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ABSTRACT

The Cys2His2 zinc finger is the most common DNA-
binding domain expanding in metazoans since the
fungi human split. A proposed catalyst for this ex-
pansion is an arms race to silence transposable el-
ements yet it remains poorly understood how this
domain is able to evolve the required specificities.
Likewise, models of its DNA binding specificity re-
main error prone due to a lack of understanding of
how adjacent fingers influence each other’s binding
specificity. Here, we use a synthetic approach to ex-
haustively investigate binding geometry, one of the
dominant influences on adjacent finger function. By
screening over 28 billion protein–DNA interactions
in various geometric contexts we find the plasticity
of the most common natural geometry enables more
functional amino acid combinations across all tar-
gets. Further, residues that define this geometry are
enriched in genomes where zinc fingers are preva-
lent and specificity transitions would be limited in
alternative geometries. Finally, these results demon-
strate an exhaustive synthetic screen can produce
an accurate model of domain function while provid-
ing mechanistic insight that may have assisted in the
domains expansion.

INTRODUCTION

The Cys2His2 zinc finger (ZF) is the most common DNA-
binding domain (DBD) in metazoan genomes yet many in-
fluences that govern its base recognition remain poorly un-

derstood (1–3). This seemingly simplistic DBD recognizes a
3–4 base target using residues on the amino-terminus of its
alpha helix (4) (Figure 1A). The stability of this small do-
main (typically 23 amino acids) is provided by the two cys-
teines and two histidines that coordinate a zinc ion as well
as a small number of hydrophobic residues that pack into
the core of the domain (5). These stabilizing residues can be
thought of as structural as mutations at these positions lead
to misfolding and loss of function. The remaining positions
are somewhat flexible as a wide range of amino acids can be
found at the nonstructural positions of the domain in na-
ture (2,6,7). Screens of natural ZFs (7,8), as well as synthetic
proteins that only assay residues on the helix (9,10), estab-
lish that examples of individual domains exist that are able
to recognize any 3-base target (11). These results demon-
strate that while any nonstructural residues within a single
ZF may have subtle influences on specificity and affinity,
recognition of any 3-base sequence can be as simple as 3–6
contacts provided by the residues on the helix. Neverthe-
less, models of ZF specificity struggle to accurately predict
the target preference of ZF transcription factors (TFs), or
even which ZFs of the protein engage the DNA. This failure
implies that influences beyond the helix have been absent or
underappreciated in our understanding of the domain.

