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The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was
studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining
array-comparative genomic hybridization (aCGH) and multiplex fluorescence in situ hybridization
(M-FISH) techniques should be delineated to exclude/detect a maximum of possible genomic structural
aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels
were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were
inherited from the original cell line, whereas other modifications were presumably acquired during the
differentiation and manipulation procedures. These results underline the necessity to study both pluripotent
stem cells and their differentiated progeny by as many approaches as possible in order to assess their
genomic stability before using them in clinical therapies.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license. 
1. Introduction

Genomic structural alterations in stem cells have been reported
since the first embryonic stem cell lines were developed in primates
by Thomson and Marshall (1998) and Thomson et al. (1998). Many
other such examples were subsequently reported, including structural
abnormalities like 46,X,idic(X)(q21) (Inzunza et al., 2004) and 47,XX,
del(7)(q11.2),+i(12)(p10) (Imreh et al., 2006), or numerical ones like
aneuploidies found in up to 20% of the studied cells (Rosler et al.,
2004). Furthermore, CTG repeat instability, variations in copy number,
gain and loss of heterozygosity, epigenetic changes and karyotypic in-
stability induced by cell culture conditions in human stem cell lines
have been repeatedly described (De Temmerman et al., 2008;
Thomson et al., 2008; Catalina et al., 2008; Dahl et al., 2008; Liang et
al., 2008; Närvä et al., 2010).

Of special interest among stem cells are induced pluripotent stem
cells (iPSC), which add the potential risk aris\ing from the methods
used to derive them from somatic cells to those intrinsic to themanip-
ulation and expansion of any stem cell in vitro. Thus, chromosomal
monosomy induced by modified stem cells used in therapy was re-
cently described (Dunbar and Larochelle, 2010). Similarly, Hussein et
al. (2011) reported a higher number of copy number variants
(CNVs) in iPSC cells at early passages of cell culture, potentially as a re-
sult of selection during reprogramming to pluripotency.
stfach, D-07740 Jena, Germany.
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Genomic anomalies can be found in any type of pluripotent cell,
regardless of culture conditions, manipulation or modifications. How-
ever, there is a significant lack of information about genomic instabil-
ities and variations that could potentially be found in differentiated
derivatives of pluripotent cell types. If those cells would be used
either in cell therapy or as a model in basic research, it is important
that their genomic integrity be analyzed and characterized. Intuitive-
ly, the idea that such variants could accumulate in the relatively short
time spanning the completion of a typical differentiation protocol
(1–3 weeks) could be easily dismissed (Winkler et al., 2009;
Stephenson et al., 2010).

Our data, however, indicate that this precisely could be the case.
Preliminary evidence was obtained by application of multiplex-
fluorescence in situ hybridization (M-FISH; Speicher et al., 1996)
and array comparative genomic hybridization (aCGH; Shinawi and
Cheung, 2008) on both, pluripotent cell lines (iPSC and human
embryonal stem cells = ESC) and their neuroprogenitor cell (NPC)
derivatives; i.e. genomic abnormalities and variants may indeed ap-
pear as a result of in vitro differentiation.

2. Material and methods

2.1. Pluripotent stem cells (iPSC and ESC) and derived NPC cells

Here two human pluripotent stem cell line (iPSC and ESC) and one
corresponding neuroprogenitor cell line (NPC) derivative were stud-
ied: the different iPSC and hESC and their corresponding derived
NPC were obtained from the National Laboratory of Stem Cell, in Rio
de Janeiro, Brazil. These cell lines were developed from a normal
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Fig. 1. M-FISH result of cell line NPC derived from ESC showing a karyotype 47,XY,+20. Trisomy 20 is highlighted by an arrowhead.
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individual (ESC) and from a schizophrenic patient (iPSC). Those cells
lines were established following standard procedures and are de-
scribed in Fraga et al. (2011) (ESC) and Paulsen et al. (in press) (iPSC).
2.2. Cytogenetics and molecular cytogenetics

