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Abstract: Trehalose biosynthesis enzyme homologues in plants contain two families,
trehalose-6-phosphate synthases (TPSs) and trehalose-6-phosphate phosphatases (TPPs). Both families
participate in trehalose synthesis and a variety of stress-resistance processes. Here, nine BdTPS and
ten BdTPP genes were identified based on the Brachypodium distachyon genome, and all genes were
classified into three classes. The Class I and Class II members differed substantially in gene structures,
conserved motifs, and protein sequence identities, implying varied gene functions. Gene duplication
analysis showed that one BdTPS gene pair and four BdTPP gene pairs are formed by duplication
events. The value of Ka/Ks (non-synonymous/synonymous) was less than 1, suggesting purifying
selection in these gene families. The cis-elements and gene interaction network prediction showed
that many family members may be involved in stress responses. The quantitative real-time reverse
transcription (qRT-PCR) results further supported that most BdTPSs responded to at least one stress or
abscisic acid (ABA) treatment, whereas over half of BdTPPs were downregulated after stress treatment,
implying that BdTPSs play a more important role in stress responses than BdTPPs. This work provides
a foundation for the genome-wide identification of the B. distachyon TPS–TPP gene families and a
frame for further studies of these gene families in abiotic stress responses.
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1. Introduction

Abiotic stress, i.e., drought, chilling, salinity, and heat stress, are limiting factors that seriously
affect crop quality and yield; thus, improving the abiotic stress tolerance of plants is highly important for
the agricultural industry. Plants have gradually evolved complex molecular mechanisms that respond
to environmental stress, resulting in stress tolerance. Complex regulatory networks can cause certain
molecular, biochemical, and physiological changes, including the accumulation of osmotic substances,
stomatal closure, and decreased photosynthesis [1]. Among these changes, the accumulation of
trehalose is also a significant pathway for plants under stress conditions to avoid damage.

Trehalose is a non-reducing disaccharide of glucose that increases under abiotic stress in
organisms [2]. Previous studies have found trehalose, for instance, to participate in the responses of
microorganism, especially bacteria and yeast to different abiotic stresses [3–6]. In some microorganisms
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and invertebrate animals, trehalose acts as a carbon source and an osmoprotectant [7,8], particularly
under heat and drought stress [9]. Indeed, some studies have shown that trehalose can protect plant
cytomembranes against both drought injuries and freezing injuries [10] and maintain the stability of
enzymes [11]. In higher plants, trehalose was determined to provide protection under different abiotic
stresses, i.e., drought, heat, chilling, salinity, etc. [12–15].

It has previously been reported that trehalose can be biosynthesized via more than five routes
in prokaryotes, but only one of these pathways exists in plants, namely, the ‘TPS–TPP pathway’ [2].
This route includes two enzymatic steps: The first process is catalyzed by trehalose-6-phosphate synthase
(TPS) and synthesizes an intermediate from UDP-glucose (UDPG) and glucose 6-phosphate (G6P);
next, trehalose-6-phosphate phosphatase (TPP) dephosphorylates the intermediate to trehalose [2,16].
The TPS protein has been previously identified in many organisms [17–20], such as Saccharomyces
cerevisiae and Escherichia coli. In recent years, TPS and TPP genes have been studied in many higher
plants, suggesting that trehalose is likely ubiquitous in flowering plants [2,8,21–24]. Unlike single
TPS and TPP genes in the majority of microorganisms, the genomes of higher plants encode a large
family of trehalose biosynthesis enzyme homologues. These members are commonly classified into
three classes based on the TPS/TPP protein domain [25,26]. In the Arabidopsis genome, four Class I
(AtTPS1–4), seven Class II (AtTPS5–AtTPS11), and ten Class III (AtTPPA–AtTPPJ) genes have been
identified [24,27].

In higher plants, trehalose-6-phosphate (T6P) is an indispensable signal intermediate that influences
plant growth and development by linking pivotal signaling routes of carbon metabolism [16,24,28,29].
First, T6P plays a vital role in starch synthesis via the post-translational redox activation of ADP-glucose
pyrophosphorylase [30,31]. Second, T6P can inhibit the activity of Sn1-related protein kinase
(SnRK1) [32], which has a vital role in the transcription networks of plant stress and energy
metabolism [33]. From a review of the literature, the genetic manipulation of TPS/TPP genes
could improve stress resistance in different species [15,34–39]. Moreover, some TPS/TPP genes are
directly involved in stress tolerance by improving the trehalose contents in several plants [14,40,41].
However, many of the functions of the TPS/TPP genes are largely unknown, especially for those genes
involved in signaling pathways in plant development and stress resistance. Therefore, the identification
of TPS and TPP genes is crucial for investigating the molecular mechanisms that combat various
environmental stresses.

