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Abstract

High dimensional biomedical data contain tens of thousands of features, accurate and effec-

tive identification of the core features in these data can be used to assist diagnose related

diseases. However, there are often a large number of irrelevant or redundant features in bio-

medical data, which seriously affect subsequent classification accuracy and machine learn-

ing efficiency. To solve this problem, a novel filter feature selection algorithm based on

redundant removal (FSBRR) is proposed to classify high dimensional biomedical data in

this paper. First of all, two redundant criteria are determined by vertical relevance (the rela-

tionship between feature and class attribute) and horizontal relevance (the relationship

between feature and feature). Secondly, to quantify redundant criteria, an approximate

redundancy feature framework based on mutual information (MI) is defined to remove

redundant and irrelevant features. To evaluate the effectiveness of our proposed algorithm,

controlled trials based on typical feature selection algorithm are conducted using three dif-

ferent classifiers, and the experimental results indicate that the FSBRR algorithm can effec-

tively reduce the feature dimension and improve the classification accuracy. In addition, an

experiment of small sample dataset is designed and conducted in the section of discussion

and analysis to clarify the specific implementation process of FSBRR algorithm more

clearly.

Introduction

The analysis of high dimensional disease data [1–2] is a very important research field, espe-

cially cancer [3], or mental disease (e.g. Depressive [4–5]). It is unrealistic to cure these diseases

completely, so early diagnosis or prevention plays an important role in the treatment related

disease. However, high dimension biomedical data usually contain a large number of weak rel-

evant or irrelevant features. If all the features are treated equally, the time complexity, spatial

complexity and accuracy of the prediction can be seriously affected. Therefore, feature selec-

tion is considered to be an essential step in the diagnosis of related disease using high dimen-

sion biomedical data.
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As is stated in [6], feature selection is also referred to as feature subset selection. The main

purpose of feature selection is to remove irrelevant and redundant features in the classification

process, while retaining the most valuable information of the original data. In other words, the

objective of feature selection is to select an optimal feature subset [7] from the original feature

set, which lays a good foundation for subsequent classification or learning work. As one of the

important part of knowledge discovery technology, feature selection [8] can effectively

improve the computing speed of subsequent prediction algorithm, enhance the compactness

of the prediction model, increase the generalization ability of the corresponding model, and

avoid over fitting.

Based on the above factors, feature selection has always been a hot research topic, and new

achievements are constantly emerging. For example, in [9], a feature selection method based

on multi-objective binary based biogeography optimization (MOBBBO) is proposed for gene

selection, which combines the non-dominated sorting method and the crowding distances

method into the binary based biogeography optimization (BBBO) framework. In [10], a novel

feature selection method via chaotic optimization is developed to solve the problem of balance

between exploration of the search space and exploitation of the best solutions. In [11], Liu

et al. used a discrete biogeography based optimization (DBBO) method by integrating discrete

migration model and discrete mutation model for feature selection in molecular signatures. In

[12], Li et al. proposed that a feature selection algorithm based on the multi-objective ranking

binary artificial bee colony to select the optimal subset from the original high dimensional data

while retaining a subset that satisfies the defined objective. In addition, recent advances on fea-

ture selection can be found in [13–14], in which [14] focuses on the review of the latest

research work on evolutionary computation (EC) of feature selection, and identifies the contri-

butions of these different algorithms.

To better introduce the research status of high-throughput data or high-dimensional data

based on feature selection algorithm [1, 15], the following is an overview of some representa-

tive studies in recent years. Tan et al. [1] proposed a new minimax sparse LR model for very

high-dimensional feature selections, which can be efficiently solved by a cutting plane algo-

rithm. In order to solve the problem of effectively identifying chromosome-wide spatial

clusters from high-throughput chromatin conformation capture data, a population based opti-

mization algorithm coordinates and guides the non-negative matrix factorization toward

global optima was proposed in [16]. In [17], a novel feature selection method based on high

dimensional model representation (HDMR) was proposed to solve the hyper-spectral image

classification problem. The core idea of this method is to rank the global sensitivity index cal-

culated via the HDMR to find the most relevant features. In order to explore and identify small

clusters of spatially proximal genomic regions, Li et al. [18] proposed evolutionary computa-

tion methods to evolve and confirm functionally related genomic regions. Chen et al. [19] pro-

posed a feature selection algorithm, which was named genetic programming (GP) with

permutation importance (GPPI), to select features of high-dimensional symbolic regression

(SR) using GP. Based on two typical applications of microarray analysis and target detection,

Augusto et al. [20] discussed the feature selection of high-dimensional spatial data. In order to

solve the problem of high-dimensional data classification, Zhang [21] proposed an improved

artificial bee colony (ABC) algorithm to select the optimal feature subset. Meanwhile, to

improve the convergence of ABC, the modified ABC algorithm (named OGR-ABC algorithm)

introduces three modified strategies including opposite initialization, global optimum based

search equations and ranking based selection mechanism.

