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Purpose: Inappropriate use of broad-spectrum antibiotics contributes to the emergence of 
multidrug-resistant (MDR) bacteria. Finding novel antimicrobial agents and strategies based 
on synergistic combinations are essential to combat MDR infections. This study was 
designed to determine in vitro synergy of different antimicrobials against extensively drug- 
resistant (XDR) Gram-negative clinical isolates.
Methods: A descriptive, cross-sectional study was conducted at Human Organ Transplant 
Center, Nepal, for five months. Clinical isolates were checked for their drug-resistance 
properties including extended-spectrum beta-lactamase- (ESBL-) and metallo-beta- 
lactamase- (MBL-) production. The XDR isolates were further tested for antimicrobial 
synergy, and the results were interpreted as synergistic, additive, indifferent or antagonistic 
determining fractional inhibitory concentration of the antibiotics.
Results: Out of total 1155 clinical samples, 308 showed significant growth. Escherichia coli 
was the most common isolate (n=142) followed by Klebsiella pneumoniae, Acinetobacter 
calcoaceticus baumannii (Acb) complex, Pseudomonas aeruginosa and miscellaneous bac-
teria. Out of the culture positive isolates, 21.4% were MDR and 10.06% were XDR. The 
XDR population comprised K. pneumoniae (18.42%), E. coli (9.86%), Acb complex (7.41%) 
and P. aeruginosa (4.17%). Among the culture positive isolates, 4.5% and 5.8% were ESBL- 
and MBL-producers, respectively. Colistin, polymyxin B, and tigecycline were the antibio-
tics effective in majority of MDR isolates as compared to carbapenems. The combination of 
antibiotics – meropenem and colistin showed the highest proportion of “synergy” among all 
XDR E. coli whereas the combination of amikacin and colistin showed synergistic effect in 
XDR K. pneumoniae.
Conclusion: A significant proportion of isolates were MDR among which a large fraction 
was XDR. The combination of meropenem, amikacin and colistin with one another in pair 
showed beneficial activity in vitro. Such combinations can be utilized as effective therapy for 
XDR infections. Further studies are required to confirm these findings, and accordingly 
treatment protocols should be developed in the management of such infections.
Keywords: antimicrobial synergy, ESBL, MBL, MDR, XDR

Introduction
Antimicrobials are among the most important groups of drugs since the history of 
medicine.1 However, the abundant and inappropriate use of antibiotics have led to 
the emergence of antimicrobial resistance (AMR) that has progressively been 
threatening our ability to treat infections.2,3 Resistance even to the most powerful 
classes of antibiotic is emerging among various bacteria, rendering the therapies 
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more precarious, costlier, or even unsuccessful and hence 
AMR has become one of the principal public health pro-
blems of the 21st century.2–4

A variety of bacterial enzymes responsible for mediat-
ing drug resistance in Gram-negative bacteria has been 
identified including extended-spectrum β-lactamases 
(ESBLs), AmpC β-lactamases, carbapenemases like 
Klebsiella pneumoniae carbapenemase (KPC), Metallo-β- 
lactamases (MBLs), and OXA-48-like-carbapenemase in 
various parts of the world.5–9 Various strategies have been 
adopted since the advent of AMR among these bacteria. 
Apart from promoting precautionary measures and strictly 
adhering to the established infection control practices, 
finding novel antimicrobial agents might be the ultimate 
strategy to combat these resistant bugs but it takes a huge 
amount of resources and time to develop one. Hence, 
optimizing our use of current antimicrobials and strategies 
based on synergistic combinations have become essential 
to battle these resistant bacteria.10,11

When two or more antibiotics are combined and used 
simultaneously to treat an infection, three responses are 
possible. First, the “Antagonistic effect”, where the 
potency of the combination is less than the combined 
potencies of each antibiotic or even less than the more 
active single agent; second, the “Additive effect”, where 
the potency of an antibiotic combination is roughly equal 
to the combined potencies of each antibiotic singly; and 
third, the “Synergistic effect”, where the applied antibio-
tics work together to produce an effect more potent than 
the combined potencies of each antibiotic applied 
singly.12,13 Combination therapies are commonly 
employed, considering their possibility of synergistic 
effect despite little laboratory guidance as to the efficacy 
of this approach.14 Combination therapy could be a better 
option than high-dose monotherapy as well, for the reason 
that it also decreases the dose toxicity to the patient.15