Cultured cells were prepared according to cytogenetic standard
protocols. Chromosome suspensions were dropped onto slides as
described in Claussen et al. (2002). M-FISH was done using home-
made whole chromosome painting probes according to Weise et al.
(2002). 100–200 metaphases were acquired per case by a fluores-
cence microscope (Axioplan 2, Zeiss, Germany) with a PCO VC45
CCD camera (PCO, Kehl, Germany) using isis-software (MetaSystems,
Altlussheim, Germany) for evaluation. Between 17 and 39 meta-
phases were evaluable and included into the results.
2.3. Array comparative genomic hybridization

aCGH was performed using an Agilent Platform with a 180k chip
according to manufacturer's protocol (Agilent Technologies, Santa
Clara, CA, USA). Experiments were conducted using a gender-
matched genomic DNA pool as reference. The quality of the experi-
ment was evaluated with the QC metric provided by the CGH anal-
ysis software (CGH Analytics 3.5.14, Agilent Technologies). Data
were analyzed using two different software packages (Blue
Genome-Blue Fuse and Agilent) to determine the statistical validity
of the findings.
Table 1
M-FISH results by chromosome for cell line iPSC.

Chromosome 1 2 3 4 5 6 7 8

11 metaphases showed loss of chromosomes n times 0 0 0 1 0 0 1 0
Composite karyotype 46,XX[cp17]

Table 2
M-FISH results by chromosome for cell line NPC derived from iPSC.

Chromosome 1 2 3 4 5 6 7 8

21 metaphases showed loss of chromosomes n times 6 3 0 0 2 3 2 4
Composite karyotype 46,XX[cp39]
3. Results

All four cell lines could be analyzed by array-CGH. For M-FISH
analysis only ESC (pluripotent cell line from normal male) did not
yield any usable metaphase spreads.
3.1. M-FISH results

M-FISH analysis revealed a high degree of chromosomal instability
in the preparations of the pluripotent cells and their derivatives. Of
the acquired metaphases (100–200/line), only a subset was suitable
for detailed analyses due to clumsiness, and a significant incidence
of single cell aberrations was found in those.

The original iPSC line showed a normal 46,XX[cp17] karyotype
with no structural chromosomal aberrations as detected by M-FISH
and inverted DAPI-banding. Non-clonal chromosome losses were
detected in 11 of the 17 metaphases (Table 1). As summarized in
Table 2, the NPC derived from iPSC had a karyotype of 46,XX[cp39],
as well. M-FISH and inverted DAPI-banding revealed no structural
chromosomal aberrations here, as in the original cell line.

As mentioned above, no metaphase spreads were available for
FISH analysis for the induced pluripotent cell line ESC. However,
according to the analysis of its derived cell line iPS3-derived NPC2, a
normal karyotype should be present most likely in the original
source. In contrast, the ESC-derived NPC had a 47,XY,+20[cp10]/46,
XY[cp13] karyotype without structural chromosomal aberrations
(Fig. 1). A description of the non-clonal chromosome losses detected
in 14 of the 33 analyzed metaphases is presented in Table 3.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

1 1 0 0 1 0 0 0 1 2 2 4 1 1 0

9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

1 4 3 3 4 2 2 0 3 4 3 4 1 6 3



Table 3
M-FISH results by chromosome for cell line NPC derived from ESC.

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

14 metaphases showed loss of chromosomes n times 1 0 1 0 1 3 3 1 3 3 0 5 2 1 2 5 1 2 2 4 0 4 0
Composite karyotype 47,XY,+20[cp10]/46,XY[cp13]
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Overall, M-FISH revealed the gain of chromosome 20 in a subset of
one of the four studied cell lines. This trisomy 20 was present in >40%
of the analyzed dividing cells [(47,XY,+20[10]/46,XY[13)].

Interestingly, this cell clone was not detected in the aCGH test
(see below).
3.2. aCGH results

Overall fourteen different genomic regions exhibited genomic im-
balances in the analyzed 4 cell lines. The details of found CNV are
outlined in Tables 4 and 5.
4. Discussion

Here 2 original cell lines and their corresponding NPC derivatives
were studied by M-FISH and aCGH. It could be shown that the combi-
nation of molecular cytogenetics and aCGH leads to the detection of
genetic imbalances on different levels of resolution.

