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Radiomics side experiments 
and DAFIT approach in identifying 
pulmonary hypertension using 
Cardiac MRI derived radiomics 
based machine learning models
Sarv Priya1*, Tanya Aggarwal2, Caitlin Ward3, Girish Bathla1, Mathews Jacob4, Alicia Gerke5, 
Eric A. Hoffman1,6 & Prashant Nagpal1

Side experiments are performed on radiomics models to improve their reproducibility. We measure 
the impact of myocardial masks, radiomic side experiments and data augmentation for information 
transfer (DAFIT) approach to differentiate patients with and without pulmonary hypertension (PH) 
using cardiac MRI (CMRI) derived radiomics. Feature extraction was performed from the left ventricle 
(LV) and right ventricle (RV) myocardial masks using CMRI in 82 patients (42 PH and 40 controls). 
Various side study experiments were evaluated: Original data without and with intraclass correlation 
(ICC) feature-filtering and DAFIT approach (without and with ICC feature-filtering). Multiple machine 
learning and feature selection strategies were evaluated. Primary analysis included all PH patients 
with subgroup analysis including PH patients with preserved LVEF (≥ 50%). For both primary and 
subgroup analysis, DAFIT approach without feature-filtering was the highest performer (AUC 0.957–
0.958). ICC approaches showed poor performance compared to DAFIT approach. The performance 
of combined LV and RV masks was superior to individual masks alone. There was variation in top 
performing models across all approaches (AUC 0.862–0.958). DAFIT approach with features from 
combined LV and RV masks provide superior performance with poor performance of feature filtering 
approaches. Model performance varies based upon the feature selection and model combination.

Radiomics is an emerging subject area that is being increasingly utilized in medical imaging for problems related 
to classification, prediction and prognosis of various diseases and cancers. The most notable use and development 
have been made in the field of  neurooncology1–4. Application of radiomics has recently gained interest in cardiac 
MRI (CMRI) and few studies have evaluated its utility in patients with ventricular  hypertrophy5–7, myocardial 
 infarction8,  tachyarrhythmia9, and  myocarditis10,11.

One of the limitations of radiomics based models is lack of reproducibility and generalizability due to which 
they have not yet translated to clinical practice. Prior studies show that many radiomic features are unstable 
and are susceptible to variations during image acquisition, reconstruction, and post  processing12–14. To improve 
repeatability and reproducibility, many so-called radiomics side experiments are performed. These side studies 
or robustness studies are done to identify stable features [assessed by intraclass correlation (ICC) or concord-
ance correlation (CCC)] that are incorporated subsequently in the model creation process after the exclusion of 
non-stable features. Different strategies for side experiments or stability tests involve scan-rescan, annotation-
reannotation of the segmentation masks or doing image perturbations in a small patient subgroup or in a 
phantom  study15,16.
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However, such feature filtering approach of completely disregarding the unstable features may not be ideal. 
The mere reliance on identifying stable or reproducible radiomic features helps remove noise from the data, 
but this may come at the expense of losing relevant information from the original data. As shown by the recent 
experiments by Gotz et al.17, the features that are stable may not be predictive, while the unstable or noisy features 
may include relevant information essential for prediction. Gotz et al.17 proposed a novel approach of data aug-
mentation for information transfer (DAFIT), where instead of filtering unstable features, the results of the side 
experiments were incorporated into the main data and augmented data sets were created and used for prediction. 
They showed that the proposed approach when combined with feature selection methodologies led to overall 
improvement in the model performance compared to simply disregarding the unstable data.

In this study, we build upon the previous work of Gotz et al.17 and apply it to the CMRI images of patients with 
and without pulmonary hypertension (PH). We aim to study the influence of CMRI derived radiomic features 
from multiple myocardial masks (left ventricle, right ventricle and combined left and right ventricle masks), as 
well as the impact of multiple side experiments in differentiating patients with and without PH. We compare the 
predictive performance of the Original data (no inclusion of side study data), radiomic side studies including 
ICC-based feature filtering, and the DAFIT approach to classify patients with and without PH.

Results
Patient demographics. Subjects in the PH group were seen to have higher age, body surface area (BSA), 
body mass index (BMI), and were more likely to be smokers and have associated diabetes mellitus and hyper-
tension. There were significant differences between the two groups on all variables except sex. Supplementary 
Tables 1 and 2 present the demographics characteristics available for both groups.

ICC results. For first two extractions (ICC2), there were 22 features from the LV mask and 46 features from 
the RV mask that showed excellent ICC. There were only 8 features from LV mask and 24 from RV mask that 
showed excellent ICC across all three extractions (details in supplementary Table 3).