In human, the ZF is utilized by nearly half of the TFs
(12) but unlike other DBDs that are strongly conserved, the
ZF appears to be evolving rapidly with the base-specifying
residues under positive selection (6,11). PRDM9 is an ex-
cellent example as this protein’s function to define mei-
otic recombination hotspots has remained conserved from
chicken to human while the base-specifying residues are
different (13,14), allowing the protein to evolve and bind
new sequences that may provide advantages for the host
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Figure 1. Investigating the influence of boundary residues on adjacent finger function. (A) A single zinc finger structure and the common interactions with
a 3–4bp target. Residues –1 through 6 of the alpha helix can be positioned to contact three primary bases labeled B1, B2, and B3, from 5′ to 3′. A fourth
contact is sometimes observed through a cross-strand contact between position 2 of the helix and the base immediately 3′ to its primary triplet (shown with
dotted arrow). Residues –1, 2, 3 and 6 are the primary contributors to specificity (bold, yellow) and are therefore referred to as the ‘core helical residues’,
however positions 1 and 5 can also contribute to base recognition. (B) A structural model of adjacent fingers and their potential interface contacts. The core
residues of each helix have been labeled with arrows indicating which base they are likely to specify. Red arrows indicate contacts made by position 6 of the
N-terminal finger and position 2 of the C-terminal finger. This base pair is boxed in red and referred to as the overlap position as both fingers may interact
with the base pair simultaneously leading to synergy or conflict. Positions 9 and -2 of the N and C –terminal fingers, respectively, are shown in green. These
are referred to as the boundary residues, or as a set, the boundary residue pair, and structural evidence indicates their interaction influences the geometry
with which adjacent fingers bind the DNA. (C) Structural evidence is limited to 8 unique boundary pairs recovered from 22 adjacent finger structures
(left) and models of the boundary residue influence are limited by this small set (middle) while human zinc fingers employ significantly more boundary
residue pairs than the models can account for (right). (D) Six libraries of zinc fingers were screened with a bacterial one-hybrid assay to recover amino acid
combinations able to bind each of the possible 64 NNN targets. In this assay, only functional zinc finger – DNA interactions will recruit the polymerase
to the weak promoter that drives the reporter (HIS3) and lead to survival, allowing for the recovery of potentially rare but functional variants from the
library. Each of the libraries employed a different set of boundary residues that represent the six most common adjacent finger geometries (RS, RR, VS,
KS, IN and KR) while the six base-specifying residues of the helix (noted in 1A) were fully randomized. Each library was screened in 64 independent
experiments, one for each binding site in the ‘NNN’ position of the cartoon. (E) From each combined set of 64 screens, different numbers of unique helices
were recovered depending on which boundary pair was employed, with mode 1 showing a roughly 5-fold higher number than mode 5. (F) Not all selections
were successful. The number of failed selections by mode is shown.
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species. Similarly, the largest class of ZFs in human are
the KRAB ZFs that have been proposed to bind and si-
lence transposable elements and, supporting this hypoth-
esis, for the KRAB ZFs where their DNA-binding speci-
ficities are known, they are mostly predicted to bind one
of these elements (3,15,16). This proposed ‘arms race’ pro-
vides a plausible explanation for the necessity for TFs in
more complex eukaryotes to be able to quickly adopt new
DNA binding preferences. However, while it’s clear ZFs
have expanded to take on a wide range of specificities, it
is not clear mechanistically how the ZF domain provides
such plasticity. The modularity of the ZF, which appears to
bind DNA in independent 3 bp subunits (17), is likely a con-
tributing factor but numerous attempts to design ZF speci-
ficity would argue the contrary. Decades of work focused
on the engineering of tandem ZF arrays have repeatedly
found that the designed assembly of tandem ZF monomers
largely fail to bind the desired target (18). Rather, each ZF
monomer needs to be evolved in the neighboring finger con-
text under which it will be utilized (19,20). Therefore, de-
spite the fact that most metazoan genomes contain at least
one ZF predicted to bind each of the 64 possible 3 bp tar-
gets, while fungi and green plants have much more limited
portfolios, it is not clear how or if these adjacent finger in-
fluences that challenge engineering have been mitigated in
nature.

To better understand how ZF specificity is governed, and
ultimately how TFs function across varied genomes, it has
been a long-standing goal to provide a predictive model
or ‘code’ of ZF specificity. Toward this end, much focus
has been placed on characterizing large sets of ZF-TFs
(8,16,21). However, DNA-binding specificity of many ZF
proteins have proven challenging to characterize leaving a
large hole in our understanding of how these TFs function
(1). In fact, the DNA-binding preference for ∼40% of the
human ZFs have remained undefined though a substantial
number have been characterized in the last few years by
chromatin immunoprecipitation followed by next genera-
tion sequencing (ChIP-seq). Still, these results must be cau-
tioned as the foundation of a code as this technique can be
limited by the cell type employed, the cell-type specific frac-
tion of the genome that is accessible for binding, and the
size of the genome relative to the potential target length of
the protein. In addition, as we now know that each human
genome contains millions of variations relative to another
(22), each of these variants represent the potential creation
or disruption of a TF binding site. It is therefore unclear if
ChIP-seq results are universally predictive of the protein’s
function across the human population or simply an assay
of what the protein is capable of in the particular cell-type
utilized in that singular genome. However, many other tech-
niques have been applied to characterize the DNA-binding
preferences of ZF-TFs. Large scale bacterial-hybrid (8,23),
protein-binding microarray (24–26), and high throughput
SELEX (21,27–29) assays have focused on ZF specificity
as well. Despite these extensive studies, the models that re-
sult remain error prone and often fail to accurately predict
specificities of known ZF-TF target preferences, much less
the consequence of a mutation within the domain. Interest-
ingly, while efforts that characterize large sets of full-length