Brachypodium distachyon L. (2n = 10), as a model system for grasses, has a small genome (~270 Mbp),
low plant height, and a short growth cycle [42,43], which enables the evaluation of the molecular
mechanisms of growth, development, and abiotic stress. Although TPS genes in other plants were
identified [27,44–47], TPS genes in B. distachyon have not been well studied. Moreover, the TPP family
has not yet been characterized in plants other than Arabidopsis [24]. In this study, the characteristics of
the BdTPS and BdTPP genes were identified by analyzing the evolutionary tree, intron/exon structure,
motifs, and selective forces. We also studied the expression patterns in different tissues and under
various stresses. Taken together, our study enhances the understanding of the function and evolution
of the TPS and TPP genes.

2. Results

2.1. Identification of TPS and TPP Family Members in Brachypodium distachyon

To identify all homologs of TPS and TPP in B. distachyon, hidden Markov models (HMMs) were
performed using the Blast method (E-value < e−10). Ultimately, we identified nine BdTPS and ten BdTPP
genes, which were named BdTPS1–BdTPS9 and BdTPPA–BdTPPJ, respectively (Table 1). The number
of TPS genes was less than those in Arabidopsis thaliana (11), rice (Oryza sativa, 11), Populus trichocarpa
(12), and soybean (13) [27] but more than in potato (8) [47] and drumstick tree (8) [45].
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Table 1. Basic characteristics of TPS and TPP genes in Brachypodium distachyon.

Name Gene ID Locus Exon Number Gene Length CDS (bp) No. of AA pI MW (kDa) PSL

BdTPS1 Bradi2g19640 17272345..17280887 17 7172 2958 985 6.09 109.37 C,P,OM
BdTPS2 Bradi3g37200 39265879..39272239 3 3409 2463 820 6.04 91.24 C,IM
BdTPS3 Bradi3g53790 54157803..54162799 3 3375 2556 851 6.47 94.76 C,P,IM
BdTPS4 Bradi3g35820 37837473..37842899 3 2783 2589 862 6.06 97.71 C
BdTPS5 Bradi2g19710 17341436..17346150 3 3783 2709 902 5.36 100.85 C,OM
BdTPS6 Bradi2g49870 49645444..49650378 3 4238 2730 909 5.47 101.74 C,OM
BdTPS7 Bradi4g41580 45574020..45578868 3 3755 2634 877 5.82 98.58 C
BdTPS8 Bradi1g69420 68065706..68070557 3 3067 2604 867 5.99 97.75 C
BdTPS9 Bradi4g29730 35237459..35242687 3 2823 2610 869 5.99 97.75 C
BdTPPA Bradi3g32970 35087863..35092068 11 2203 1266 421 6.24 47.22 P,C
BdTPPB Bradi1g27470 22586832..22591975 10 1874 1056 351 6.16 39.19 C
BdTPPC Bradi3g50810 51669711..51673415 9 1900 1119 372 5.68 41.06 P,C
BdTPPD Bradi5g17890 21178294..21180648 10 1999 1077 358 8.52 39.93 P,C
BdTPPE Bradi3g35590 37622570..37625654 10 2300 1098 365 9.21 40.52 P
BdTPPF Bradi4g29030 34348411..34350663 6 1793 1158 385 8.98 41.79 P
BdTPPG Bradi3g58960 58022082..58025342 10 2243 1101 366 8.59 39.92 P
BdTPPH Bradi1g60950 60533219..60535884 6 2071 1080 359 6.22 39.08 C
BdTPPI Bradi1g45480 43862356..43865024 10 2266 1101 366 6.27 40.05 C
BdTPPJ Bradi1g21420 17249655..17253046 9 2835 1062 353 5.64 38.58 C

Note: CDS, protein length in bp; pI, isoelectric point; PSL, predicted subcellular localization; No. of AA, number of amino acids; C, cytoplasmic; P, periplasmic; OM, outer membrane,
IM, inner membrane.
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All of the basic information of the family members, including the locus, exon number, gene length,
protein length, predicted isoelectric point (pI), and molecular weight (MW), is listed in Table 1.
According to the results, BdTPSs/BdTPPs encode proteins with 820–985/351–421 amino acids (AA),
predicted isoelectric points (pI) of 5.36–6.09 and 5.64–9.21, and molecular weights (MW) of 91.24–109.37
and 38.58–47.22 kDa, respectively. By predicting their subcellular localization, we found that only four
TPSs (BdTPS4, 7, 8, 9) were specifically located in cytoplasm, while the other TPSs were located in
cytoplasm, inner membrane, periplasmic membrane, and/or outer membrane. In addition, three TPP
genes (BdTPPH, I, J) were located in the cytoplasm, four TPPs (BdTPPB, E, F, G) were located in the
periplasm, and three TPPs (BdTPPA, C, D) were located in both positions.