Model performance from original data without side studies. The models fit using features from 
the LV mask had the highest diagnostic performance (AUC 0.921). Table 1 provides the list of top three models 
from the original data. No significant difference was seen between the performance of the LV and combined 
(AUC 0.913) masks (p = 0.4702). Significant differences were found between the LV and RV (AUC 0.832) masks 
(p = 0.0006) and between the RV and combined masks (p = 0.0005, supplementary Table 4). For the PH sub-
group, no significant difference (p value > 0.05) was seen between the top performing models (Table 2, supple-
mentary Table 5).

Model performance using features with excellent ICC from first two extractions. The best per-
forming model was built using combined masks (AUC 0.905) and did not differ significantly compared to the 
best performing combined mask model from the original study (p > 0.05). However, significant differences were 
seen between the LV (AUC 0.821) and RV (AUC 0.810) mask models built using features from excellent ICC and 
those built from original data (for LV mask p-value < 0.0001, RV mask p value 0.0382) (Table 1, supplementary 
Table 6).

For the PH subgroup, a statistically significant decrease in performance was seen for individual and combined 
masks when using features with excellent ICC compared to the original data (p < 0.05) (Table 2, supplementary 
Table 7).

Model performance using features with excellent ICC from all three extractions. This analysis 
only used features that had excellent ICC between all pairwise combinations of the three feature extractions. 
Models fit using the combined mask had the best performance (AUC 0.895). No significant performance differ-
ence was seen between best model built from the combined and RV (AUC = 0.784) masks using features from 
ICC3 and original data (p value > 0.05). However, a significant difference was seen between performance of 
LV mask model built using features from ICC3 and the original data (p-value 0.0012) (Table 1, supplementary 
Table 8).

For the PH subgroup, a statistically significant decrease in model performance was seen for individual and 
combined masks when using features from ICC3 compared to the original data (p value < 0.05) (Table 2, sup-
plementary Table 9).

Model performance from DAFIT approach without feature filtering. The best overall model was 
built using the combined mask (AUC 0.958) (Table 1, supplementary Table 10). The best model built using the 
combined masks had statistically significantly better performance compared to models built using individual RV 
(AUC 0.899) or LV (AUC 0.889) masks (p value < 0.0001). There was not a significant difference in predictive 
performance between the top models built from individual RV and LV masks (p value = 0.4576).

Similarly, for the PH subgroup, the best model built from the combined masks had significantly higher per-
formance compared to the models built using LV and RV masks (p < 0.05) (Table 2, supplementary Table 11).

Model performance from DAFIT approach with feature filtering. These models were built only 
using the combined mask since combined mask was the best overall performer in the previous approaches. The 
best overall model for combined DAFIT approach and ICC2 achieved an AUC of 0.945. Similarly, for DAFIT 
approach combined with ICC3, the best model had an AUC of 0.860 (Table 1, supplementary Table 12).
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For the PH subgroup analysis, combined DAFIT and feature filtering from ICC2 achieved a mean AUC of 
0.908 and for DAFIT and feature filtering from ICC3 the best model had an AUC of 0.887 (Table 2, supplemen-
tary Table 13).

Comparison of model performance across all approaches. DAFIT approach without feature filter-
ing had the highest performance (AUC 0.958) followed by DAFIT with feature filtering (AUC 0.920–0.945). The 
performance of DAFIT with feature filtering was also higher than original data and ICC2 and ICC3 approaches 
(Fig. 1a,b).

For the PH subgroup, DAFIT approach without filtering was again the top performer (AUC 0.957) followed 
by DAFIT with feature filtering (AUC 0.887–0.907) (Fig. 2a,b). Figures 3 and 4 display the mean AUC for five 
best models from each approach for primary and PH subgroups respectively.

For the permutation tests assessing model significance, the p-values for the best performing model on all 
six analysis approaches for both the full and subgroup analyses were 0.0099. This provides strong evidence that 
the best classifiers across all approaches are able to identify a dependency structure in the data to make accurate 
predictions of PH subjects.

Effect of confounder variables. Of the confounders evaluated (age, BMI, BSA, and presence of hyperten-
sion), we see the largest amount of deviance in the classifications is explained by age (Fig. 5). Across all model 
approaches, the machine learning predictions explain a large portion of the deviance not already explained by 
the confounder variables. This indicates the high predictive abilities of these models is not fully driven by the 
confounders. In assessing the statistical significance of adding the model predictions to the confounders, all 
model/confounder combinations yielded p-values of 0.0099, which is the minimum possible p-value based on 
100 permutations. This indicates that using the radiomics features to predict PH offers a significant improvement 
in performance beyond what could be achieved only from the confounders.