In recent years, several antibiotic synergy modules 
have also been tested in vitro and are being used in vivo 
as well to manage infections caused by various multidrug- 
resistant (MDR) and extensively drug-resistant (XDR) 
bacteria.16–18 The World Health Organization (WHO) has 
presented the list of MDR bacteria under three categories 
according to the urgency of the need for new antibiotics: 
critical, high, and medium priority.19 To our knowledge, 
there are no published studies on antibiotic synergy con-
ducted in Nepal. Therefore, this study was conducted to 
determine in vitro synergy of different antimicrobials 

against XDR Gram-negative clinical isolates that fall 
under the critical group at a tertiary care hospital in Nepal.

Different laboratory methods are used to assess the 
activity of antimicrobial combinations. It includes check-
erboard titration method, broth method, agar dilution 
method, diffusion method, saline dilution method, time- 
kill assay, epsilometer (e-strip) test also known as gradient 
diffusion, etc. In this study, we used the double-disk 
synergy test and the E-test MIC:MIC method for different 
antibiotic combinations to determine the different com-
bined effects of antibiotics. As colistin (CL) is one of the 
last-line agents that has been used for MDR and XDR 
cases, and various microorganisms are now found to be 
resistant even to CL, other commonly used antimicrobials, 
viz., ciprofloxacin (CIP), amikacin (AK) and meropenem 
(MEM) were used along with CL to see the potential 
synergy between such combinations. These combinations 
are based on standard guideline20 which is modified based 
on the availability of the strips for this study.

Materials and Methods
A descriptive, cross-sectional study was conducted from 
August to December 2018 at the Department of 
Laboratory, Human Organ Transplant Center (HOTC), 
Bhaktapur. Different clinical specimens (urine, sputum, 
and blood) from the inpatients were collected aseptically 
and processed for culture and sensitivity following standard 
procedure.21 The isolates showing significant growth were 
tested for antimicrobial susceptibility by Kirby–Bauer disk 
diffusion method on Mueller-Hinton agar (MHA) 
(HiMedia, India) and interpreted following Clinical and 
Laboratory Standards Institute (CLSI) 2016 guideline.22 

The following antibiotic discs (HiMedia, India) were used: 
amoxicillin (30µg), chloramphenicol (30µg), ceftriaxone 
(30µg), ceftazidime (30µg), gentamicin (10µg), amikacin 
(30µg), ciprofloxacin (5µg), nitrofurantoin (100µg), tigecy-
cline (15µg), cotrimoxazole (25µg), piperacillin-tazobactam 
(100/10µg), meropenem (10µg), and imipenem (10µg). The 
isolates resistant to at least one antibiotic in three or more 
antimicrobial classes were categorized as MDR, and if they 
were resistant to at least one agent in all but equal or less 
than two classes, they were identified as XDR.23 Clinical 
isolates susceptible to first-line antibiotics were excluded 
for further study while XDR Gram-negative clinical isolates 
from indoor patients of the hospital were subjected for 
synergy testing. Ethical approval was obtained from Nepal 
Health Research Council (Ref No. 270, August 2018) to 
conduct this study. Organ transplantation at the center is 
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done in accordance with the Organ Transplant Act 2055, 
Transplant legislation 2073 of Nepal. The clinical speci-
mens processed in this study were as part of the routine 
hospital laboratory procedures.

Synergy Test
Disk Synergy Method
XDR clinical isolates of E. coli, Klebsiella spp., 
Acinetobacter calcoaceticus baumannii complex and 
Pseudomonas aeruginosa were subjected for disk synergy 
test by disk diffusion method on MHA using antibiotic 
disks of amikacin (30 µg), ciprofloxacin (5 µg), merope-
nem (10 µg) and imipenem (10 µg). Combinations of all 
possible pairs (to which the microorganism was resistant) 
were tested by placing antibiotic disks at a distance of 
20 mm from each other (center to center). After 16–20 
hours of incubation at 35°C to 37°C, if synergy was pre-
sent among two antibiotics, an inhibition zone was formed 
between the disks. The criteria for the different results of 
the combinations were as follows:

Indifferent combinations: Two independent circles 
around the disks tested within 20 mm from each other.