2.2. Gene Structure, Multiple Sequence Alignment, and Phylogenetic Analyses of BdTPSs/BdTPPs

To investigate homologous relationships, an evolutionary tree was constructed using the
BdTPS/BdTPP protein sequences with the MEGA 7.0 program [48]. According to the previous
classification principles used for rice and Arabidopsis TPS/TPP genes [8,49], BdTPSs/BdTPPs can be
divided into three subfamilies. Surprisingly, only the BdTPS1 gene belonged to Class I (Figure 1a),
which corresponded to the preceding results in rice, compared with four members (AtTPS1–4) in
Arabidopsis and two in Moringa oleifera [21,50,51]. The other BdTPSs (BdTPS2–9) belonged to Class II,
similar to AtTPS5–11. In addition, the Class III groups (BdTPPA–BdTPPJ) encoded a family of smaller
proteins lacking the N-terminal TPS-like domain and with a conserved TPP catalytic site motif
(Figure 1c).
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In contrast to the similar CDS length (2463–2958) of the nine TPS genes, there are large 
differences in genomic length (2783–7172). However, all TPP genes have similar number of exons (6–
10), gene lengths (1793–2835), and CDS lengths (1056–1266) (Table 1, Figure 2b). Moreover, the 
BdTPS1 protein sequences contain an N-terminal extension in comparison with other BdTPS proteins, 
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Figure 1. Phylogenetic relationships and gene structures, domains, and motifs of the BdTPS and BdTPP
family. (a) Phylogenetic analysis, Class I, II, and III genes are shown in red, blue, and green, respectively.
(b) Gene structure, introns, exons, and upstream/downstream regions are shown as straight lines and
yellow and blue bars, respectively. (c) The conserved trehalose-6-phosphate synthase (TPS) domain
(Glyco_transf_20), trehalose-6-phosphate phosphatase (TPP) domain (Trehalose_PPase), and haloacid
dehalogenase-like hydrolase domain containing 3 (Hydrolase 3) are shown by yellow, green, and red,
respectively. (d) Motif analysis, all motifs were identified by MEME tools, as shown in different bars.

In contrast to the similar CDS length (2463–2958) of the nine TPS genes, there are large differences in
genomic length (2783–7172). However, all TPP genes have similar number of exons (6–10), gene lengths
(1793–2835), and CDS lengths (1056–1266) (Table 1, Figure 2b). Moreover, the BdTPS1 protein sequences
contain an N-terminal extension in comparison with other BdTPS proteins, which has been proven an
autoinhibitory domain modulating TPS activity [51].
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Figure 2. Pairwise sequence identities for different regions of the B. distachyon TPS and TPP proteins.
(a) Pairwise sequence identities of the TPS and TPP domains in BdTPS. (b) Comparison of the TPS domain,
TPP domain, protein sequence, and sequence outside the domain in BdTPS. (c) Comparison of the TPP
domain, full-length protein sequence, and sequence outside the domain in BdTPP. (d) Comparison of
the TPP domains in BdTPS and BdTPP.

2.3. Protein Sequences and Motif Analysis in BdTPSs/TPPs

A homology analysis between Class I (BdTPS1) and eight other Class II TPS proteins (BdTPS2–9)
indicated that the nucleotide identity between them ranged from 28.07% to 38.16%, while the nucleotide
identity among the Class II proteins ranged from 40.12% to 81.87% (Figure 2a). Higher differences
were observed in regions of the protein sequences outside of the TPS and TPP domains. The average
identities of the peptide sequences of the TPS and TPP domains in BdTPS were about approximately
52%, while the sequence identity outside the domain was only 27% of the sequence identities (Figure 2b).
Furthermore, the full protein sequences of the TPP family members had 40.23%–77.39% pairwise
sequence identity (Figure 2c). Similarly, the outside domain in BdTPP showed a lower identity
of 28% (Figure 2c), suggesting that the outside domain had a more variable sequence than the
structural domain.

In addition, to examine the differences in the TPP domains of BdTPS and BdTPP, we also
calculated the protein pairwise sequence identities in these two families. The results revealed
approximately 52% amino acid identity on average among BdTPSs and BdTPPs, while higher rates
(65%) of pairwise sequence identities were observed in BdTPPs (Figure 2a,d). Extraordinarily, the TPP
domain region between BdTPS1 and BdTPPs had only 27% pairwise sequence identity (Figure 2a).
Furthermore, the protein sequences between the BdTPS and BdTPP groups had only 27% pairwise
sequence identity (Figure 2d).

Motif distribution analysis of all BdTPS/BdTPP proteins was performed by the MEME program.
A total of ten conserved motifs of BdTPS/BdTPP are shown in Figure 1d. We summarized the three
groups as follows. First, all BdTPS proteins of Class II contained nine motifs excluding motif 10.
BdTPS1 possessed only seven motifs, lacking motifs 5 and 7 compared with Class II members.
Moreover, there were two copies of motif 6 in BdTPS1. These findings support our previous results
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that BdTPS1 (Class I) has diverse sequences compared with other BdTPSs (Class II). Second, all of
the BdTPPs contained five motifs, namely, motifs 5–10, which showed the conserved structure in all
BdTPP proteins. Third, we found that the motifs 7 and motif 10 were specifically localized in the TPP
domains of BdTPS and BdTPP, respectively.