Table 1.  Top three models selected to fit for entire group (All PH patients versus controls). LV left ventricle, 
RV right ventricle, combined combined RV and LV masks, original original data without inclusion of side 
experiments, ICC2 features with excellent intraclass correlation from first two extractions, ICC3 features with 
excellent intraclass correlation from all three extractions, DAFIT synthetic data creation using main and side 
study data, DAFIT Filt2 combining DAFIT with feature filtering from ICC2, DAFIT Filt3 combining DAFIT 
with feature filtering from ICC3, rf random forest, nnet neural network, mlp multilayer perceptron, enet elastic 
net, svmPoly support vector machine (SVM) with a polynomial kernel, svmRad SVM with a radial kernel, full 
full feature set, corr high correlation filter, pca principal component analysis.

Slices Model Feature selection Mean SD Median Min Max

Original

LV mask rf Full 0.921 0.064 0.922 0.750 1.000

LV mask rf Corr 0.916 0.069 0.938 0.792 1.000

Combined rf Full 0.913 0.054 0.922 0.806 1.000

First side study—intraclass correlation with first two extractions (ICC2)

Combined mask nnet Corr 0.905 0.059 0.906 0.750 0.984

Combined mask nnet Full 0.904 0.079 0.917 0.708 1.000

Combined mask mlp Full 0.904 0.063 0.906 0.750 1.000

Second side study—intraclass correlation with all three extractions (ICC3)

Combined mask ridge Full 0.895 0.065 0.891 0.734 0.984

Combined mask nnet Full 0.885 0.079 0.903 0.688 1.000

Combined mask enet Full 0.873 0.074 0.875 0.734 0.984

DAFIT without filtering

Combined mask svmPoly pca 0.958 0.033 0.960 0.846 1.000

Combined mask svmPoly Full 0.957 0.043 0.967 0.860 1.000

Combined mask svmRad Full 0.939 0.034 0.949 0.853 0.988

DAFIT with filtering ICC2 (DAFIT Filt2)

Combined mask svmRad Corr 0.945 0.047 0.945 0.824 1.000

Combined mask svmPoly Full 0.943 0.051 0.956 0.816 1.000

Combined mask svmRad Full 0.941 0.053 0.945 0.783 1.000

DAFIT with filtering ICC 3 (DAFIT Filt3)

Combined mask svmRad Full 0.920 0.060 0.934 0.702 0.978

Combined mask nnet Corr 0.903 0.073 0.919 0.625 0.985

Combined mask svmRad Corr 0.902 0.075 0.926 0.607 0.989
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Table 2.  Top three models selected to fit for PH sub-group (PH subjects with preserved ejection fraction 
versus controls). LV left ventricle, RV right ventricle, combined combined RV and LV masks, original original 
data without inclusion of side experiments, ICC2 features with excellent intraclass correlation from first two 
extractions, ICC3 features with excellent intraclass correlation from all three extractions, DAFIT synthetic 
data creation using main and side study data, DAFIT Filt2 combining DAFIT with feature filtering from ICC2, 
DAFIT Filt3 combining DAFIT with feature filtering from ICC3, rf random forest, nnet neural network, gbrm 
gradient boost regression model, mlp multilayer perceptron, enet elastic net, lasso least absolute shrinkage and 
selection operator, svmPoly support vector machine (SVM) with a polynomial kernel, svmRad SVM with a 
radial kernel, full full feature set, corr high correlation filter, pca principal component analysis, lincomb linear 
combinations filter.

Slices Model Feature selection Mean SD Median Min Max

Original

RV mask nnet Lincomb 0.885 0.097 0.906 0.688 1.000

Combined rf Full 0.878 0.092 0.906 0.609 1.000

RV mask ridge Lincomb 0.876 0.107 0.906 0.531 1.000

First side study—interclass correlation with first two extractions (ICC2)

Combined mask gbrm Full 0.808 0.151 0.844 0.313 1.000

Combined mask rf Full 0.798 0.118 0.797 0.594 1.000

RV mask rf Full 0.794 0.140 0.813 0.375 1.000

Second side study—interclass correlation with all three extractions (ICC3)

Combined mask nnet Full 0.815 0.119 0.813 0.563 1.000

Combined mask mlp Full 0.800 0.144 0.844 0.500 1.000

Combined mask lasso Full 0.785 0.161 0.750 0.500 1.000

DAFIT without filtering

Combined mask svmPoly Full 0.957 0.039 0.969 0.859 1.000

Combined mask svmPoly pca 0.947 0.036 0.945 0.891 1.000

Combined mask svmRad Full 0.926 0.043 0.930 0.836 0.984

DAFIT with filtering ICC2 (DAFIT Filt2)

