cells was similar to that of normal 
keratinocytes; the cells senesced at passage 18 when grown 
in FAD + FCS + HICE, without a feeder layer. 

Epithelial Origin of  ndk Cells 

To investigate the origin of ndk cells, indirect immunofluo- 
rescence staining was carried out using antibodies directed 
against keratins. Positive staining was observed with LP34, 
an antibody that recognizes an epitope present on keratins of 
both stratified and simple epithelia (Fig. 2 a; Lane et al., 
1985). The cells were not stained by LE61, which reacts with 
keratin 18, a keratin characteristic of simple epithelia (Lane, 
1982; data not shown). Furthermore, the cells were stained 
positively by LL001, an antibody specific for keratin 14 
(Leigh, I. M., P. E. Purkis, J. B. Steel, and E. B. Lane, 
manuscript in preparation) that is only present in cells of 
stratified squamous epithelia (Fig. 2 b). 

The absence of simple epithelial keratins ruled out the pos- 
sibility that ndk were Merkel cells or secretory cells of the 
sweat or sebaceous glands (Moll et al., 1982, 1984). The 
positive staining for keratin 14 indicated that the cells were 
keratinocytes, which could have originated from the epider- 
mis or the junctional epithelium of sweat or sebaceous 
glands. Other cell types found in skin such as melanocytes 
or Langerhans cells do not contain keratin intermediate fila- 
ments (Wolff and Stingl, 1983). In addition, ndk did not stain 
with antibodies to factor VIII, and therefore were not of en- 
dothelial origin (data not shown). The morphology of ndk 
cells was similar to that of mesothelial cells; however, unlike 
ndk, mesothelial cells express keratin 18 and no keratin 14 
(Connell and Rheinwald, 1983). 

The coalignment of keratin filaments in adjacent cells (see 
Fig. 2 a) suggested that ndk cells possessed desmosomes, in- 
tercellular junctions characteristic of epithelial cells. Using 
a guinea pig antiserum raised against the desmoplakin pro- 
teins of the desmosomal plaque (Cowin and Garrod, 1983), 
positive immunofluorescent staining of ndk cells was ob- 
served at sites of cell contact (Fig. 2 c). The high level of cy- 
toplasmic fluorescence may reflect the relatively low number 
of assembled desmosomes compared with normal keratino- 
cytes (Watt et al., 1984). 

To catalogue the keratins present in ndk, cytoskeletal ex- 
tracts were made from eighth passage ndk cultures and from 
normal strain c keratinocytes. The extracts were run out on 
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two-dimensional gels, and individual keratins were iden- 
tified by immunoblotting. Blots probed with monoclonal an- 
tibody AE-1 (Woodcock-Mitchell et al., 1982) indicated that 
keratins 14, 16, and 19 were present in both cell extracts, and 
that there were no alterations in the relative quantities of 
these keratins in ndk cells (Fig. 3, a, b, c, and d). A mouse 
polyclonal serum, BL10, detected keratins 5 and 6 in both 
ndk and strain c keratinocytes, although in ndk keratin 6 was 
present in lower amounts relative to keratin 5 (Fig. 3, e and 
f ) .  Ndk did not contain detectable amounts of keratin 17, 
suggesting that the cells were not keratinocytes from seba- 
ceous or sweat glands (Moll et al., 1982). 

Since some epithelial cell lines coexpress keratin and 
vimentin intermediate filaments (Franke et al., 1979), we 

also examined cytoskeletal extracts of ndk cells and normal 
keratinocytes for the presence of vimentin. Western blots of 
two-dimensional gels probed with a monoclonal antibody to 
vimentin revealed that passage 8 ndk cells contained vimen- 
tin, whereas normal strain c keratinocytes did not (Fig. 3, a, 
b, g, and h). 

DNA Fingerprinting and Karyotyping of  ndk Cells 

To rule out the possibility that the appearance of ndk cells 
was due to contamination of the original keratinocyte cul- 
tures, the DNA fingerprints of passage 2 strain h keratino- 
cytes and passage 10 ndk cells were compared using an 
a-globin 3' hypervariable region probe (Fowler et al., 1988). 