Through the analysis of the above research, it is not difficult to find that feature selection

process mainly includes two steps [22]: search strategy and evaluation criterion. Based on

whether or not the classifier itself is used as feature evaluation index, evaluation criterion can
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be categorized into the wrapper method and the filter method. The wrapper method [23, 24]

to evaluate superiority and inferiority of the optimal feature subset under the premise of the

classification algorithm unchanged. Meanwhile, the corresponding classification accuracy is

adopted as an index to select optimal feature subset. So the feature subset selected by the wrap-

per method is not universal. It is necessary to execute the feature selection process again when

the classification algorithm is changed. Therefore, its time complexity is too high, especially

for high dimension data, and the execution time of the algorithm may be longer. Another eval-

uation criterion based on the filter method [25–27], the search of feature space depends on the

intrinsic correlation of the data itself rather than the classification algorithm. The filter method

is increasingly attractive because of its simplicity and fast speed. Therefore this method is more

popular than the wrapper method.

Four intrinsic correlation metrics are often adopted by the filter method to evaluate feature

subset, including MI [28], fractal dimension [29], dependency degree [30] and distance [31].

Among them, MI is considered as the most acceptable criteria due to two major advantages

[32]: (1) Measuring different relationship between nonlinear (random) variables. (2) Preserv-

ing stability of transformations in the high dimensional feature space that is invertible.

According to the above analysis, a filter feature selection method is proposed for high

dimensional biomedical data based on redundant removal in this paper. Firstly, we analyze the

four boundary extremes of correlation between feature and target class and the correlation

between feature and feature. Based on this, two redundant criterions are proposed. And then

in order to quantify the redundancy criterion, the core module based on MI is proposed: the

definition of approximate redundancy feature. Finally, the algorithm implementation is given.

Mathematical symbols and basic concepts

Mathematical symbols

There are many mathematical symbols used in this study. To improve the readability, we list

these mathematical symbols and their abbreviations in below.

P:a probability measure.

F: feature set, F = {F1,F2,. . .,Fi,. . .,Fn}.

Fi: Fi = {fi,1, fi,2,. . .,fi,n}.

Ai: Ai = F −{Fi}.

C: class attribute, C = {C1,C2,. . .,Ci,. . .,Cm}.

R: the relevance between any two variables.

Ri,j: the relevance between any pair of feature Fi and Fj,i6¼j.

Ri,c: the relevance between any feature Fi and class attribute C.

Rmax: the maximum value of Ri,c.

�R: the mean value of Ri,c, that is �R ¼ 1

n

Pn
i¼1

Ri;c.

Basic concepts

For laying a base for further investigation, three basic concepts [33] (strongly relevant feature,

weakly relevance feature, and irrelevant feature) used in this study are listed as follows.

Classification of high dimensional biomedical data based on feature selection using redundant removal

PLOS ONE | https://doi.org/10.1371/journal.pone.0214406 April 9, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0214406


Strong relevance: Fi is strongly relevant feature iff there exists P(Fi,Ai)>0 such that

PðCjFi;AiÞ 6¼ PðCjAiÞ ð1Þ

Weak relevance: Fi is weakly relevant feature iff it is not strongly relevant (i.e. P(C|Fi,Ai) 6¼

P(C|Ai)), there exists A0i � Ai and PðFi;A0iÞ > 0 such that

PðCjFi;A
0

iÞ 6¼ PðCjA0iÞ ð2Þ

Irrelevance: Fi is irrelevant feature iff it are not strongly relevant and weakly relevant, there

all A0i � Ai and PðFi;A0iÞ > 0 such that

PðCjFi;A
0

iÞ ¼ PðCjA0iÞ ð3Þ

Strong relevance indicates that the feature is very important for classification accuracy

improvement, so it can’t be arbitrarily removed. Weak relevance indicates that the feature can

sometimes contribute to improve prediction accuracy. Irrelevance indicates that the feature is

useless on the improvement of classification accuracy, so it can be directly deleted.

Method

Determination of redundancy criterion

It is difficult to determine that the complete correlation between any pair of feature in the

actual calculation process, and then determine whether there is redundancy among features.

To combat this, a redundancy criterion based on the correlation is proposed in this study to

lay the foundation for further feature selection. Based on three basic concepts, the redundancy

of feature Fi is analyzed under different extreme values of Ri,c and Ri,j. Different cases of

extreme value are shown in Table 1.