Combined mask svmPoly Corr 0.908 0.095 0.930 0.617 1.000

Combined mask svmPoly Full 0.903 0.098 0.914 0.609 1.000

Combined mask svmRad Full 0.890 0.088 0.906 0.617 1.000

DAFIT with filtering ICC 3 (DAFIT Filt3)

Combined mask svmRad Full 0.887 0.100 0.906 0.656 0.992

Combined mask svmRad Corr 0.881 0.089 0.906 0.648 1.000

Combined mask linear Corr 0.863 0.082 0.875 0.703 0.992

Figure 1.  Model predictive performance for primary analysis (all patients with PH and controls). (a) The box 
and whisker plot and (b) the ROC curve for multiple approaches analyzed for the primary analysis. DAFIT 
approach without filtering shows least variation in standard deviation (a) and highest area under the curve (b).
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Discussion
In the current study we studied the impact of six different approaches on the overall model performance. We 
evaluated LV and RV CMRI radiomics from the original data (without including any side study experiment) and 
compared that with multiple side studies and recently proposed novel DAFIT approach with and without feature 
filtering. Our study showed that the DAFIT approach and features extracted from the combined mask provide 
the highest model performance. We also demonstrated that the models built using only the stable radiomic 
features lead to suboptimal model performance. Lastly, model performance varied considerably based upon 
chosen machine learning model and feature selection combination.

Performance of radiomic side studies is encouraged to identify stable features and to improve generaliz-
ability since radiomic features are susceptible to  variations18–21. In terms of side studies, most of the prior work 
relates to feature filtering involving selection of robust features by virtue of scan-rescan, repeat segmentations 
or change of image parameters. However, it is difficult to perform repeat scans due to cost and ethical issues of 
rescanning. Hence, most of the studies select robust features by manually doing reannotation in a subgroup of 
patient population and identifying features with excellent inter or intraobserver correlation.

Figure 2.  Model predictive performance for subgroup analysis (PH patients with preserved ejection fraction 
and controls). (a) The box and whisker plot and (b) the ROC curve for multiple approaches analyzed for the PH 
subgroup analysis. DAFIT approach without filtering shows least variation in standard deviation (a) and highest 
area under the curve (b).

Figure 3.  Area under curve for primary analysis (all patients with PH and controls). This figure shows the 
mean area under the curve for multiple feature selection and model combinations using all approaches for the 
primary analysis.
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However, there is currently no clarity on how to incorporate this information from the side studies into the 
modelling process. As has been shown in previous studies, the inclusion of only the stable features led to sub-
optimal model performance in our study. This again highlights the fact that selecting stable features does not 
mean better predictive performance. A PET-CT study on nasopharyngeal carcinoma by Lv et al.22 also showed 
that radiomic features with poor ICC may still perform well in disease differentiation. Lv et al.22 concluded that 
low feature stability does not mean poor predictive performance and thus robustness of radiomics features should 
not be overemphasized. We also observed that the model performance dipped further when we included features 
that were stable across all three extractions (original data and two repeat annotation side studies) compared to 
model performance from first two extractions. This finding is important as it raises an interesting question- How 
many additional side studies one needs to perform? There is no valid answer currently, since overall performance 
may vary if we perform one, two or even more stability side studies, as also seen in our study.

We also found poor reproducibility of texture features on repeat segmentation. In a recent CMRI-based 
radiomics study, only 32–73% texture features were found  reproducible23. This may be secondary to manual 
segmentation that has been found to have poor reproducibility of  features24,25.

In contrast to feature filtering approach, the DAFIT approach incorporates information from the side stud-
ies without removing unstable features. DAFIT approach incorporates the variability arising from the feature 
extraction process in creating the augmented data. This allows for important noisy predictors to be retained by 
utilizing the side study data to accurately represent the true feature generating process.

Another advantage of DAFIT approach lies in its ability to be combined with multiple feature selection and 
model combinations. We found SVM classifier with a polynomial kernel combined with PCA feature selection 
as the best overall model while applying DAFIT. In the original study, Gotz et al.17 found that LASSO classifier 
benefitted most from the DAFIT approach when compared to the ensemble methods of random forest and 
GBRM. However, they did not evaluate any non-linear classifiers. It is difficult to assess the rationale for SVM 
models performing well with the DAFIT approach. However, as other non-linear approaches performed well 
when ICC-based feature filtering was used, we posit that the augmentation procedure may increase the non-linear 
separation which is well-captured by the polynomial and radial kernels. Further studies are needed to verify this 
finding. Interestingly, the performance of combined DAFIT and feature filtering was superior to original data 
and side studies but was inferior to DAFIT without filtering. This again provides evidence that feature filtering 
approach may lead to loss of relevant features from the model building and thus filtering alone may not be ideal.