ZF-TF proteins benefit by describing what that TF is ca-
pable of binding in vivo, many specificities determined for
these proteins cover fewer nucleotides than one would ex-
pect based on the number of ZFs they employ. Therefore,
it is difficult to determine empirically which ZFs are mak-
ing the base-specifying contacts, complicating any models
derived from the results. Conversely, projects that have ex-
haustively assayed libraries of single ZFs have produced
the most predictive models (7,10). This is likely due to the
small collection of amino acid combinations sampled by
any set of naturally occurring TFs while the exhaustive
screens of single ZFs consider enormous helical diversity in
a single, controlled context providing a more comprehen-
sive starting point from which to build a model. However,
these investigations have failed to consider the influence of
neighboring fingers which ultimately limits their predictive
potential.

Currently, the most accurate model of ZF specificity is
based on the synthetic screen of a collection of over 47,000
single ZF domains taken from naturally occurring ZF-TFs
(7). This collection samples diversity across the domain but
the scale of the screen is limited when asking questions that
go beyond the base-specifying residues of the helix. In ad-
dition, the model is derived from the 8138 ZFs that were
enriched in the screens, or just 17.3% of the ZFs sampled,
yet the model predicts over 62% of natural ZFs should be
functional. Therefore, over 70% of the ZFs predicted to be
functional fail this screen presumably due to their expres-
sion out of their natural context and the external factors
that might influence their engagement with the DNA. These
results imply that context is a dominant influence on ZF
specificity that has either been overlooked or under sampled
in all prior screens. A truly predictive model of ZF speci-
ficity will require the exhaustive investigation of each factor
that impacts this context and how they influence the ZF-
DNA engagement, both individually and combinatorially.
For instance, two residues on adjacent ZFs interact with
one another and have been proposed to modify the geom-
etry with which the ZFs engage the DNA (positions 9 and
–2 of Figure 1B) (30). Models based on ZF structures re-
veal six distinct geometries (hereafter referred to as modes),
each that place the ZF helix at different angles and/or dis-
tances from the DNA, modifying the strategies with which
it might engage any target. This geometry may have a large
impact on ZF function as mutations in position 9 of human
ZFs are enriched in cancer samples (31). However, the in-
fluence of these residues on binding mode is still somewhat
hypothetical, based on a small set of structures and a com-
prehensive investigation is lacking. In addition to geome-
try, as ZF-TFs use tandem arrays of closely linked ZFs to
recognize their targets, this proximal, linked binding leads
to several such factors that contribute to complex interac-
tion networks as contacts made by adjacent ZFs are known
to influence one another. The most common example is a
cross-strand contact that is sometimes made by position 2
of the helix with the base that precedes the ZF’s primary 3-
base target (Figure 1B) (32). This contact is observed in sev-
eral crystal structures, for example, in the Zif268 structure
position 2 aspartic acids of different ZFs make cross-strand
contacts with either an adenine or cytosine (4,33). Since the
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adjacent ZF is also specifying the same base pair, this posi-
tion of overlap in ZF targets can be a source of synergy or
conflict. In addition to the cross-strand contact, all of these
interactions with the DNA are made in close proximity and
contacts made by helical residue 6 of an N-terminal finger
can be within hydrogen bond distance of contacts made by
position –1 of the adjacent, C-terminal ZF. As such, the pre-
dicted specificity of a single ZF could be ‘overruled’ by in-
compatibility with the overlap base specified by the adjacent
finger or through conflict between the proximal side chains
at the ZF’s interface.