2.4. Chromosomal Locations and Evolution Analysis

To research the distribution of BdTPS and BdTPP genes in the genome, we showed their position
on each chromosome based on the B. distachyon genomic database (Figure 3; Table 2). Both the BdTPS
and BdTPP genes were dispersed on four chromosomes. However, we did not find BdTPS genes
on chromosome 5 or BdTPP genes on chromosome 2. In detail, chromosome 1 contained five genes
(BdTPS8 and BdTPPB, H, I, J), chromosome 2 contained three genes (BdTPS1, 5, 6), chromosome 3
contained seven genes (BdTPS2, 3, 4, and BdTPPA, C, E, G), chromosome 4 contained three genes
(BdTPS3, 9, and BdTPPF) and chromosome 5 contained only one gene (BdTPPD).
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Table 2. The duplicated BdTPS/BdTPP genes and Ka/Ks analysis.

Gene Pairs Identity (%) Ka Ks Ka/Ks MYA

BdTPS5–BDTPS6 81.10 0.1108 0.8821 0.1256 67.85
BdTPPC–BdTPPD 63.44 0.2185 1.0765 0.2030 82.80
BdTPPE–BdTPPF 74.16 0.1278 0.4258 0.3000 32.75
BdTPPG–BdTPPI 63.64 0.2354 0.5406 0.4354 41.58
BdTPPH–BdTPPJ 63.66 0.2619 0.8726 0.3001 67.12

Note: Identity, protein sequences similarity; Ka, non-synonymous; Ks, synonymous; MYA, million years ago.

Gene duplications on genomes could provide significant reference for gene evolution analysis.
In the following research, were analyzed these two families. According to the standard for inferring
a gene duplication event (>70% protein sequence identity and >75% sequence length identity) [52]
and the results of phylogenetic analysis (Figure 1a), we predicted five clustered duplicated gene pairs
(BdTPS5–6, BdTPPC–D, BdTPPE–F, BdTPPG–I, and BdTPPH–J) in the B. distachyon genome. We did
not find any evidence of a tandem duplication phenomenon between these gene pairs according
to the generalized principle that two genes should be separated by less than five genes in a 100 kb
region [53]. According to the chromosome locations, two gene pairs (BdTPS5–6, BdTPPH–J) and three
gene pairs (BdTPPC–D, BdTPPE–F, BdTPPG–I) may be generated by intrachromosomal duplication
and interchromosomal duplication, respectively.
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To understand the selective pressure acting on the trehalose biosynthesis enzyme homologue
gene family, the Ka/Ks (non-synonymous/synonymous) values of these five duplicate gene pairs were
calculated as shown in Table 2. The results indicated that the Ka/Ks values of the five pairs of duplicated
genes were less than 1, indicating that they have evolved by purifying selection (Ka/Ks = 1, neutral
selection, Ka/Ks < 1, purifying selection, and Ka/Ks > 1, positive selection [54]), which was similar to the
results obtained in other plants [27,44,45].

Next, we calculated the divergence time for five pairs of duplicated genes. The results are listed
in Table 2, which shows that two pairs of genes, BdTPPE/F and BdTPPG/I, were estimated to diverge at
approximately 32.75 and 41.58 million year ago (MYA) and may represent two recently duplicated
gene pairs. In contrast, the divergence times of one pair of genes (BdTPPC/D) surpassed the divergence
time of grass species (approximately 56–73 MYA) [43]. In addition, two pairs of genes, BdTPS5/6 and
BdTPPH/J, existed at the time of the divergence time of grass species, prompting the concomitant
formation of those two pairs of genes by whole-genome duplication.

2.5. Transcription Factor Regulatory Network and Stress-Related Cis-Elements in the Promoter Regions and
Gene Interaction Expression Network Prediction of BdTPSs/BdTPPs

Many previous researches have demonstrated that the TPS/TPP genes confer biotic and abiotic stress
tolerance on different plants in addition to developmental alterations. For example, the overexpression
of AtTPS1 significantly improved the drought resistance of Arabidopsis [55]. The overexpression of
OsTPS1 increased rice tolerance to abiotic stress [56]. OsMAPK3 was found to phosphorylate OsICE1,
inhibit its ubiquitination to activate the expression of the OsTPP1 gene, and improve the chilling
tolerance of rice [14]. In this study, we first predicted the stress-related cis-elements and co-expression
network using different online tools.