Data augmentation is a commonly used approach in machine learning to improve classifier performance by 
enhancing both the size and quality of the available data. For example, when imaging data is used as a model 
input, each image may be rotated several times to increase the amount of relevant data used in model fitting. 
In general, data augmentation techniques are known to reduce overfitting by extracting additional information 
from the available  data26. In this case of the DAFIT approach, additional information is about the stability of the 
radiomics features obtained as a result of the side studies. The data is enhanced not only from the increase in the 
size of the data, but also from the ability to retain relevant features which may be noisy and thus excluded from 
the filtering approaches. In addition, in their work Gotz et al.17 assessed if the improved performance of DAFIT 
was due to the inclusion of the additional information or only due to the increased sample count and found that 
when additional artificial samples were used the DAFIT approach had almost identical results.

Figure 4.  Area under curve for PH subgroup analysis (PH patients with preserved ejection fraction and 
controls). This figure shows mean area under the curve for multiple feature selection and model combinations 
using all approaches for the PH subgroup analysis.
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In terms of myocardial masks, models built using combined masks had significantly higher performance com-
pared to individual masks. At present, there is no clear consensus regarding extraction of myocardial radiomic 
features from left or right ventricular myocardium or as a combined approach. Though the sample size of our 
study was small, these results may guide future radiomic studies in selecting the appropriate region of interest.

To remove the effect of low ejection fraction in patients with PH as a confounding variable, we also performed 
analysis of a subgroup of PH patients with preserved ejection fraction (LVEF ≥ 50%). Our results showed simi-
lar performance for the PH subgroup and provides evidence that radiomics features are consistent and are not 
influenced by the variations in ventricular ejection fraction. These results are, however, specific to the current 
data set and should be validated on the future studies. Similar to the primary analysis, DAFIT without feature 
filtering was again the best approach using svmPoly model and full feature set selection in PH subgroup. The 
performance again dipped when DAFIT was combined with feature filtering, further reiterating that relevant 
and important features may be lost during filtering.

Our study also demonstrates that the model performance varies considerably based upon chosen model/
feature selection combination. Our study is unique as we evaluated combinations of eleven different machine 
learning classifiers and four different feature selection strategies and found variations even in the top five per-
forming models across all approaches (AUC 0.862–0.958). Prior CMRI radiomic studies have only assessed 
single or limited machine learning  models10,11,27–30. We conclude that further studies should also assess multiple 
models and feature selection strategies to ensure a more rigorous model selection process.

Besides the limitations of retrospective data and small sample size, our study lacks external validation to 
improve generalizability of the optimal model. However, we performed five-fold cross-validation to avoid bias, 
minimize overfitting and validate our models. In addition, we performed permutation analysis to test for model 

Figure 5.  Effect of confounding variables. This figure shows that of all the confounders evaluated, largest 
amount of deviance in the classifications is explained by age. Also, predictions by machine learning explain a 
large portion of the deviance that is not explained by the confounder variables. Htn hypertension, BMI body 
mass index, BSA body surface area, DAFIT—synthetic data creation using main and side study data; DAFIT 
Filt2—combining DAFIT with feature filtering from ICC2; DAFIT Filt3—combining DAFIT with feature 
filtering from ICC3.
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significance and found that the top ranked classifiers were able to provide accurate predictions of PH subjects. 
This was consistent for all six approaches. We extracted radiomics only from mid-ventricular end-systole cine 
frame. End-systole was selected because it allowed clear depiction of the thin-walled right ventricle. This allowed 
us to segment RV wall and measure radiomic features from the RV. We selected the mid ventricular short axis 
to segment the most reproducible mid LV myocardium at the level of papillary muscles. The use of basal and 
apical slices can induce variability in the research studies and other prior radiomics CMR studies have also used 
mid-ventricle short-axis for texture  measures31. Since the primary study goal was to investigate role of novel 
DAFIT methodology on radiomics feature selection, we believe that use of mid ventricular slice for texture 
measures is not compromising the results of this study. Another important limitation is the heterogeneity among 
patient population. The controls were not matched to the PH group regarding age and characteristics such as 
body mass index, diabetes, or hypertension. This was secondary to the retrospective nature of this study and 
definition of controls as subjects with normal CMRI. However, we performed regression analysis to evaluate for 
confounders and found that radiomic features result in a significant improvement in predictive performance 
beyond confounding variables. Still, future prospective studies should aim to control confounders. In addition, 
since our study only included healthy controls, the results also need to be validated in prospective studies in a 
cohort of patients who have no PH on RHC. We also included all WHO (World Health Organization) subtypes 
of PH. Since majority of PH cases in our study had WHO group 2 (PH secondary to left ventricle dysfunction), 
our results may not be directly applicable to primary pulmonary hypertension and further studies with larger 
number of patients from different WHO group PH will be needed to explore if there is any association with 
primary PH. However, our approach was more pragmatic as selective inclusion of only one class of PH patients 
may have improved model performance but would have also introduced selection bias.