It is easy to draw the following four conclusions after analyzing four cases:

Conclusion 1: Ri,c is large, which means that Fi contains more information about C. Ri,j is

large, which means that the correlation between Fi and Fj is strong. If Ri,j = 1, then Fi and Fj is

complete correlation, hence Fi is redundant. If Ri,j6¼1, it is difficult to determine the feature Fi
whether or not is redundant.

Conclusion 2: Ri,j is small, which means that the correlation between Fi and Fj is weak.

Hence Fj can’t replace Fi. In other words, no matter the size of the Ri,c, the feature Fi is not

redundant.

Conclusion 3: Ri,c is small, which means that Fi contains less information about C. Ri,j is

large, which means that the correlation between Fi and Fj is strong. In this case, the feature Fi is

redundant with higher probability. With the increase of Ri,j, this probability is also increasing.

Conclusion 4: Ri,j is small, which means that the correlation between Fi and Fj is weak. This

conclusion is consistent with the conclusions 2, no matter the size of the Ri,c, the feature Fi is

not redundant.

Based on the above four conclusions, two redundant criteria can be obtained:

Table 1. Different cases of extreme value.

Ri,c Ri,j

Case 1 large large

Case 2 large small

Case 3 small large

Case 4 small small

https://doi.org/10.1371/journal.pone.0214406.t001
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Criteria 1: when Ri,j is large, whether Fi is redundant is uncertain.

Criteria 2: when Ri,j is small, no matter the size of the Ri,c, the feature Fi is not redundant.

Definition approximate redundancy feature

Based on the two redundant criterions inthe previous section, the approximate redundancy

feature is proposed and defined in this section.

Assuming that the Ri,c of the feature Fi is very close to Rmax, it indicates that Fi contains a lot

of information about class attribute C. In this condition, only if the value of Ri,j is large enough,

Fi can be considered as an approximate redundancy feature. Otherwise, it can’t be considered

as redundancy feature. The reason is that Fi plays an important role in improving the accuracy

of classification, and can’t be easily removed as redundancy. By contrast, Assuming that the Ri,

c of feature Fi is not very close to Rmax, it indicates that Fi contains relatively less information

about class attribute C. In this condition, as long as the value of Ri,j is relatively large, Fi is con-

sidered as an approximate redundancy feature. The reason is that Fi not plays a main role in

improving the accuracy of classification. Based on the above analysis and discussion, the

approximate redundant feature is formally described in definition 1.

Definition 1 (approximate redundancy feature): There is any pair of correlation feature Fi
and Fj, and Rj,c�Ri,c.

(1) Fi is an approximate redundancy feature iff there exists, Rmax-Rj,c�δ, 0.05�δ�0.13, such

that

Ri;j � Rmax ð4Þ

(2) Fi is an approximate redundancy feature iff there exists Rmax − Rj,c> δ && Rmax − Rj,c�

α, 0.05�δ�0.13, 0.60�α�0.66, such that

Ri;j > ð
�R þ Rj;cÞ=2 ð5Þ

Definition 1indicates that Fj can be approximated as an alternative for Fi.

Correlation calculation

In general, correlation measure methods include linear and nonlinear. A nonlinear method

based on MI is adopted in this study, and the reason is that the high dimensional biomedical

data usually exist in the form of nonlinear in the real world. The correlation between any pair

of variables (X, Y) can be calculated in the following formulas (6) or (7).

IGðX;YÞ ¼ HðXÞ � HðXjYÞ ¼ HðYÞ � HðYjXÞ ð6Þ

IGðX;YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ ð7Þ

where H(X), H(X|Y) and H(X,Y) can be calculated on the basis of formulas (8), (9) and (10).

HðXÞ ¼ �
P

iPðxiÞlog2
PðxiÞ ð8Þ

HðXjYÞ ¼ �
P

jPðyjÞ
P

iPðxijyjÞlog2
PðxijyiÞ ð9Þ

HðX;YÞ ¼ �
P

jPðyjÞ
P

iPðxi; yjÞlog2
Pðxi; yiÞ ð10Þ

According on the above three formulas, the value of H(X|Y) or H(X,Y) is smaller when Y
contains more information about X. In other words, the greater value of IG(X;Y), which

means there are more relevant between X and Y.
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To prevent the scale of data is not unified and to reduce the effect of extreme value, each IG
(X;Y) is normalized to the range [0, 1] using formula (11).

R ¼
2 � IGðX;YÞ
HðXÞ þHðYÞ

ð11Þ

Algorithm implementation

Based on the definition of the approximate redundancy feature and the correlation calculation

method, a feature selection algorithm for high dimension biomedical data classification based

on redundant removal (FSBRR) is given in Algorithm 1.
Algorithm 1: FSBRR
Input: Feature set: F = {F1,F2,. . .,Fi,. . .,Fn};

Class label: C = {C1,C2, . . ., Ci. . .,Cm};
Parameter: τ, δ, α.