Synergy: Enhancement or bridging at or near the junc-
tion of the two zones of inhibition.

Antagonism: Truncation near the junction of the two 
zones of inhibition.

Antibiotic discs of amikacin, ciprofloxacin, colistin 
were purchased from HiMedia, India, and Meropenem 
and Imipenem discs from BD, USA.

E-Test MIC:MIC Ratio Method
The concentration range for ciprofloxacin and meropenem 
was 0.002 to 32 µg/mL, and for colistin sulphate and 
amikacin, 0.016–256 µg/mL. First of all, MICs were deter-
mined for meropenem, amikacin, colistin sulphate and 
ciprofloxacin against the XDR bacteria by E-test according 
to the manufacturer’s recommendations.

For synergy testing, the bacterial suspension was 
matched to 0.5 McFarland standard, and with a cotton 
swab, a lawn culture of bacteria was done on MHA. 
Meropenem and amikacin, meropenem and ciprofloxacin, 
amikacin and colistin, amikacin and ciprofloxacin, and 
meropenem and colistin combinations were used for 
further studies. E-test strips were placed on different sec-
tions of the different MHA plates. The agar was marked 
with an inoculating loop adjacent to the previously deter-
mined MIC value on each strip. For isolates where the 
MIC exceeded the concentration on the E-test strip, the 

highest concentration was marked on the agar. The strips 
were removed and discarded after 1 h incubation at room 
temperature. A new antibiotic “B” strip was placed on the 
area of the previously removed antibiotic “A” strip so that 
the antibiotic “B” MIC corresponded with the mark of the 
antibiotic “A” MIC. The antibiotic “A” E-test strip was 
applied in a reciprocating fashion to the area of the pre-
vious antibiotic “B” strip so that the respective MIC values 
were aligned. Results for both antimicrobials were read 
after 16–20 h incubation in ambient air at 35°C. The 
combination MIC was interpreted as the value at which 
the inhibition zone intersected the scale on each respective 
E-test strip. E strip results were rounded up to the nearest 
twofold dilution values for purposes of comparison with 
broth microdilution MIC results. E-strips of ciprofloxacin, 
colistin, meropenem were of HiMedia, India, and E-strip 
of amikacin was from BD, USA.

Finally, synergy, antagonism, indifference, and additiv-
ity were determined for each antibiotic in each combina-
tion by calculating Fractional Inhibitory Concentration 
(FIC) as follows:

FIC of antimicrobial “A”= MIC of agent “A” in com-
bination/MIC of agent “A” alone

FIC of antimicrobial “B”= MIC of agent “B” in com-
bination/MIC of agent “B” alone

The total (summation) fractional inhibitory concentra-
tion (ƩFIC) or FIC Index for each isolate was calculated 
according to the following formula:

ƩFIC = FIC of antimicrobial ‘A’ + FIC of antimicro-
bial ‘B’

The results were interpreted as follows: Synergy, if 
ƩFIC ≤ 0.5; Indifference, if 1 < ƩFIC ≤ 4; Antagonism, 
if ƩFIC > 4; and Additive, if 0.5 <ƩFIC ≤ 1.

Phenotypic detection of ESBL and MBL in Gram- 
negative clinical isolates was also done by double disk 
method and E-strip method respectively. MIC and FIC 
were then determined by E-strip MIC:MIC method. 
Escherichia coli ATCC 25922 and Pseudomonas aerugi-
nosa ATCC 27853 were used as quality control strains for 
antibiotic sensitivity testing.

One XDR isolate of P. aeruginosa was not subjected 
for synergy testing.

Test for ESBL
All the strains which showed a diameter of less than 27mm 
for cefotaxime and less than 25mm for ceftriaxone, were 
selected for checking the ESBL production. The ESBL 
production was tested by the combination disk method by 
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using ceftazidime (30 µg) and ceftazidime-clavulanate (20/ 
10 µg) discs.9 The organisms positive for ESBL showed an 
increase of ≥5 mm zone of inhibition with clavulanic acid as 
compared to the zone size for ceftazidime alone.22

Test for MBL
To screen for the presence of MBLs, E-test strips (AB 
Biodisk, Sweden) were used according to the manufac-
turer’s instructions. E-test MBL strips contain increasing 
concentrations of imipenem (IP) on one end and imipenem 
overlaid with EDTA (IPI) on the other. A reduction in the 
imipenem MIC in the presence of EDTA of greater than or 
equal to eight-fold (IP/IPI ≥ 8) was interpreted as MBL- 
positive.24

Data were recorded in the proforma sheet (all sample 
isolates were encoded) and statistical analyses were done 
by using MS Excel.