First, we identified cis-elements of all BdTPSs/BdTPPs using an online tool, PlantCARE. Eight abiotic
stress-response elements, abscisic acid (ABA)-responsive elements (ABREs), dehydration-responsive
elements (DREs), low-temperature-responsive elements (LTREs), stress-response elements (TC-rich
repeats LTRs, TGACG motifs), regulatory elements essential for anaerobic induction (AREs), and W-box
were identified and are displayed in Figure 4. From the results, we found that almost all of the genes
possessed more than two stress-related cis-elements. Remarkably, most of these family members
possessed multiple ABREs, excluding BdTPS1 and jasmonic acid methyl ester (MeJA), which respond
to ABA, drought or salt signals, and drought, respectively [57–60]. Furthermore, many other elements
were distributed among different family members, such as MBS elements involving drought stress
(TPS2 and TPPB, C, E, F, I, J) [61]; DREs concerning dehydration, low-temperature and salt stresses
(TPPB, C, E, F, J); TC-rich elements (TPPG and J); LTREs, involved in low-temperature responses
(TPS1, 2, 4 and TPPA, B, C, F, H, J); AREs essential for anaerobic induction (TPS4, 6, 7, 8 and TPPA, B,
D, E, F, G, H, I); and W-boxes, binding sites for WRKY transcription factors in stress responses (TPS2, 3,
4, 5, 9 and TPPA, B, G, H, I, J). Regrettably, we did not find the HSE element that was involved in
the heat-resistance response. In addition to these stress-response elements, plentiful light-response
elements were identified, such as the ACE, AE-box, G-box, I-box, and TCT motifs.
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sequences (−1500 bp) of 19 genes were analyzed using the PlantCARE database. The different colors
and shapes of markers represent various cis-elements.

Furthermore, to identify the potential transcriptional regulatory network of the BdTPS and BdTPP
genes, sequences 600 bp upstream of the genes were analyzed. The results indicated hundreds of the
transcription factors involved in the regulation of 19 family members, mainly including MYB, ERF,
and bZIP and many other families (Figure 5). Among these family members, many of the transcription
factors were related to the response to abiotic stress or phytohormones (Table S2), corresponding to the
result of the cis-element analysis.

In addition, to obtain information regarding the co-expression relationships between BdTPS/BdTPP
and other genes, we constructed a co-expression network using the STRING and PlaNet co-expression
databases [62]. First, we used the online program STRING to predict the co-expression networks in
19 family members. The results showed strong ties between these two family members (Figure 6).
Second, we also predicted the gene interaction connection on (take BdTPS1 for example) single genes
based on PlaNet, which showed several directly and indirectly interacting genes (Figure 7). The GO
annotations of directly interacting genes involved in diverse biological functions and are presented in
Table S3. Most BdTPS/BdTPP proteins interact with many of these other family members. In particular,
some genes may work in response to chilling or other stresses (Table S3). However, there were no
co-expression network data on any of the proteins, including BdTPS3, 8, and BdTPPA, J.
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Figure 6. The interaction network between members of the family. Protein interaction network
prediction showed that most BdTPS and BdTPP proteins interact with more than one other
family member. Line colors represent the various types of evidence used to predict the protein
interaction network.
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The straight lines of different colors show how strongly two genes are co-expressed, with green, yellow,
and red edges indicating strong, medium, and weak co-expression, respectively.

2.6. Expression Patterns of BdTPSs–BdTPPs in Different Tissues and Stress Conditions

In this study, quantitative real-time reverse transcription (qRT)-PCR was used to examine the
expression patterns of the genes BdTPSs-BdTPPs in different tissues, including roots, stems, leaves,
and spikes (Figure 8 and Figure S1). All of the BdTPS and BdTPP genes were expressed in all tissues,
although majority of the BdTPP genes were expressed at lower levels. In addition, BdTPS3, BdTPPH,
and BdTPPI were expressed in four tissues at very high levels. Some genes, such as BdTPS2, BdTPS9,
BdTPPC, and BdTPPG, were strongly expressed in roots; BdTPS2 was strongly expressed in stems.
Some genes, such as BdTPS5 and BdTPPE in the spikes, BdTPPB and BdTPPF in the stems and spikes,
and BdTPPD and BdTPPJ in the leaves and spikes, were expressed at very low levels.
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To further investigate the functions of the BdTPSs and BdTPPs in response to abiotic stresses,
we determined the expression patterns of family members under three different stress conditions:
4 ◦C, drought and salinity stress (Figure 9, and Figure S2–S5). As shown in Figures 9 and 10, many
of the BdTPS genes and some of the BdTPP genes may be related to various abiotic stress tolerances.
Under cold treatment, four genes (BdTPS5, 9 and BdTPPC, E) were upregulated, one gene (BdTPS3)
was stabilized, and the other genes were downregulated. After exposure to 200 mM NaCl, eight genes
(BdTPS3, 4, 5, 6, 7, 9, and BdTPPA, C) were upregulated, and the other genes were downregulated.
After drought stress, seven genes (BdTPS3, 5, 6, 7, 8, 9, and BdTPPC, E) were upregulated at different
times. Strikingly, the expression levels of specific genes such as BdTPS5, BdTPS6, BdTPS9, and BdTPPC
increased under cold, salinity, and dehydration stress, which was similar to the behavior of rice OsTPS1.
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Figure 10. Relative expression level of some BdTPS/BdTPP genes under salt and cold stress conditions
at 1, 3, and 6 h after exposure to the abiotic stress. Different lowercase letters (a, b, c) above the bars
indicate significantly different values (p < 0.05, t-test).
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ABA, a crucial phytohormone induced by biotic or abiotic stress, plays important roles in plant
tolerance to abiotic stresses [63]. In this paper, we also examined the gene expression patterns after
treatment with 100 µM ABA solution. The results showed that only BdTPPE had a higher expression
level at all three time points; some genes, such as BdTPS5, 6, 7, 9, and BdTPPA, F, were upregulated
after 6 h of exposure, while most other genes were downregulated at all three times points.