1.for i = 1:n
2. Ri,c = 2 � IG(C;Fi)/(H(C) + H(Fi));
3.if Ri,c � τ % a preset threshold value, remove
irrelevance features
4.Addto(F’, Fi);
5.Addto(R’, Ri,c);
6.end
7. end
8. �R ¼ 1

n

Pn
i¼1 Ri;c; % the mean value of Ri,c, 1�i�n

9. [X, I] = sort(Ri,c, ‘descend’); % where Ri,c�R’
10.F’ = F’(I); % order F’ in descending Ri,c value
11 for i = 1:size(I,2)-1;
12.Fi = F’(:,i); Ri,c; % to select current first feature

in each cycle, i.e. first variable
13. for j = i+1: size(I,2)
14.Fj = F’(:,j); % to select next feature (or

variable)
15. Rj,c = 2 � IG(C;Fj)/(H(C) + H(Fj))
16. Ri,j = 2 � IG(Fi;Fj)/(H(Fi) + H(Fj))
17. if Fj 6¼ Null
18. if Ri,c- Rj,c�δ&&Ri,j�Ri,c% 0.05�δ�0.13
19. remove(F’, Fj); % removing approximate redundancy

features
20.else if Ri,c- Rj,c>δ&&Ri,c- Rj,c<α&&Ri,j> (�R+Rj,c)/2% 0.05�δ�0.13,
0.60�α�0.66
21. remove(F’, Fj);
22. end
23. end
24. end
25.end
26.Foptimal = F’;
Output: Foptimal

The time consumption of FSBRR algorithm is mainly used to calculate Ri,c and Ri,j, so its

atomic operation is the calculation of Ri,c and Ri,j. Assuming that a dataset contains n features,

the time complexity of this algorithm used for removing irrelevant feature is linear time order

O(n) (line 1 to line 7). For the removing approximate redundant feature and approximate

irrelevant feature (line 11 to line 25): In the worst case, the time complexity is square time

order O(n2), and all features are not redundant features at this time. In the best case, the time

complexity is linear time order O(n), and except for the first feature, the remaining n-1 fea-

tures are redundant features at this time.
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Performance evaluation function

In this study, classification accuracy and the number of selected features are used to design the

performance evaluation function [34–35], which is shown in formula (12).

performance ¼ w1 � Accþ w2 � 1 �
n
N

� �
ð12Þ

n is the number of selected features and N is the total number of features. w1 and w2 are pre-

defined weight coefficients, which are used to adjust the importance of two indicators in the

performance evaluation function. In this study, the values of w1 and w2 are set to 0.999 and

0.001 respectively. The main reason for this setting can be attributed to the following three

aspects: (1) Under the prerequisite of data dimensionality reduction, this study main focuses

on the use of classification accuracy as a metric of feature selection algorithm. (2) The number

of selected features is significantly reduced, but the classification accuracy is not improved,

such dimensionality reduction of high-dimensional data will lose its original application value.

(3) The performance evaluation function with high weight coefficient of classification accuracy

and low weight coefficient of the number of selected features has been recognized and widely

applied in many feature selection studies, such as [34]. In addition, Acc is classification accu-

racy as defined in formula(13).

Acc ¼
Cnum

Cnum þ Inum
� 100% ð13Þ

Cnum and Inum are the number of correct and incorrect classification labels respectively.

Experiments

Data description

Eight well-known biomedical datasets (Table 2) were used to evaluate the performance of

FSBRR algorithm. These dataset includes eight aspects of disease diagnosis data. The data

dimension range was from 319 to 21548. The first three datasets were taken from the Kent

Ridge Biomedical [36]. p53 Mutants and Arcene were taken from the UCI dataset [37]. Breast

invasive carcinoma (BRCA), Glioblastoma multiforme (GBM), and tumour sequencing proj-

ect (TSP) were taken from the TCGA [38].

Experimental design

To evaluate the performance of FSBRR algorithm, under the same conditions, we designed

and conducted the following experiments: eight high dimensional biomedical data were com-

pared and analyzed by FSBRR, Relief (a filter methodbased on the nearest neighbor distance)

Table 2. High dimension biomedical datasets.