Figure 3. Identification of keratins in normal keratinocytes and ndk cells. Cytoskeletal extracts prepared from eighth passage strain c ker- 
atinocytes (a, c, e, and g) and ndk cells (b, d, f, and h) were analyzed by two-dimensional gel electrophoresis and immunoblotting. (a 
and b) Blotted proteins stained with India Ink. BSA, actin (A), and yeast phosphoglycerate kinase (PGK) were used as internal standards. 
Keratins are numbered according to the catalogue of Moll et al. (1982). Arrows indicate undissociated keratin complexes. V, vimentin. 
(c-h) Immunoblots probed with (c and d) AE-1, (e and f )  BL10, and (g and h) VIM 13.2. 
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Unrelated human placental DNA was used as a control. 
Identical alleles were present in passage 2 strain h keratino- 
cytes and passage 10 ndk cells (Fig. 4). Ethical considera- 
tions prevented us from obtaining a blood sample from the 
tissue donor, but the result demonstrated that both the mor- 
phologically normal keratinocytes and the ndk cells origi- 
nated from the same individual. 

To investigate whether the changes in phenotype described 
were associated with any gross chromosomal abnormalities, 
metaphase chromosome spreads were prepared from second 
passage strain h keratinocytes, ndk cells at passages 4 and 
11, and also from normal strain c keratinocytes at passage 8. 
Strain c keratinocytes had a diploid karyotype with no obvi- 
ous chromosomal abnormalities, as reported previously for 
other strains of keratinocytes in culture (Rheinwald and 
Green, 1975). ndk cells at passages 4 and 11 contained a 
hypotetraploid set of chromosomes; the G banding patterns 
were those of normal chromosomes (Fig. 5), and the only 
abnormality detected at either passage was a l p  chromo- 
some, which was present in all metaphases. Spreads from 
passage 2 morphologically normal strain h keratinocytes 
contained a mixture of diploid (60%) and hypotetraploid 
(40%) metaphases, and no lp chromosomes. Thus the dou- 

Figure 4. DNA fingerprinting 
of strain h keratinocytes and 
ndk ceils. DNA from human 
placenta (lane 1), passage 10 
ndk cells (lane 2), and passage 
2 strain h keratinocytes (lane 
3) hybridized with ~t-globin 3' 
HVR probe. Migration posi- 
tions of ~ phage fragments 
produced by digestion with 
Hind III and Eco RI are indi- 
cated. 

bling of chromosome number preceded the changes in cell 
morphology (Table I). 

Differentiated Properties of ndk Cells 

In normal human keratinocyte cultures, the cells grow as 
stratified colonies and undergo terminal differentiation as 
they migrate through the outer layers (Green, 1980; Watt, 
1988). Light microscopical examination of ndk cultures 
(Fig. l) did not yield morphological evidence of terminal 
differentiation, such as cell enlargement (Watt and Green, 
1981), or shedding of squames (Sun and Green, 1976). We 
therefore examined the ultrastructure of ndk cultures and 
analyzed the cells for specifc markers of terminal differenti- 
ation. 

Ultrastructure. Sections cut perpendicular to the culture 
substrate showed that the ndk cultures were only one cell 
layer thick (Fig. 6 a). In contrast, normal keratinocyte cul- 
tures typically consist of 6-8 layers at confluence (Rheinwald 
and Green, 1975). The cells contained prominent bundles of 
keratin filaments, abundant rough endoplasmic reticulum, 
and membrane-bounded vesicles. Desmosomes were observed 
at regions of cell contact, but there were fewer than in normal 
keratinocyte cultures (Fig. 6, b and c); (Watt et al., 1984; 
Magee et al., 1987). In some sections, the Golgi apparatus 
was clearly visible (Fig. 6 b). 

Cornified Envelopes. In normal keratinocyte cultures, a 
small proportion of cells in the uppermost layers assemble 
a protein envelope under the plasma membrane. These cor- 
nified envelopes are insoluble in solutions containing SDS 
and reducing agents. Envelope assembly occurs when the 
envelope precursor proteins are cross-linked by a keratino- 
cyte-specific transglutaminase in a reaction that requires cal- 
cium (Rice and Green, 1979). The percentage of cells "com- 
petent" to form cornified envelopes can be measured by 
raising the intracellular calcium ion concentration, for ex- 
ample by treatment with a high concentration of NaC1 (Rice 
and Green, 1979). 