3. Discussion

As many species were sequenced, an increasing number of TPS and TPP family members have
been identified. The TPS family has been reported in several higher plants, such as A. thaliana, O.
sativa, Nelumbo nucifera, Solanum tuberosum, M. oleifera, Gossypium, and Triticum aestivum [8,26,44–47,64].
However, few studies have systematically reported the TPP family, even though this family, similar to
the TPS family, is ubiquitous throughout the plant kingdom. Accumulating evidence has revealed that
some TPS/TPP family members are related to responses to abiotic stresses and potentially function
in improving stress tolerance and increasing crop yields [14,41]. As B. distachyon is a model plant of
Gramineae, it is very important to understand the function and evolution of its TPS and TPP families.

In this research, we identified nine BdTPS and 10 BdTPP genes in B. distachyon. All of the BdTPS
genes contained Glyco_transf_20 (TPS) and Trehalose_PPase (TPP) domains, and all of the BdTPP
members included only Trehalose_PPase domains. The trehalose biosynthesis enzyme homologue gene
families have been classified as three groups according to their protein sequences and phylogenetic
relationships. Unlike the four Class I genes distributed among the A. thaliana genome, only one Class I
member has been identified in B. distachyon with an N-terminal extension, which has been demonstrated
to be an inhibitory domain regulating TPS activity [21,50]. This phenomenon was also consistent
with previous studies on A. thaliana (AtTPS1), O. sativa (OsTPS1), Selaginella lepidophylla (SlTPS1), and
M. oleifera (MoTPS1) [8,41,45] and may affect the content of trehalose by regulating the TPS1 gene in
plants. We do not have enough evidence to explain why there was only one member of Class I TPS
in Brachypodium and rice. We hypothesized that the Class I BdTPSs experienced slower duplication
speeds than the Class II BdTPSs over the course of genome evolution. Some traits differed between
the two TPS groups, such as gene structure, gene length, amino acid identity, and motif structure.
Alignment analysis showed that the Class I group gene, BdTPS1, included 17 exons, in contrast to three
exons in other BdTPS genes (Table 1, Figure 1b). Previous theories suggested that the rate of intron gain
was slower than the rate of intron loss after duplication [44,65]. Therefore, we speculated that BdTPS1
might be the ancestor of other BdTPS genes. By motif analysis, we found that the motif 4–9 region was
conserved in Class II BdTPSs instead of in BdTPS1 proteins, suggesting that these differences between
the two classes may be involved in various functions. In contrast, BdTPPs have similar characteristics,
suggesting they might have similar gene functions.

The sequence alignments indicated that both domains were conserved among BdTPS genes,
suggesting that they were mainly formed before the differentiation of these genes. This finding
agreed with preceding observations in other plants [27,45]. However, we also noticed that the TPP
domains have higher sequence differences between BdTPSs and BdTPPs (Figure 2d). Additionally,
by comparison of the motif sequences of the TPP domains in these two families, we found that motif 7
was specific to BdTPS whereas motif 10 was specific to BdTPP. In Arabidopsis, AtTPSs contain a TPP-like
domain with no TPP catalytic function, while all of the AtTPPs contain a conserved TPP catalytic site
domain [49]. It seems that the TPP domain was either functionally differentiated between the two
families or catalytically inactivated in the TPS family. Interestingly, the outside domains of the protein
sequences for both BdTPS and BdTPP also showed lower identity than the TPP and/or TPS domains
suggesting that these outside domain regions may contribute to the functional differentiation.

Further analysis showed that four pairs of BdTPP genes were formed by duplication events,
suggesting that gene duplication might play a vital role in the expansion of the BdTPP genes. Similarly,
four pairs of AtTPP genes expanded exclusively upon genome duplication in Arabidopsis, except for
AtTPPA and AtTPPD [24], implying similar expansion patterns of TPP in both monocot and dicot
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plants. In contrast, only one pair of BdTPS genes was relevant to duplication events, implying that
most of the TPS genes were formed a very long time ago by duplication events. According to the
results of the estimated divergence time analysis, we speculated that two pairs of genes (BdTPPE/F and
BdTPPG/I) might represent two newly duplicated gene pairs after a whole-genome duplication event;
two pairs of genes (BdTPPH/J and BdTPS5/6) might have duplicated together with the whole-genome
duplication event; and one pair of genes (BdTPPC/D) might have existed before Brachypodium diverged
from other grass species. This small-scale gene duplication phenomenon in BdTPP was different from
whole-genome duplications in AtTPPs. The evolutionary driving force acting on the BdTPS and BdTPP
genes was purifying selection, which was similar to what has been observed in other plants [27,44,45].