Dataset Attributes Instances Classes

ColonTumor 2000 62 2

Nervous-System 7129 60 2

DLBCL-Stanford 4026 47 2

p53 Mutants 5409 16772 2

Arcene 10000 200 2

BRCA 21548 1097 2

GBM 18348 528 2

TSP 319 163 2

https://doi.org/10.1371/journal.pone.0214406.t002
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[39], maximum relevance and minimum redundancy (mRmR) [40] and genetic algorithm

(GA) [41], respectively. In this experiment, the same conditions contain two meanings: (1)

Random forest (RF, numTrees = 10), K-nearest neighbor (KNN, k = 1), and Support Vector

Machine (SVM, Linear Kernel) were adopted as classifier to evaluate classification perfor-

mance. (2) In FSBRR algorithm, the parameter τ is set to 0, and the purpose is that to avoid los-

ing the weak correlation feature without prior knowledge. In addition, after adaptive testing,

the values of δ and α were set to 0.08 and 0.64 respectively.

To obtain an unbiased experimental result, 10 fold cross validation was adopted to evaluate

the classification performance. Each dataset was stratified into 10 folds, of which 9 folds were

used as a training sample and the remaining 1 fold was used as a testing sample. Moreover, in

order to get a statistically meaningful result, each experiment was executed 100 times indepen-

dently. This means that the classification task is executed 1000 times in total, and the average

value is taken as the result in finally. The above experiments were implemented in Matlab

2017a. The experimental hardware and software configuration is shown in Table 3.

Results

For the eight datasets, we have conducted the experiments described in above section. The six

major statistical indicators were compared and analyzed, and the results were shown in

Table 4.

From Table 4, we can observe the following aspects: (1)The FSBRR algorithm obtained the

highest Mean among all the four feature selection algorithms for twenty-one out of twenty-

four experimental results. The highest Mean(s) were 92.01%, 80.17%, 82.99%, 94.31%, 85.67%,

86.26%, 78.63%, 91.91%, 74.24%, 83.68%, 85.67%, 84.42%, 77.69%, 87.68%, 73.18%, 78.91%,

86.25%, 80.61%, 82.02%, 80.09%, and 72.35% respectively. Meanwhile, we notice that the max-

imum Mean improvement of FSBRR was 19.84% compared with the full set. (2) RF-based GA

algorithm uses GBM dataset, and KNN-based GA algorithm uses p53 Mutants and GBM data-

sets to obtain highest Mean of 82.03%, 89.90%, and 81.39%, respectively. However, Std,

MeanFN and RT of GA were significantly higher than FSRRR in these three experiments. (3)

The Std among for eighteen out of twenty-four experimental results obtained by FSBRR was

smaller than other three algorithms. (4) Four feature selection algorithms can effectively

reduce the feature dimension, but the dimension reduction of the FSBRR algorithm was the

most obvious. In FSBRR, Relief, mRmR and GA, GA belongs to the wrapper feature selection

algorithm, so there were differences in the number of feature subsets for RF, KNN and SWM

classifiers. (5) In most experiments, except for the running time index, the other performances

of RF were significantly better than the KNN and SVM for the same dataset. Such results indi-

cate that for the specified dataset, to get the best experimental results, a matching classification

(or learning) algorithm must be found.

Fig 1 was obtained by statistical analysis of Table 4. It shows four average attribute values

(avg(Mean), avg(Std), avg(MeanFN), and avg(RT)) of four feature selection algorithms. From

Table 3. Hardware and software configuration of experimental.

No. Components Parameters

1 CPU Intel i7-8550U 4.0GHz

2 RAM 16G

3 Operating system (OS) Windows 7

4 Software platform Matlab 2017a

https://doi.org/10.1371/journal.pone.0214406.t003
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Table 4. Experimental results based on eight data sets.

Classifier Dataset Algorithm Mean (%) Max(%) Min(%) Std MeanFN RT(s)