Envelope formation was measured in newly confluent cul- 
tures of ndk and strain c keratinocytes under normal culture 
conditions and after treatment with 0.8 M NaC1. Salt treat- 
ment increased the percentage of strain c keratinocytes form- 
ing envelopes from 5 to 86%, indicating that most of the 
cells were competent to form envelopes. In contrast, ndk did 
not form cornified envelopes even after NaCl treatment (Ta- 
ble II). 

Cornified envelopes form naturally when keratinocytes 
reach the final stages of terminal differentiation. Premature 
terminal differentiation, resulting in envelope assembly, can 
be induced by placing keratinocytes in suspension (Green, 
1977) or treating them with TPA (Parkinson et al., 1983). 
We therefore exposed normal strain c keratinocytes and ndk 
to 5 nM TPA or suspended them in 1.45 % methylcellulose 
for 3 d and measured cornified envelope formation. As 
shown in Table II, both treatments lead to a large increase 
in the percentage of normal keratinocytes with cornified 
envelopes, but neither treatment induced envelopes in the 
ndk cultures. 

Involucrin. Immunoprecipitation and immunofluorescence 
techniques were used to examine ndk for the presence of in- 
volucrin, the major precursor protein of the cornified enve- 
lope (Rice and Green, 1979). Both techniques detected invo- 
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Figure 5. G-banded karyotype of ndk ceils. 
Karyotype obtained from metaphase spreads 
of passage 4 cells. 

lucrin in normal strain c keratinocytes, but not in ndk (Fig. 7 
and results not shown). Furthermore, involucrin was not in- 
duced in ndk cells in response to TPA treatment or suspen- 
sion culture (results not shown). 

Peanut Lectin-binding Glycoproteins. Peanut lectin (PNA) 
binds more strongly to suprabasal, terminally differentiating, 
keratinocytes than to basal, proliferative keratinocytes, both 
in vivo and in vitro (Watt, 1983). Some epitope(s) of the 
PNA-binding glycoproteins is already expressed in the basal 
layer and can be detected with an antiserum to the glycopro- 
reins, anti-PNA-gp (Morrison et al., 1988). ndk cell micro- 
villi stained positively with anti-PNA-gp, but not with PNAo 
FITC (Fig. 8) and thus ndk resembled basal keratinocytes 
that had not begun to terminally differentiate. 

Growth Properties of  ndk Cells 

As described above, ndk cells differed from normal keratino- 
cytes in that they continued to proliferate when grown in the 
absence of a 3T3 feeder layer. Cell proliferation was exam- 
ined under more stringent growth conditions by reducing the 
concentration of FCS from 10%, to 5, 2, or 0.5%, in the 
presence of the standard concentrations of added EGE chol- 
era toxin, insulin, and hydrocortisone, ndk cells in medium 
containing 10% FCS grew exponentially with a doubling 
time of 36 h and reached saturation density in 18 d. In 
medium containing 5 or 2% FCS, the cells attached and 
spread but did not grow for the first 10 d. After this lag 
period, they grew exponentially with a similar doubling time 

Table I. Polyploidisation of ndk Cells 

Ploidy of metaphases Metaphases 
Passage Cell with 
number morphology 2 n 4 n 1 p marker 

% % % 

2 Keratinocyte 59 (40-46) 41 (70-90) 0 
4 ndk 0 100 (72-92) 100 

11 ndk 0 100 (68-90) 100 

Figures in brackets refer to range of chromosome numbers per metaphase. 

to that of cells in 10% FCS, but had not reached saturation 
density by the end of the experiment (Fig. 9 A). Cells that 
grew in 2 or 5% FCS medium appeared morphologically 
similar to the total ndk population and stained positively with 
the antikeratin antibodies LP34 and LL001 (not shown). In 
medium containing 0.5 % FCS, ndk cells attached but did not 
spread fully and did not proliferate. 

To test the requirements of ndk for the growth factors 
normally added to keratinocyte culture medium (EGF, hy- 
drocortisone, insulin, and cholera toxin) proliferation was 
examined in medium containing 10% FCS but lacking in- 
dividual growth factors. In medium without added hydrocor- 
tisone the cells did not grow even though EGF, insulin, and 
cholera toxin were present; under these conditions the cells 
settled but did not spread well. Removal of cholera toxin or 
insulin did not alter the growth rate or saturation density of 
the cells. Omission of EGF caused the population doubling 
time to increase from 36 to 168 h even though the cells settled 
and spread normally (Fig. 9 B). 