Validation of recently described novel DAFIT approach, assessing the impact of multiple myocardial masks 
and several robustness experiments are the primary strengths of our study. We also provide framework for 
future CMRI radiomic studies regarding feature filtering, radiomic side studies, and machine learning/feature 
selection strategies.

Conclusion
Recently proposed novel DAFIT (Data augmentation for information transfer) approach leads to significant 
improvement in the radiomics model performance when compared to the original data (without including 
information from side studies) and ICC-based feature filtering approaches. Use of different myocardial masks 
and the type of side experiment performed changes the CMRI based radiomics model performance for differ-
entiation of patients with and without PH. Models built using combined LV and RV masks perform better than 
individual masks alone. The performance of machine learning models varies significantly based upon the chosen 
feature selection and model combinations.

Methods
This was a retrospective study approved by institutional review board (IRB) of University of Iowa Hospitals 
(IRB ID # 201811836) and requirement of informed consent was waived off by University of Iowa Hospitals’ 
IRB. The IRB approved the study, and the study was performed in accordance with Declaration of Helsinki and 
followed relevant guidelines and regulations. Patients were identified using combination of radiology infor-
mation system and electronic medical records. Inclusion criteria for the PH group was as follows: CMRI and 
right heart catheterization (RHC) performed within thirty days of either exam, availability of RHC derived 
mean pulmonary artery pressure (mPAP)and artifact free balanced steady state free precession (bSSFP) 2D 
short-axis cine cardiac MRI images. PH was defined as mPAP > 20 mm Hg based on the recent  criteria32. Since 
this was a retrospective pilot study, healthy patients were included as the control group as also performed in 
prior  studies33,34. A control group was retrospectively selected from patients who underwent CMRI as part of a 
clinical work-up for a family history of cardiovascular disease. All patients in the control group had a normal 
CMRI, normal biventricular ejection fraction and no delayed myocardial enhancement. Patients with evidence of 
ischemic cardiomyopathy, infiltrative cardiomyopathy (like sarcoidosis or amyloidosis), coronary artery disease 
on CMRI, or cardiac interventions including valve replacement or coronary interventions were excluded from 
the study (both PH and control group). A total of 82 patients, 42 with PH and 40 controls were included in the 
final study. The primary analysis included all patients in PH and control groups. A subgroup analysis was also 
performed that included patients from the PH group who had preserved left ventricle ejection fraction ≥ 50%35 
and were compared against all controls.

Cardiac MRI (CMRI). CMRI was performed on a Siemens 1.5 T MRI (Siemens, Erlangen, Germany). Images 
were anonymized and were analyzed by two readers with more than five-year experience in cardiac imaging 
using a FDA approved freely available software “Segment” (version 3.0: http:// segme nt. heibe rg. se). The desired 
end-systolic mid-ventricular short  axis31 image was selected from the bSSFP short axis cine series for further 
texture analysis, as performed in prior CMRI  studies31.

Right heart catheterization. RHC derived mPAP, pulmonary vascular resistance and pulmonary capil-
lary wedge pressure were recorded.

Image pre-processing. De-identified DICOM images were transferred to texture software MaZda version 
4.6. Image normalization was performed by remapping the histogram data so that the pixels lay within mean ± 3 
standard deviations to make sure that the features were reflective of only texture and were not affected by image 
contrast or overall  brightness19.

http://segment.heiberg.se
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Image segmentation/mask creation. Segmentation was performed on a mid-ventricular end-systolic 
 slice31 by the cardiac imagers (SP and PN) in consensus. Left ventricle (LV) and right ventricle (RV) myocardial 
masks were manually segmented using the pencil tool within MaZda software. The region of interest (mask) only 
included the myocardium with exclusion of papillary muscles and the blood pool (Fig. 5).