Results
Out of total of 1155 clinical samples processed for culture, 
308 samples yielded microbial growth. Amongst those 308 
culture-positive samples, 142 (46.10%) were E. coli which 
was the commonest bacteria, 76 (24.68%) were 
K. pneumoniae, 27 (8.77%) were Acinetobacter, 24 
(7.79%) were P. aeruginosa and the remaining 39 
(12.66%) were other miscellaneous bacteria. Multidrug- 
resistance was observed in 21.43% (n=66) of the total 
isolates. Similarly, 31 isolates were XDR which accounted 
for 10.06% (31/308) of the total isolates, and 46.97% (31/ 
66) of the MDR isolates. No pandrug-resistant (PDR) 
isolate was detected. The number and percentage of 
“MDR”, “XDR only”, and “non-MDR” isolates among 
various organisms are shown in the table (Table 1).

Amongst the 66 MDR clinical isolates of various bacteria, 
E. coli accounted for the largest fraction which was 51.52% 
(34 out of 66), followed by K. pneumoniae which was 36.36% 

(24 out of 66), Acinetobacter 9.09% (6 out of 66) and 
Pseudomonas 3.03% (2 out of 66). Similarly, out of 31 XDR 
isolates, 45.16% were detected each from E. coli and 
K. pneumoniae (14 each out of 31), followed by 
Acinetobacter which comprised 6.45% (2 out of 31) and 
P. aeruginosa which comprised 3.22% (1 out of 31) of the 
XDR isolates.

The number and percentage of ESBL and MBL among all 
culture-positive isolates are also shown in the table (Table 1).

Antibiotic resistance pattern of MDR clinical isolates 
of E. coli, Klebsiella, Pseudomonas, and Acinetobacter is 
presented in the table (Table 2).

Further, antibiotic synergy was tested in 30 XDR clinical 
isolates using various antibiotic combinations among which 
14 XDR isolates each of E. coli and K. pneumoniae and 2 
isolates of Acb complex were used. The result of antibiotic 
synergy testing using various antibiotic combinations in these 
XDR isolates is shown in Table 3, and that in individual XDR 
isolates are shown in the subsequent tables (Tables 4, Table 5, 
Table 6).

Discussion
The global rise in antimicrobial resistance has triggered 
the adoption of different strategies to combat such situa-
tion, one of them being the use of combination therapy 
wherein one antimicrobial can synergize the efficacy of the 
other. To the best of our knowledge, this is the first study 
on antimicrobial synergy testing from Nepal.

Among all positive growths in culture, the most com-
mon organism was E. coli followed by K. pneumoniae, 
Acb complex, P. aeruginosa and miscellaneous bacteria. 
The fact that E. coli, Klebsiella are among the most com-
mon organisms isolated in clinical specimens is well- 
known and has been shown by several studies done in 
the past,25–27 and the importance of these organisms as 

Table 1 Number and Percentage of MDR, XDR Only, Non-MDR, ESBL and MBL Positive Isolates Among All Culture Positive Isolates

Total Isolates MDR XDR Only Non-MDR ESBL MBL

Number (%) Number (%) Number (%) Number (%) Number (%)

E. coli 142 34 (23.94) 14 (9.86) 108 (76.06) 12 (8.45) 10 (7.04)

Klebsiella 76 24 (31.58) 14 (18.42) 52 (68.42) 2 (2.63) 7 (9.21)
Pseudomonas 24 2 (8.33) 1 (4.17) 22 (91.67) 0 (0.00) 0 (0.00)

Acinetobacter 27 6 (22.22) 2 (7.41) 21 (77.78) 0 (0.00) 1 (3.70)

Others 39 0 (0.00) 0 (0.00) 39 (100) 0 (0.00) 0 (0.00)
Total 308 66 (21.43) 31 (10.06) 242 (78.57) 14 (4.54) 18 (5.84)
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Table 2 Resistance Pattern of MDR E. coli, K. pneumoniae, Acinetobacter spp. and P. aeruginosa