The capacity of ndk for anchorage independent growth 
was examined by suspending the cells in medium containing 
0.3% agar. SVK14, an SV-40-transformed keratinocyte cell 
line (Taylor-Papadimitriou et al., 1982), was used as a posi- 
tive control. After 2 wk, numerous colonies could be seen 
in the SVK14 cultures but no colonies were observed in ndk 
cultures even after 4 wk. Normal strain c keratinocytes were 
also unable to grow in soft agar (data not shown). 

The grown properties of ndk were examined at several pas- 
sage numbers and found to be stable throughout the lifespan 
of the cultures. 

Discussion 

We have described a new phenotypic variant of human ker- 
atinocytes that arose in third passage cultures of foreskin ker- 
atinocytes from a healthy neonate, whose subsequent devel- 
opment has been normal. The cells, designated ndk, were 
unambiguously identified as keratinocytes on the basis of the 
keratins they expressed, since these were characteristic of 
cells from stratified epithelia (Fuchs and Green, 1980; Moll 
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Table II. Induction of Cornified Envelope Assembly in 
Keratinocytes and ndk 

Percent of cells 
forming cornified envelopes 

Treatment Strain c keratinocytes ndk 

Untreated 5 + 1.2 0 
0.8 M NaCI ,  6 h 86 + 3.5 0 
5 nM TPA,  3 d 50 5- 2.8 0 
Suspension cultures, 3 d 91 5- 4.1 0 

Cells were trypsinised, counted, and scored for cornified envelope formation 
by treatment with PBS containing 1% SDS and 20 mM DTT. Figures quoted 
are mean values obtained from duplicate experiments + range. 

et al., 1982). The ndk cells and the second passage keratino- 
cytes of normal morphology from which they were derived 
had identical alleles at a hypervariable locus and therefore 
originated from the same individual. 

The ndk phenotype was not observed in passage 2 mor- 
phologically normal cultures, which contained a mixture of 
diploid and near tetraploid metaphases. It is possible that the 
ndk phenotype, both in vivo and in vitro, was suppressed 
by an excess of normal keratinocytes. Spreads from ndk 
cells (passage 4 onwards) were all hypotetraploid and all 
contained a lp  marker chromosome. Tetraploidisation, most 
likely through failure of cytokinesis, may have taken place in 
a large proportion of the cells in the first or second passage 
cultures, or could have occurred as a clonal event before or 
after the cells were isolated from the epidermis. The appear- 
ance of the marker chromosome argues for a clonal origin 
of cells with the ndk phenotype; since these cells could not 
be detected in passage 2 cultures the acquisition of the lp 
marker may have conferred a selective growth advantage. 

It is interesting that in all the cultures derived from differ- 
ent frozen stocks of passage 2 strain h keratinocytes, cells of 
ndk morphology have appeared at the third passage and over- 
grown the normal keratinocytes. In contrast, other keratino- 
cyte strains that have been isolated and examined at an 
equivalent or greater passage number remain diploid (Rhein- 
wald and Green, 1975; and our observations). Of the two 
spontaneously immortalized human keratinocyte lines that 
have been described, one is hypotetraploid (Boukamp et al., 
1988) and the other is diploid with a trisomy of chromosome 
8 (Baden et al., 1987). 

The ndk cells did not undergo terminal differentiation in 
culture. They did not stratify; they did not express involucrin 
or bind PNA on their microvilli; and they did not assemble 
cornified envelopes, even after treatment with 0.8 M NaCI. 
In contrast to normal keratinocytes, terminal differentiation 
of ndk could not be induced by TPA treatment or suspension 
culture. In these respects ndk were unlike the spontaneously 
immortalized human keratinocyte lines, which retain the 
ability to stratify and undergo terminal differentiation (Baden 
et al., 1987; Boukamp et al., 1988). The lack of terminal 
differentiation in ndk cultures is all the more striking when 