Texture features extraction. For each mask, 348 features were extracted using the MaZda software. 
These included histogram (9), co-occurrence matrix (220), run-length matrix (20), gradient (5), autoregressive 
(5), geometrical (73) and wavelet (16) features. Details about these features are provided elsewhere and beyond 
the scope of this  work28,36.

Feature repeatability. To evaluate the repeatability of the texture features, three extractions were per-
formed, with the second and third replications occurring four and six weeks after the original extraction, 
respectively. This was performed in 40 patients each (20 from each group of PH and control subjects) for repeat 
extractions (Fig. 6). This was done to evaluate the repeatability of the texture features. Features were recalcu-
lated for the 348 radiomic features on both the LV and RV myocardial masks. Intraclass correlation (ICC) was 
computed to evaluate agreement between the samples for all 348 features from three groups (original mask and 
two repeated masks) using a two-way mixed-effects model. Based on ICC coefficients, agreement was defined as 
poor (< 0.40) fair (0.40 to 0.59), good (0.60 to 0.74), and excellent (> 0.75)37.

Radiomics side studies. We investigated six approaches to evaluate different methods of using the side 
study data: (i) Original—without including the side study experiment data; (ii) ICC2—using only features with 
excellent ICC based on first two extractions; ((iii) ICC3—using only features with excellent ICC based on all 
three extractions; (iv) DAFIT—using augmented data generated using all three side study extractions and origi-
nal data; (v) DAFIT Filt2—using only features with excellent ICC based on two extractions; and (vi) DAFIT 
Filt3—using only features with excellent ICC based on three extractions (Fig. 6). For approaches (i)–(iv), models 
were built using features from the individual LV and RV masks as well as combined masks. For approaches (v) 
and (vi), only combined masks were used.

Data augmentation for information transfer (DAFIT). We utilized the data augmentation procedure 
as described in the original publication (on DAFIT approach)17 for observations from a side study which are 
paired. We used a transformation of the original data ( xM ) based on adding random noise generated from a 
normal distribution with mean and variance defined by the difference between the paired observations. Since we 
had three feature extractions available from the side studies (three repeat annotated data), three sets of pairwise 
differences were computed (1–2, 1–3, 2–3) and then the mean and variance ( µ and σ 2 , respectively) were taken 
after combining the three sets (Fig. 7). This approach assumes that the differences in the features is solely a result 
of the extraction process and views the variability as additional noise added to some true value. As was done 
in the original paper, we generated two augmented observations ( xA ) from each observation in the main study, 
yielding 164 observations to be used in the modeling process. The same augmented dataset was used across all 

Figure 6.  Study workflow. This figure depicts the overall workflow of the study showing radiomics feature 
extraction from original and multiple side studies, cross-validation and modelling.
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models. DAFIT approach was applied both with feature filtering (using results of ICC) and without feature filter-
ing (on original data).

Feature selection. To reduce dimension for large feature sets for the Original and DAFIT analyses, as 
well as avoid collinearity across all analyses, three feature selection methods were considered: a linear combi-
nations filter (lincomb), a high correlation filter (corr), and principal components analysis (PCA). The linear 
combinations filter addresses both collinearity and dimension reduction by finding linear combinations of two 
or more variables and removing columns to resolve the issue. This process was repeated until the feature set 
is full rank. As the ICC filtering approaches provide enough a priori feature reduction such that the potential 
feature set is already full rank, the linear combinations filter was not used in those analyses. The high correlation 
filter removes variables from the feature set which have a large absolute correlation. A user-specified threshold 
was given to determine the largest allowable absolute correlation. The number of components retained in the 
PCA transformation was determined by specifying the fraction of the total variance that should be covered by 
the components. Table 3 summarizes the thresholds used when considering features from an individual mask 
or for the combined masks for each of the six approaches. These thresholds were chosen with the goal of suf-
ficiently retaining as much information as possible with enough dimension reduction to allow model fitting. 
The difference in threshold specifications was due to different sizes of potential feature sets resulting from the 
six approaches and whether models were fit to a single mask or the combined masks. For all six approaches, we 
also considered modeling using the entire potential feature set (full) without any specified feature selection tech-
niques. All feature selection methods were implemented using the  recipes38 package in R version 4.0.239. Prior to 
any feature selection all variables were standardized.

Model fitting and evaluation of predictive performance. Several machine learning algorithms (lin-
ear classifiers, non-linear classifiers, and ensemble classifiers) were considered to determine the best classifier 

Figure 7.  DAFIT (data augmentation with information transfer approach). This figure shows the creation of 
synthetic augmented data set using DAFIT approach. xM denotes the original data from the main study, µ and 
σ
2 denote the mean and variance, respectively of the paired differences calculated from the repeated extractions 

in the side study, and xA denotes the augmented data.