Antimicrobials Resistance Pattern of Various Organisms

E. coli (n=34) 
Number (%)

K. pneumoniae (n=24) 
Number (%)

Acinetobacter spp. (n=6) 
Number (%)

P. aeruginosa (n=2) 
Number (%)

Gentamicin 21 (61.76) 16 (66.67) 6 (100) 0 (0.00)
Amikacin 16 (47.06) 14 (58.33) 4 (66.67) 1 (50.00)

Meropenem 21 (61.76) 18 (75.00) 6 (100) 1 (50.00)

Imipenem 21 (61.76) 15 (62.50) 4 (66.67) 1 (50.00)
Ceftazidime 27 (79.41) 23 (95.83) 6 (100) 2 (100)

Ceftriaxone 32 (94.12) 24 (100) 6 (100) –

Ciprofloxacin 33 (97.06) 24 (100) 6 (100) 2 (100)
Cotrimoxazole 33 (97.06) 23 (95.83) 6 (100) –

Tigecycline 5 (14.71) 5 (20.83) 6 (100) –

Amoxycillin 34 (100) – – –
Piperacillin-tazobactam 18 (52.94) 18 (75.00) 5 (83.33) 1 (50.00)

Chloramphenicol 27 (79.41) 24 (100) - -

Polymyxin B 0 (0.00) 1 (4.17) 0 (0.00) 0 (0.00)
Colistin sulphate 0 (0.00) 1 (4.17) 0 (0.00) 0 (0.00)

Nitrofurantoin 6 (22.22) 18 (85.71) - -

Table 3 Antibiotic Synergy Testing Using Various Antibiotic Combinations in Clinical Isolates (n=30)

Antibiotic Combination Synergy 
Number (%)

Additive 
Number (%)

Indifference 
Number (%)

Antagonism 
Number (%)

Meropenem + Amikacin 2 (6.66%) 11 (36.67%) 17 (56.67%) 0 (0.00%)

Meropenem + Ciprofloxacin 0 (0.00%) 0 (0.00%) 30 (100%) 0 (0.00%)

Amikacin + Colistin 5 (16.67%) 8 (26.67%) 15 (50.00%) 2 (6.66%)
Amikacin + Ciprofloxacin 2 (6.67%) 2 (6.67%) 24 (80.00%) 2 (6.66%)

Meropenem + Colistin 7 (23.33%) 6 (20.00%) 13 (43.34%) 4 (13.33%)

Table 4 Antibiotic Synergy Testing in XDR E. coli (n=14)

Antibiotic Combination Synergy 
Number (%)

Additive 
Number (%)

Indifference 
Number (%)

Antagonism 
Number (%)

Meropenem + Amikacin 0 (0.00%) 4 (28.57%) 10 (71.43%) 0 (0.00%)

Meropenem + Ciprofloxacin 0 (0.00%) 0 (0.00%) 14 (100%) 0 (0.00%)

Amikacin + Colistin 0 (0.00%) 2 (14.29%) 10 (71.42%) 2 (14.29%)
Amikacin + Ciprofloxacin 2 (14.29%) 0 (0.00%) 10 (71.42%) 2 (14.29%)

Meropenem + Colistin 4 (28.57%) 2 (14.29%) 4 (28.57%) 4 (28.57%)

Table 5 Antibiotic Synergy Testing in XDR K. pneumoniae (n=14)

Antibiotic Combination Synergy 
Number (%)

Additive 
Number (%)

Indifference 
Number (%)

Antagonism 
Number (%)

Meropenem + Amikacin 2 (14.28%) 6 (42.86%) 6 (42.86%) 0 (0.00%)

Meropenem + Ciprofloxacin 0 (0.00%) 0 (0.00%) 14 (100%) 0 (0.00%)
Amikacin + Colistin 4 (28.57%) 6 (42.86%) 4 (28.57%) 0 (0.00%)

Amikacin + Ciprofloxacin 0 (0.00%) 2 (14.29%) 12 (85.71%) 0 (0.00%)

Meropenem + Colistin 2 (14.29%) 4 (28.57%) 8 (57.14%) 0 (0.00%)
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emerging global threat has been presented in several stu-
dies done now and then.26,28–30