Figure 7. Immunoprecipita- 
tion of involucrin. [35S]Methi- 
onine-labeled cell extracts of 
strain c keratinocytes (lanes 1 
and 2) and ndk (lanes 3 and 4) 
immunoprecipitated with nor- 
mal rabbit serum (lanes I and 
3) or anti-involucrin serum 
(lanes 2 and 4). 

one considers that even SV-40-transformed human keratino- 
cytes and most lines derived from squamous cell carcinomas 
retain a limited capacity for terminal differentiation in cul- 
ture (Banks-Schlegel and Howley, 1982; Steinberg and 
Defendi, 1979; Taylor-Papadimitriou et al., 1982; Rhein- 
wald and Beckett, 1980). A subpopulation of normal human 
keratinocytes that do not terminally differentiate in response 
to TPA or suspension culture have been identified and it has 
been proposed that these may be stem cells (Parkinson et al., 
1983; Hall, P. A., and F. M. Watt, unpublished observa- 
tions). Since ndk cells appeared to be locked into the basal 
keratinocyte phenotype and did not undergo terminal differ- 
entiation they may have some of the characteristics of stem 
cells; however, their karyotypic abnormalities must limit 
their usefulness as a stem cell model. 

The ndk cells resembled normal keratinocytes in their 
ability to grow in 2% FCS (Rheinwald, J. G., personal com- 
munication). However, some of their other growth properties, 
including feeder independence, were strikingly different. 
One function of the 3T3 feeder layer is to deposit an extracel- 
lular matrix on which keratinocytes attach and proliferate 
(Alitalo et al., 1982); our preliminary observations suggest 
that ndk cells secrete more fibronectin than normal keratino- 
cytes, and this may partly explain why they did not require 
feeder cells. Like normal keratinocytes, ndk required hydro- 
cortisone for growth; however, unlike the normal cells their 
proliferation was not stimulated by cholera toxin (Green, 
1978). EGF prolongs the lifespan of normal keratinocytes 
without affecting their growth rate (Rheinwald and Green, 
1977), but the growth rate of ndk was greatly increased in 
the presence of EGE Taken together, these results may re- 
flect alterations in extracellular matrix production, in growth 

Figure 6. Ultrastructure of ndk cells examined by transmission electron microscopy. (a) Section perpendicular to dish surface showing 
that the cells grew as a monolayer. (b and c) Sections parallel to dish surface. Note keratin filaments (K), Golgi complex (G), and desmo- 
somes (D). Bars: (a) 25 p.m; (b and c) 0.5 Ixm. 
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Figure 8. Indirect immunofluorescent staining 
of surface glycoproteins of ndk. Cells stained 
with PNA-FITC (a) or anti-PNA-gp (b). Bar, 
10 lim. 
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Figure 9. Growth properties of ndk cells. 104 cells 
were plated per 60-mm dish. Three dishes were 
harvested per experiment on each day and each 
point is the mean of duplicate experiments. Error 
bars represent standard deviations. (a) Serum de- 
pendence. Cells were plated in FAD + HICE con- 
raining 10 (m), 5 (e), 2 (A), or 0.5% (*) FCS. (b) 
Growth factor dependence. Cells were plated in 
FAD + 10% FCS + HICE (~), medium lacking 
insulin (A), cholera toxin (D), EGF (e), hydro- 
cortisone (0), or all four growth factors (m). 
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factor receptors, or intracellular signalling pathways, and 
this is currently under investigation. 

Although ndk were unable to undergo terminal differentia- 
tion, they did not appear to be transformed. Their population 
doubling time was similar to that of normal keratinocytes; 
they exhibited contact inhibition of growth and could not 
grow in suspension. Furthermore, their lifespan was similar 
to that of normal human keratinocytes in culture. They may 
therefore provide an exception to the general observation that 
a break in differentiation is correlated with transformation 
and neoplastic progression (Harris, 1985; Klein, 1987; Bod- 
mer, 1988). 

In summary, we have identified and characterized an un- 
usual keratinocyte phenotype that arose under our standard 
conditions for culturing keratinocytes from normal human 
epidermis. The cells were unable to terminally differentiate 
or to stratify in culture and differed in their growth properties 
from normal keratinocytes, ndk cells therefore provide a use- 
ful experimental adjunct to the normal cultures for inves- 
tigating the factors that regulate keratinocyte proliferation 
and terminal differentiation. 
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