Many previous studies have found that TPS/TPP genes provide abiotic stress tolerance in
different plant species, along with developmental alterations. For example, overexpressed AtTPS1 has
significantly improved the drought resistance of Arabidopsis [55]. Overexpressed OsTPS1 could increase
rice tolerance to abiotic stress [56]. The activation of OsTPP1 expression can improve chilling tolerance
in rice [14]. In this study, we first predicted stress-related cis-elements and co-expression networks using
different online tools. All of the results provided a similar conclusion: Namely, the BdTPS/BdTPP gene
might be involved in regulating stress tolerance together with other genes. In brief, the co-expression
network prediction of BdTPS/BdTPP genes may provide a basic reference for better understanding the
signal path in B. distachyon.

ABA, a crucial phytohormone induced by biotic or abiotic stress, plays important roles in plant
tolerance to stresses [63]. Our results showed that only BdTPPE was heavily induced after exposure to
ABA, strongly supporting that BdTPPE may be related to the ABA signaling pathway. Other genes
(BdTPS5, 6, 7, and BdTPPA, F) may also be related to the ABA signaling pathway because these genes
were upregulated with increasing treatment time and reached their highest expression levels in 6 h.

Furthermore, we examined the expression patterns of BdTPS and BdTPP genes under cold,
salinity, and dehydration stress. As shown in Figures 9 and 10, many of the BdTPS genes and some
BdTPP genes might connect with various aspects of abiotic stress tolerance. Furthermore, most
of these genes might be involved in two different stress tolerances. For instance, BdTPS7 might
be involved in salt and drought resistance, while BdTPPE might participate in cold and drought
tolerance. Extraordinary, the expression levels of some specific genes, such as BdTPS5, BdTPS6, BdTPS9,
and BdTPPC, increased under chilling, salinity, and dehydration stress, similar to what has been shown
in rice OsTPS1 [56]. We speculated that these overexpressed genes might improve stress tolerance
for B. distachyon. In addition, we noticed that some family members related to salinity or drought
resistance, such as BdTPS5, 6, 7, 9, and BdTPPA, E, also responded to ABA, and ABA-responsive
elements (ABRE) have also been found on the promoter regions of these genes (Figure 4), suggesting
that these family members might be connected with response to dehydration or salinity by participating
in ABA signaling pathways. In contrast, we found that BdTPS2 and five TPP genes (BdTPPB, G, H, I, J)
might not be related to these three different abiotic stresses because the expression levels of these genes
were downregulated.

4. Conclusions

In this study, we identified nine BdTPS and ten BdTPP genes on the B. distachyon genome
and analyzed their evolution by evaluating exon/intron structures, protein motifs, phylogenetic
relationships, and Ka/Ks values. These family members were classified as three classes based on an
evolutionary tree. Gene structure analysis showed that BdTPS1, which is the only Class I gene, might
be the ancestral gene. All of the TPS and TPP genes have evolved mainly by purifying selection.
In addition, only one pair of BdTPS genes and four pairs of BdTPP genes expanded in B. distachyon
by chromosomal duplication. The tissue specificity profiles of the BdTPS and BdTPP genes in four
different tissues suggested that most of these genes were expressed in all tissues at various levels.
The expression patterns under various stress conditions showed that most of the TPS genes and
approximately half of the TPP genes may be involved in stress resistance. In particular, BdTPS5,
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BdTPS6, BdTPS9, and BdTPPC might be broad-spectrum abiotic stress resistance genes under abiotic
stress conditions. This study provides a foundation for future study on the biological function of
BdTPSs and BdTPPs.

5. Materials and Methods

5.1. Gene Identification

BdTPS and BdTPP gene identification was based on the hidden Markov model (HMM) with an
E-value < 1e−10 [66]. The TPS domain (glycosyltransferase family 20 (Glyco_transf_20); PF00982)
and TPP domain (trehalose-phosphatase (Trehalose_PPase); PF02358) were obtained from the Pfam
database (http://pfam.xfam.org/). In addition, the protein sequences of the Arabidopsis and rice TPS/TPP
were used as queries for BLASTN searches in the Phytozome database (https://phytozome.jgi.doe.gov/

pz/portal.html#). Finally, all candidate genes were examined for the TPS and TPP domains (TPPs only)
in the Pfam and SMART databases (http://smart.embl-heidelberg.de/). Both genome data and TPS/TPP
protein sequences were obtained from the Phytozome database.

5.2. Gene Structure, Protein Properties, and Conserved Motif Analysis

Motifs in the BdTPS and BdTPP protein sequences were predicted using the online program MEME
(http://meme-suite.org) with the following parameters: The maximum number of motifs was set to 10,
any number of repetitions was chosen for the site distribution, and the optimum motif width was set to
≥6 and ≤50. Subcellular localizations were predicted with ‘CELLO v.2.5′ (http://cello.life.nctu.edu.tw/).
The Compute pI/MW tool (https://web.expasy.org/compute_pi/) was used to predict the isoelectric
point (pI) and molecular weight (MW).