In this study, a significant proportion of the isolates were 
MDR and among those too, a large fraction were XDR 
isolates; however, no PDR isolates were found. The members 
of Enterobacteriaceae (K. pneumoniae and E. coli), were 
found to be more MDR and XDR in frequency as compared 
to Acinetobacter, and Pseudomonas isolates. Similar findings 
were seen in some other studies as well.26,27,31

ESBL- and MBL-producing bacteria, particularly 
K. pneumoniae and E. coli, are a matter of concern world-
wide these days. In our study, among the total culture- 
positive isolates, 4.5% were ESBL-producers and 5.8% 
were MBL-producers. Among the various bacteria, the 
highest proportion of ESBL-producers was seen in 
E. coli whereas a similar proportion of MBL-producers 
was seen in K. pneumoniae. Regarding Acinetobacter spp., 
MBL-production was seen in few isolates, but none were 
producing ESBL. Several reports from different parts of 
the world in the recent past have also shown a significant 
proportion of clinical isolates producing ESBL and 
MBL.27,31–33

Various antibiotics were used as the first-line and 
the second-line agents for antibiotic susceptibility testing 
for all culture-positive Gram-negative isolates. The sensi-
tivity pattern of these bacterial isolates to various antibio-
tics has shown a wide range of results from 100% 
resistance to some of the antibiotics to 100% susceptibility 
to some others. A large proportion of MDR isolates were 
found to be sensitive to few antibiotics including, colistin, 
polymyxin B, and tigecycline. All of the MDR E. coli 
isolates were sensitive to polymyxin B and colistin, and 
a high number of them were sensitive to tigecycline. 
A significant proportion of MDR E. coli were also suscep-
tible to nitrofurantoin followed by amikacin and piperacil-
lin-tazobactam. All of the MDR E. coli isolates were 
resistant to amoxicillin, a large proportion resistant to 
cotrimoxazole, ciprofloxacin, and ceftriaxone, and a huge 

proportion were found to be resistant to both carbapenems 
(meropenem and imipenem) and gentamicin. This result 
has supported the trend of emerging antimicrobial resis-
tance among E. coli to various antibiotics as has also been 
shown by various other studies.34 A study done in north-
east Ethiopia has also shown high rates of antimicrobial 
resistance in E. coli to amoxicillin and tetracycline 
whereas a significantly high degree of sensitivity rates to 
nitrofurantoin (96.4%), gentamicin (79.6%), and 
ciprofloxacin.35 In our study, a high degree of sensitivity 
was seen with nitrofurantoin but not with gentamicin and 
ciprofloxacin, suggesting an increasing trend of resistance 
to gentamicin and ciprofloxacin too in our context.

Similarly, high sensitivity to polymyxin B, colistin, 
and tigecycline was also seen with MDR K. pneumoniae 
isolates in this study, whereas as high as 100% of iso-
lates were found to be resistant to ceftriaxone, ciproflox-
acin, and chloramphenicol, with a large proportion being 
resistant to several other antibiotics like ceftazidime, 
cotrimoxazole, nitrofurantoin, meropenem, imipenem, 
piperacillin-tazobactam, gentamicin, and amikacin. 
Likewise, high degree resistance to antibiotics like cipro-
floxacin and third-generation cephalosporins was seen in 
a study from Taiwan.36 However, another study done 
over a period of twenty-one years and published recently 
has shown that more than 50% of Klebsiella isolates to 
be susceptible to several antibiotics like levofloxacin, 
piperacillin-tazobactam, meropenem and imipenem, 
unlike our findings.37

In our study, 100% of MDR P. aeruginosa isolates 
have shown susceptibility to gentamicin, polymyxin B, 
and colistin whereas they were found to be resistant to 
ceftazidime and ciprofloxacin suggesting the increasing 
trend of antimicrobial resistance to some antimicrobials 
that were once effective against Pseudomonas. 
Fifty percent of MDR Pseudomonas isolates were sensi-
tive to amikacin, carbapenems, and antipseudomonal peni-
cillin (piperacillin-tazobactam). This has supported the 

Table 6 Antibiotic Synergy Testing in XDR Acb Complex (n=2)

Antibiotic Combination Synergy 
Number (%)

Additive 
Number (%)

Indifference 
Number (%)

Antagonism 
Number (%)

Meropenem + Amikacin 0 (0.00%) 1 (50.00%) 1 (50.00%) 0 (0.00%)