RF ColonTumor Full Set 78.21 82.32 71.46 3.51 2000 –

FSBRR 92.01 95.45 91.21 1.97 34 1.04

Relief 85.49 89.94 81.23 3.16 38 2.19

mRmR 86.61 90.72 82.77 3.85 42 2.75

GA 89.13 95.71 84.12 3.91 36 19.18

Nervous-System Full Set 61.33 74.61 54.86 5.68 7129 –

FSBRR 80.17 84.02 74.64 3.02 37 5.23

Relief 71.56 81.24 68.88 3.97 44 14.72

mRmR 72.42 76.43 69.61 3.24 42 16.37

GA 75.76 79.21 69.56 3.87 48 90.01

DLBCL-Stanford Full Set 76.60 80.21 73.79 2.87 4026 –

FSBRR 82.99 84.16 79.30 2.33 29 2.41

Relief 75.48 81.64 71.63 3.34 45 3.84

mRmR 76.58 84.61 69.15 6.42 54 4.10

GA 79.46 82.46 75.16 3.12 91 31.80

p53 Mutants Full Set 89.66 92.18 81.61 3.42 5409 –

FSBRR 94.31 98.00 90.56 3.19 39 2.49

Relief 90.42 94.25 84.25 4.06 54 4.14

mRmR 87.91 91.14 79.79 5.48 37 4.52

GA 94.16 98.31 91.21 3.01 64 37.44

Arcene Full Set 73.14 80.60 66.60 4.87 10000 –

FSBRR 85.67 87.30 82.20 2.11 51 12.34

Relief 81.01 84.01 77.78 2.06 73 24.94

mRmR 78.80 84.02 72.02 4.82 71 20.34

GA 77.14 80.02 74.31 3.16 91 128.67

BRCA Full Set 80.57 85.51 76.99 3.29 21548 –

FSBRR 86.26 89.24 81.14 2.51 148 18.84

Relief 85.22 90.10 79.44 4.01 241 26.25

mRmR 83.54 85.92 80.36 2.21 189 24.01

GA 85.16 88.90 81.12 2.62 246 29.60

GBM Full Set 69.92 80.16 62.77 8.45 18348 –

FSBRR 80.95 86.78 75.49 3.95 61 4.56

Relief 76.14 82.15 70.65 4.29 53 4.87

mRmR 74.90 79.12 69.44 3.96 68 5.42

GA 82.03 90.25 75.02 5.48 93 12.84

TSP Full Set 68.77 75.87 63.21 4.26 319 –

FSBRR 78.63 81.23 76.99 1.83 108 0.47

Relief 67.01 69.89 61.32 3.01 135 0.75

mRmR 56.96 62.42 50.42 4.12 124 0.50

GA 67.26 70.51 60.23 3.96 137 0.80

(Continued)
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Table 4. (Continued)

Classifier Dataset Algorithm Mean (%) Max(%) Min(%) Std MeanFN RT(s)

KNN ColonTumor Full Set 75.80 81.32 71.02 3.69 2000 –

FSBRR 91.91 95.01 88.09 2.38 34 0.75

Relief 83.41 88.91 78.13 3.76 38 1.87

mRmR 84.69 89.12 79.58 3.88 42 2.04

GA 86.67 88.33 82.33 2.53 38 9.16

Nervous-System Full Set 56.86 69.66 53.94 4.17 7129 –

FSBRR 74.24 81.25 70.11 3.22 37 2.88

Relief 65.69 70.89 63.28 3.36 44 9.14

mRmR 65.77 69.12 62.14 3.28 42 8.31

GA 73. 62 76.58 69.14 2.93 56 73.82

DLBCL-Stanford Full Set 78.24 82.46 62.36 5.83 4026 –

FSBRR 83.68 88.78 79.47 3.42 29 1.88

Relief 76.32 84.47 71.95 4.73 45 2.43

mRmR 76.98 87.71 71.54 5.86 54 3.01

GA 80.06 82.78 72.83 3.79 97 24.31

p53 Mutants Full Set 84.93 90.15 80.61 4.01 5409 –

FSBRR 88.30 92.01 85.50 2.09 39 2.04

Relief 85.20 89.23 81.99 2.45 54 3.78

mRmR 84.27 87.50 80.09 2.29 37 4.14

GA 89.90 95.14 87.04 2.99 56 39.77

Arcene Full Set 67.60 77.38 62.57 4.38 10000 –

FSBRR 85.67 89.30 79.20 3.02 51 4.98

Relief 82.01 87.01 79.04 2.89 73 9.04

mRmR 78.93 86.33 75.18 4.34 71 9.79

GA 79.13 84.78 75.90 3.41 87 84.46

BRCA Full Set 78.51 83.42 72.81 4.87 21548 –

FSBRR 84.42 87.24 80.02 2.71 148 10.19

Relief 83.75 87.06 74.59 5.23 241 19.10

mRmR 82.43 87.88 75.31 4.85 189 20.21

GA 83.01 87.11 78.01 3.02 251 62.62

GBM Full Set 68.82 80.64 65.55 4.58 18348 –

FSBRR 80.12 87.07 78.30 2.87 61 1.85

Relief 74.85 80.02 70.88 3.81 53 2.42

mRmR 74.82 80.25 66.40 5.56 68 2.87

GA 81.39 88.51 75.24 3.95 88 5.50

TSP Full Set 62.72 74.87 61.21 4.86 319 –

FSBRR 77.69 82.31 76.46 2.16 108 0.46

Relief 61.75 69.23 60.86 3.23 135 0.69

mRmR 57.87 63.79 53.18 4.27 124 0.51

GA 69.56 71.88 66.81 2.26 139 0.81

(Continued)
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Table 4. (Continued)

Classifier Dataset Algorithm Mean (%) Max(%) Min(%) Std MeanFN RT(s)