Table 3.  Summary of the feature selection and modeling approaches for each analysis (DAFIT Filt analyses 
were only fit to the combined masks). Original original data without inclusion of side experiments, ICC2 
features with excellent intraclass correlation from first two extractions, ICC3 features with excellent intraclass 
correlation from all three extractions, DAFIT synthetic data creation using main and side study data, DAFIT 
Filt2 combining DAFIT with feature filtering from ICC2, DAFIT Filt3 combining DAFIT with feature filtering 
from ICC3, full full feature set, corr high correlation filter, pca principal component analysis, lincomb linear 
combinations filter, LV left ventricle, RV right ventricle.

Number of potential 
features

Lincomb used
Corr thresholds
Single mask /combined mask

PCA thresholds
Single mask/combined maskLV mask RV mask

Original 348 348 Yes 0.6/0.5 0.9/0.85

ICC2 22 46 No 0.9/0.9 0.9/0.9

ICC3 8 24 No – –

DAFIT 348 348 Yes 0.6/0.4 0.9/0.85

DAFIT Filt2 22 46 No –/0.8 –/0.85

DAFIT Filt3 8 24 No –/0.8 –/0.85
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for each analysis. The linear classifiers used were linear, logistic, ridge, elastic net, and LASSO regression. The 
non-linear classifiers used were neural network, support vector machine (SVM) with a polynomial kernel, SVM 
with a radial kernel, and multi-layer perceptron (MLP). Finally, the ensemble classifiers used were random forest 
and generalized boosted regression model (GBRM). Models were fit to the full feature set and in combination 
with feature selection techniques as described in Table 3. In the Original and DAFIT analyses, linear regression, 
logistic regression, and the neural network were not fit to the full feature set, as it was not full rank, and the 
neural network was too computationally expensive. In the DAFIT analysis, the linear and logistic regression 
approaches were also not implemented in combination with the high correlation filter, as even the reduced fea-
ture set was not full rank.

Statistical analysis. Predictive performance of all classifiers was evaluated using fivefold repeated cross-
validation with five repeats, resulting in 25 total estimates of performance. For models with tuning parameters, 
important parameters were adjusted using nested cross-validation to avoid bias. Additionally, the feature selec-
tion techniques were carried out within each cross-validated split of the data, so as not to bias the estimate of 
predictive performance. Model fitting and cross-validated predictive performance was implemented using the 
 MachineShop40 and  RSNNS41 packages in R version 4.0.239. The predictive performance was measured with the 
area under the receiver operating characteristic curve (AUC) for interpretability. As models were formulated 
to predict pulmonary hypertension, AUC estimates the probability that a randomly selected subject that had 
pulmonary hypertension will have a greater predicted value than a randomly selected normal control. Higher 
AUC values indicate better predictive performance. The model fitting process was also repeated using only the 
PH subgroup compared to the normal control group. To evaluate the significance of the best performing model 
from each approach a permutation test was performed using 100 permutations of the data. The permutation test 
compares the observed measure of predictive performance (AUC) to its null distribution which is obtained by 
permuting the class labels.

Effect of confounding variables. To investigate the role of the potential confounding variables age, BMI, 
BSA, and presence of hypertension, logistic regression models were used to partition the predictive performance 
of the machine learning models into the components described by the model predictions and the confounder 
 variables42. Within each cross-validated test set, logistic regression models were built on the observed classi-
fications using three sets of explanatory variables: confounder variable only, predicted probabilities from the 
machine learning model only, and confounder and model predictions combined.

On each model, the pseudo  R243 is computed, providing the fraction of deviance explained by the inclusion 
of the variables in the model. Decomposing the pseudo  R2 values, we computed the deviance in the outcome 
explained by the confounder, the deviance explained by the model predictions, and the deviance explained by 
the both the confounder and the model predictions. Additionally, we can assess the statistical significance of 
adding model predictions to what can already by explained by the confounders using the likelihood ratio test 
(LRT) statistic computed from the models using only the confounder and the confounder and model predic-
tions combined. To account for the lack of independence between cross-validated test sets, the significant of 
the LRT statistic was evaluated non-parametrically using 100 permutations of the outcome to obtain the null 
 distribution44. To combine results across the 25 cross-validated splits, the median deviance explained, and LRT 
statistic were used. This procedure was repeated for each confounder variable and for the best performing model 
from each modeling approach for the full analysis. Each confounder was assessed separately to avoid overfitting 
the logistic regression models.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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