Meropenem + Ciprofloxacin 0 (0.00%) 0 (0.00%) 2 (100%) 0 (0.00%)

Amikacin + Colistin 1 (50.00%) 0 (0.00%) 1 (50.00%) 0 (0.00%)
Amikacin + Ciprofloxacin 0 (0.00%) 0 (0.00%) 2 (100%) 0 (0.00%)

Meropenem + Colistin 1 (50.00%) 0 (0.00%) 1 (50.00%) 0 (0.00%)
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fact that polymyxins are still among the few of the last- 
resort drugs to combat MDR Pseudomonas spp. The find-
ing also suggests that aminoglycoside(s) can be one of the 
agents of choice in the empirical management of cases of 
suspected pseudomonal infection. Some other studies have 
also demonstrated a very good sensitivity of Pseudomonas 
to carbapenems and some of the aminoglycosides includ-
ing amikacin.38,39

Sensitivity of MDR Acinetobacter spp. was also found 
to be 100% with polymyxin B and colistin; however, they 
were found to be resistant to a majority of antibiotics, viz., 
gentamicin, meropenem, ceftazidime, ceftriaxone, tigecy-
cline, and cotrimoxazole. A small fraction was however 
sensitive to amikacin, imipenem, and piperacillin- 
tazobactam.

Among the combinations of antibiotics, meropenem 
+colistin has shown the highest proportion of “synergy” 
among all XDR isolates followed by amikacin+colistin. 
The highest degree of “additivity” has been shown by the 
antibiotic combination of meropenem+amikacin followed 
by amikacin+colistin and then meropenem+colistin. This 
result has suggested a possible beneficial action while 
combining meropenem, amikacin, and colistin with one 
another. Moreover, multidrug therapy especially colistin 
combinations have been used increasingly as the last- 
resort treatment for MDR strains especially in the empiric 
management of Gram-negative sepsis, and has been pro-
ven beneficial by several studies done in the recent 
past.40–43 All of the XDR isolates showed “indifference” 
to the combination of meropenem+ciprofloxacin whereas 
few isolates showed “antagonism” when tested with mer-
openem+colistin, amikacin+colistin, and amikacin+cipro-
floxacin. No “antagonism” was seen with meropenem 
+amikacin.

Among the synergy tests done with XDR E. coli, only 
meropenem+colistin and amikacin+ciprofloxacin showed 
“synergy”. “Additivity” was seen when two among the 
three antibiotics, viz., meropenem, colistin, and amikacin 
were combined. This further strengthened the possibility 
of beneficial action while combining meropenem, amika-
cin, and colistin with one another in pair. The majority of 
the rest showed indifference.

When tested with XDR K. pneumoniae, the same three 
antibiotics (meropenem, amikacin and colistin), when com-
bined with one another in pair showed some degree of 
“synergy” and “additivity”. A small proportion showed 
“additivity” with amikacin+ciprofloxacin too. All the rest 
showed indifference. None of the test results showed 

“antagonism” in case of K. pneumoniae. Half of the tests 
with XDR Acb complex resulted in “synergy” when colistin 
was combined with either meropenem or amikacin. 
Meropenem when combined with amikacin showed an 
“additive” result in 50% XDR Acb complex isolates. This 
also supported the finding that meropenem, amikacin, and 
colistin when combined with one another might have 
a beneficial action. None of the tests resulted in “antagon-
ism” with the XDR Acb complex. A recent study has also 
found colistin+meropenem to have an additive effect against 
most of the carbapenem-resistant (CR) A. baumannii isolates 
(83.3%), and no antagonism for this combination.44 Among 
the CR P. aeruginosa isolates tested, the colistin+merope-
nem showed synergistic effects against 63.6% isolates and 
additive effect in 36.4% isolates.44 Hence the combination 
of meropenem and colistin can be used as the potential 
therapy against infection with such XDR pathogens.

Conclusion
This study has shown a large proportion of clinical isolates 
to be MDR and XDR among which E. coli and 
K. pneumoniae are the most common ones followed by 
Acinetobacter and Pseudomonas. This study has suggested 
a possible beneficial action while combining meropenem, 
amikacin, and colistin with one another in pair. Further 
studies with a larger sample size and a variety of synergy 
testing methods are required to generalise these findings.
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