SVM ColonTumor Full Set 73.86 80.63 70.66 3.98 2000 –

FSBRR 87.68 91.46 83.21 3.48 34 1.12

Relief 80.46 84.18 75.44 4.23 38 3.22

mRmR 81.78 85.71 75.81 4.58 42 3.96

GA 84.16 89.66 81.62 4.40 48 28.86

Nervous-System Full Set 53.34 65.15 50.86 6.58 7129 –

FSBRR 73.18 78.12 70.69 3.28 37 8.78

Relief 68.56 72.61 62.81 3.92 44 17.89

mRmR 65.78 72.48 61.15 5.02 42 19.96

GA 68.16 72.11 63.56 3.52 45 42.11

DLBCL-Stanford Full Set 70.16 79.21 60.79 5.86 4026 –

FSBRR 78.91 83.45 74.41 4.31 29 2.51

Relief 72.96 74.61 62.69 5.95 45 4.41

mRmR 72.15 77.65 69.15 3.82 54 3.25

GA 72.85 77.45 68.06 3.85 91 12.54

p53 Mutants Full Set 85.56 87.76 80.13 4.11 5409 –

FSBRR 86.25 90.02 82.15 3.11 39 2.35

Relief 84.15 87.26 80.36 3.09 54 2.85

mRmR 82.15 87.58 76.05 4.85 37 3.91

GA 84.55 88.12 78.51 3.98 61 20.51

Arcene Full Set 70.56 74.15 66.58 3.55 10000 –

FSBRR 80.61 84.52 78.15 3.54 51 5.55

Relief 76.59 80.12 70.54 3.85 73 8.52

mRmR 74.75 79.65 70.25 4.65 71 8.15

GA 71.35 75.85 65.35 4.05 115 55.85

BRCA Full Set 77.25 80.24 74.21 3.17 21548 –

FSBRR 82.02 86.55 80.85 1.80 148 7.56

Relief 79.05 85.89 76.19 3.29 241 8.58

mRmR 78.49 86.01 71.71 5.85 189 9.77

GA 79.96 86.36 75.45 3.25 262 8.40

GBM Full Set 65.12 71.55 61.10 3.40 18348 –

FSBRR 80.09 85.55 77.35 2.01 61 6.45

Relief 74.01 78.23 71.08 2.75 53 7.88

mRmR 73.99 79.00 70.59 3.44 68 8.58

GA 80.03 87.10 76.40 3.36 101 9.51

TSP Full Set 64.45 72.14 60.45 5.84 319 –

FSBRR 72.35 76.18 69.98 2.25 108 0.42

Relief 62.65 67.18 58.10 3.94 135 0.70

mRmR 56.90 61.54 51.95 4.75 124 0.52

GA 64.67 72.09 60.46 5.18 140 0.75

Note: (1) full set: a set of all features that have not been processed by feature selection algorithm. (2) Mean (%): the mean of performance. (3) Max(%): the highest of

performance. (4) Min(%): the lowest of performance. (5) Std: the standard deviation. (6) MeanFN: the mean number of selected feature. (7) RT(s): running time, unit is

second.

Boldface indicates the best experimental result.

https://doi.org/10.1371/journal.pone.0214406.t004
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Fig 1 we can observe that performance, stability, the feature number of optimal subset, and

time complexity of FSBRR was superior to the other three algorithms. We believe that the rea-

sons for obtaining this experiment were: (1) FSBRR algorithm uses Ri,j to explore the horizon-

tal correlation between features and features, and the longitudinal correlation between features

and classes was explored by Ri,c. Meanwhile, based on the basic relevance theory, the horizon-

tal relevance and the longitudinal relevancewere effectively combined. (2) FSBRR algorithm

not only removes the irrelevant features, but also removes the approximately redundant

features.

Discussion and analysis

To verify the effect of parameters δ and α on the performance of FSBRR algorithm, the classifi-

cation accuracy of 8 datasets was tested on RF, KNN, and SVM, respectively. In the first experi-

ment, when the parameter α = 0.6 keep constant, the parameter δ increased from 0 to 0.2 with

a step length of 0.01. In the second experiment, when the parameter δ = 0.1 keep constant, the

parameter α increased from 0.5 to 0.7 with a step length of 0.01. Other experimental proce-

dures are described in experimental design section. Moreover, to facilitate discussion and

analysis, the classification accuracy was only considered in here. The results of the two experi-

ments were shown in Figs 2 and 3. Statistical analysis of the experimental results in Figs 2 and

Fig 1. The average attributes value of four feature selection algorithms based on eight datasets.

https://doi.org/10.1371/journal.pone.0214406.g001
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3 reveals that: when the highest classification accuracy was obtained for eight datasets,

although the values of parameters were different, their ranges of value were overlapped. By

selecting the results of the top 20% of the classification accuracy, we can clearly observe that

the saliency overlap of the parameter ranges, and the results were shown in Fig 4. The opti-

mum range of parameter δ is [0.05, 0.13], and the optimum range of parameter α is [0.60,

0.66]. See the dotted line marker range in the Fig 4.