M-FISH revealed normal karyotypes for the iPSC cell line and its
derivative but a mosaic trisomy 20 in the NPC derived from ESC. Inter-
estingly this was not detectable by aCGH. The latter can be due to the
fact that the trisomy 20 was present in less than 50% of the cells. In
our hands mosaics below 50% were not detectable yet using standard
aCGH-software evaluation. No trisomy 20 was yet reported in any ESC
or iPSC, only a 20q deletion was previously seen in one pluripotent
stem cell line (Hollings et al., 1994).
Table 4
aCGH results of ESC cell line and its NPC derivative obtained from a healthy subject.

Chromosome Cytoband Begin End Gain [MB] Loss [MB]

ESC
1 q23.1 156,619,312 157,197,596 n.a. 0.578
7 p22.3–p22.2 289,912 2,705,543 2.416 n.a.
11 p15.5 357,497 2,002,404 1.645 n.a.
17 q25.3 76,890,993 77,084,795 1.938 n.a.
22 q11.21 18,471,124 19,063,627 0.593 n.a.
22 q11.23 22,677,759 22,720,395 n.a. 0.653

NPC from ESC
1 q23.1 156,619,312 157,197,596 n.a. 0.578
11 p15.5 357,497 2,002,404 1.645 n.a.
15 q11.2 19,382,327 20,060,261 n.a. 0.678

Table 5
aCGH results of iPSC cell line and its NPC derivative obtained from a schizophrenic
subject.

Chromosome Cytoband Begin End Gain [MB] Loss [MB]

iPSC
5 q23.1 118,913,710 118,980,301 n.a. 0.067
6 q22.1 116,871,473 116,981,694 n.a. 0.110
14 q32.32 102,446,974 102,499,423 0.052 n.a.

NPC from iPSC
7 p22.3-p22.2 289,912 2,705,543 2.416 n.a.
14 q32.32 102,446,974 102,499,423 0.052 n.a.
17 q25.3 76,890,993 77,084,795 1.938 n.a.
20 q11.1–q11.21 28,265,913 30,611,064 2.345 n.a.
A general chromosomal instability in all studied lines (Rosler et al.,
2004) could be suggested according to the results presented in
Tables 1–3. However, this “instability” was most likely due to prepara-
tion artifacts as different, non-clonal chromosomes were lost in 54–
64% of the evaluable 17 to 39 metaphases; the latter were selected
from 100 to 200 metaphases being too clumsy and/or overspread.

aCGHproved the presence of CNVs in ESC and iPSC and their derived
NPC. Our data support the view of two different origins for the structur-
al variations as suggested by Martins-Taylor and Xu (2012): a) CNVs
inherited from the original pluripotent cell source, either ESC or iPSC;
and b) CNVs observed after the differentiation procedure and identified
only in derived NPC. These observations indicate that differentiation
ought to be considered in the same breadth as other types of manipula-
tion (chiefly reprogramming and expansion of pluripotent cell lines)
that are known to cause CNVs. The implications of this in the context
of the potential development of cell therapies based on the differentia-
tion of pluripotent cells cannot be underestimated (Stephenson et al.,
2010).

Gains of copy numbers in 20q11.1–q11.21 as detected in one of
the cell lines analyzed was already previously reported as a recurrent
imbalance in stem cells (Spits et al., 2008; Elliott et al., 2010;
Martins-Taylor et al., 2011). It was speculated, that this CNV leads
to a growth advantage of the cells acquiring this CNV, as the gene
BCL2L1 (OMIM *600039) having anti-apoptotic potential is included
in this region (International Stem Cell Initiative, 2011). Interestingly
in this study this amplification was present in the derivative NPC
and not in the original iPSC, supporting the idea of acquisition of
this CNV due to survival advantages under long term cultural condi-
tions. CNVs classified as unique to IPSC, such as 1q31.3, 8q24.3 or
17q21.1 (Martins-Taylor et al., 2011), were not identified in this
study, which could be attributed to the small number of samples
analyzed.

Overall, routine cytogenetic analysis is severely limited in its ca-
pacity to detect many of those changes, which may have clinical im-
plications. The synergistic use of M-FISH and aCGH analyses would
cover most genomic structural abnormalities at different levels.
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