5.3. Prediction of Cis-Elements, Transcription Factor Regulatory Network, and Gene Interaction Network

The cis-elements were identified by downloading the 1500 bp upstream sequences [67] of the
BdTPS/BdTPP genes from the Phytozome database and then submitting the sequences to PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to identify seven stress-related regulatory
elements: ABA-responsive elements (ABREs) [68]; dehydration-responsive elements (DREs) [69];
low-temperature-responsive elements (LTREs) [69]; regulatory elements essential for anaerobic
induction (AREs) [70]; TC-rich repeats, involved in defense and stress response [71]; MYB-binding
sites, involved in drought inducibility (MBS) [71]; jasmonic acid methyl ester (MeJA) responsiveness
(CGTCA motif and TGACG motif) to drought stress [72]; and W-boxes, the binding site of WRKY
transcription factors in defense responses [68]. The co-expression network was constructed by the
online tool STRING (http://string-db.org); the single gene expression network was predicted using the
PlaNet (http://www.gene2function.de/) [62,73]. The transcription factors were then predicted using the
PTRM database (http://plantregmap.cbi.pku.edu.cn/regulation_prediction.php) with 600 bp sequences
upstream from the start codon of the TPS/TPP genes [73].

5.4. Sequence Alignment and Phylogenetic and Evolution Analyses

For the phylogenetic analyses, full-length BdTPS and BdTPP protein sequences from B. distachyon
were aligned using ClustalX2.11 [45], and the alignment result was used to construct the phylogenetic
tree with MEGA 7 using neighbor joining methods [48]. The exon/intron structures of BdTPSs and
BdTPPs were analyzed with Gene Structure Display Server 2.0 (http://gsds.cbi.pku.edu.cn/).

The chromosomal distribution was analyzed with the TBtools software package (http://www.
tbtools.com/) [74]. The values of synonymous substitution (Ks) and non-synonymous substitution (Ka)
were calculated using the web server with the Nei–Gojobori method (https://github.com/tanghaibao/

biopipeline/tree/master/synonymous_calculation). The divergence time (T) was computed according
to the formula T = Ks/2λ based on the Ks rate of λ (λ = 6.5 × 10−9 for B. distachyon) substitutions per site
per year [75,76].
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5.5. Plant Growth, Stress Treatment, and qRT-PCR Analysis

The diploid inbred line Bd21 was used for the gene expression level-related experiments.
First, seeds were sterilized and germinated in water-soaked filter paper for three days in darkness at
25 ◦C [77]. Second, seedlings were removed to a cultivating basin with Hoagland solution (5 mM Ca
(NO3)2, 5 mM KNO3, 2 mM MgSO4, 1 mM KH2PO4, 0.4 µM CuSO4, 50 µM FeNa2(EDTA)2, 50 µM
H3BO3, 10 µM MnC12, 0.02 µM, (NH4)6MoO24, and 0.8 µM ZnSO4) in the greenhouse under a 16/8 h
(light/dark) photoperiod at 22 ◦C [77]. Three different plant tissues (roots, stems, and leaves) were
collected after three weeks; spikes were collected from two-month-old Bd21. During the experimental
period, the three-week-old seedlings were exposed to low temperature (4.0 ◦C), salt (200 mM NaCl),
simulated drought (20% (w/v) PEG 6000, Coolaber, Beijing, China), and ABA solution (100 µM ABA,
Solarbio, Beijing, China). Whole plants were collected, 1, 3, and 6 h after exposure to the abiotic stress
in three biological replicates. All samples were immediately frozen in liquid nitrogen and stored at
−80 ◦C until further processing for RNA extraction. Total RNA was extracted using a HiPure Plant
RNA Mini Kit (Magen, Guangzhou, China) and cDNA synthesis was performed using StarScript
II (GeneStar, Beijing, China). Specific primer pairs and reference genes (SamDC) were designed by
qPrimerDB and the ICG database, respectively [78,79] and are listed in Table S1. Transcript levels
were quantified using a CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, USA) under
the following conditions: 95 ◦C for 2 min and 40 cycles of 95 ◦C for 15 s and 60 ◦C for 20 s [80].
Four reactions and three independent biological replicates were performed. The relative quantitative
analysis of the genes was based on the 2−∆∆CT method [81]. The expression value of the BdTPS 1 gene
in the root is defined as 1. The heat map of 29 genes was constructed using TBtools software. Statistical
analyses were performed using a t-test, and p < 0.05 was considered a significant difference.
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under salt stresses. Figure S4: Expression profiles of BdTPS and BdTPP genes under drought stresses. Figure S5:
Expression profiles of BdTPS and BdTPP genes under ABA treatment.
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