The approximate optimal feature subset of each original dataset may be 1 or more. The pur-

pose of feature selection is to find one of the optimal subset. However, the dimensions of the

optimal subset for different original datasets are different, and the correlation values (Ri,j and

Ri,c) distribution of different datasets is vary, which leads to the difference of parameter values

(δ or α). According to the statistical analysis of the above two experimental results, the parame-

ters δ and α should be selected within the range in [0.05, 0.13], and the range in [0.60, 0.66],

respectively. Because the classification accuracy may be reach the highest value in this range.

In order to further analysis and interpretation of our proposed algorithm, a Breast cancer

Wisconsin (Diagnostic) [42] dataset from UCI was used in this subsection. This dataset con-

tains two kinds of data: malignant and benign. It was composed of 569 instances, and each

instance contains 32 attributes. For FSBRR algorithm, the relationship between relevance and

redundant features was analyzed using RF algorithm. Other experimental procedures are

described in experimental design section. Besides, to facilitate discussion and analysis, the clas-

sification accuracy was only considered in here.

The main results of this experiment were listed in Table 5. For Table 5 there were two attri-

butes need to be explained which are: (1) "Feature set", for example, {5} was the subscript of

the feature, which is the fifth feature. (2) "Change" was the accuracy change based on the cur-

rent feature set. From Table 5 we can observe the following points: (1) {5} as the current feature

set, the accuracy rate increases after adding feature 7 (see the third row), in contrast, the accu-

racy rate reduces after adding feature 21 (see the fourth row). These results verify the redun-

dancy Criterion 1 (when Ri,j is large, whether Fi is redundant is uncertain). In this case, the

approximate redundant feature definitionis needed to determine whether the current feature

is redundant. (2) {5, 7} as the current feature set, the accuracy rate increases after adding fea-

ture 18 (see the fifth row); {8, 3} as the current feature set, the accuracy rate increases after add-

ing feature 30 (see the seventh row). These results verify the redundancy Criterion 2 (when Ri,j

is smaller, no matter the size of the Ri,c, the feature Fi is not redundant).

Conclusions

In this paper, the relationship between two kinds of correlation (Ri,c and Ri,j) is established,

which effectively combines the correlation between features and classes and the correlation

between features and features to eliminate redundant features. Because the determination of

completely redundant features in actual operation is difficult to realize, so we first analyze four

kinds of boundary conditions between Ri,c and Ri,j, and then a redundancy feature criteria is

proposed. On this basis, the approximate redundancy features are defined in this study.

Finally, we have proposed a new feature selection algorithm based on approximate redundancy

removal (FSBRR) for high dimensional biomedicine data classification.

To verify the effectiveness of the FSBRR algorithm, three classification algorithms (RF,

KNN and SVM) are used to compare the FSBRR and three typical feature selection algorithms

on eight high dimension biomedical datasets. The experiment results show that the FSBRR

algorithm can effectively remove redundant features to improve the classification perfor-

mance. Additionally, we also designed a set of comparative experiments to discuss and analyze

the effects of parameters δ and α on the performance of FSBRR algorithm.
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Fig 2. The relationship between parameter δ and classification accuracy.

https://doi.org/10.1371/journal.pone.0214406.g002
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Fig 3. The relationship between parameter α and classification accuracy.

https://doi.org/10.1371/journal.pone.0214406.g003
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Fig 4. The range of parameter values when the classification accuracy is located in the top 20% based on FSBRR algorithm.

https://doi.org/10.1371/journal.pone.0214406.g004

Table 5. The relationship between relevance and redundant feature based on FSBRR algorithm.

Feature set Accuracy (%) Change Ri,c Ri,c-value Ri,j Ri,j-value

{5} 83.30 – R5,c 0.9157 – –

{5,7} 87.12 " R7,c 0.9011 R5,7 0.9454

{5,21} 83.16 # R21,c 0.8045 R5,21 0.9101

{5,7,18} 87.64 " R18,c 0.4562 R5,18 /R7,18 0.2131/0.1983

{8,3} 84.50 – R8,c / R3,c 0.8934/0.9013 – –

{8,3,30} 87.86 " R30,c 0.7120 R8,30 /R3,30 0.3010/0.2139

https://doi.org/10.1371/journal.pone.0214406.t005
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