To fully understand these adjacent finger influences and
provide mechanistic insight will require that we go beyond
the relatively small set of ZF helices that have evolved in na-
ture and provide comprehensive studies directly focused on
these parameters. Here we have exhaustively screened large
synthetic ZF libraries that systematically investigate one ad-
jacent finger influence, geometry, by independently consid-
ering pairs of residues at positions 9 and –2 that are pre-
dicted to result in the six most common geometric modes.
While we should note that we cannot be certain that the
amino acids chosen to represent each binding mode will
universally place each zinc finger in the exact, predicted ge-
ometric arrangement, this exhaustive approach has uncov-
ered several consequences related to the chosen residues and
therefore their presumed geometric relationship. For exam-
ple, each mode has a different code of specificity though
ZFs often engage targets with similar amino acid strate-
gies. In fact, a minor fraction of helices are unique to a
mode but the binding activity of more general helices can
vary greatly from one mode to the next. Interestingly, the
most common mode found in human ZF-TFs appears the
most flexible with regards to its specificity as functional ZFs
were recovered to bind more 3 bp targets than any other
mode and with more helical diversity. Moreover, this plas-
ticity could provide a mechanistic explanation for the ease
of this domain’s expansion as ZFs utilize this mode with
greater frequency in organisms where ZFs represent their
most common DNA-binding domain. We also demonstrate
with a pair of human TFs that their flexibility to transition
specificity would be restricted if their ZFs utilized alterna-
tive modes. In addition, Molecular Dynamic (MD) simu-
lations indicate that this plasticity may be influenced by a
more prevalent hydrogen bond between positions 9 and –
2 as well as additional contacts that are possible between
position 9 and the phosphate backbone of the DNA. Fi-
nally, by using a convolutional neural network we produce
a model that predicts natural TF-ZF specificity as accu-
rately as the prior model that was based on natural ZFs
that offered diversity throughout the domain. Conversely,
our model is based on proteins that are 90% identical (78/86
amino acids) in every assay employed demonstrating that a
synthetic approach can provide mechanistic insight without
the loss of accuracy. In sum, by using a completely synthetic
but exhaustive approach we demonstrate the importance of
the influence between adjacent ZFs and the necessity for any
model that hopes to accurately predict the functional con-
sequence of a mutation to reflect a full appreciation of these
influences.

MATERIALS AND METHODS

Bacterial one-hybrid selections to survey the influence of
mode geometry

In general, bacterial one-hybrid selections were carried out
as previously described (34). Below we first detail the ap-
proach and any modification to the prior protocols that
we have used here and provide pertinent details that ex-
plain why and how we have carried out the experiments
in these particular ways. We also include a general proto-
col for B1H selections. However, details such as protocols
for the minimal media used in our B1H assays or the con-
struction and prep of the cell line are best found in those
prior works (10,23). Also, these protocols are available upon
request.

To survey the influence of neighboring ZF geometry on
the DNA-binding landscape of the ZF domain, we used
site-directed mutagenesis to assemble diverse ZF coding li-
braries as guided by the original description of ZF geome-
try (30), and our previously published work (a description
of the library building process is listed below). Our libraries
use an NNS coding scheme at each randomized position
which provides at least one codon for each of the 20 amino
acids and one stop codon. Positions –1, 1, 2, 3, 5 and 6 of the
�-helix of the C-terminal ZF (F3) of a model Zif268-based
system were randomized. The constant fingers at positions
1 and 2 of the 3-fingered protein are listed below as well as
the sequences they interact with. For each mode library, the
same randomization scheme was employed with the same
constant fingers, however, the amino acids at helical posi-
tion 9 of finger 2 and position –2 of finger 3 were chosen to
represent each mode so they are the critical difference from
one mode library to another. We refer to positions (9 and –
2) as the boundary residues (BRs) or as a pair, the boundary
residue pair (BRP). In each case, the libraries are expressed
with an N-terminal omega fusion from a strong promoter
(LppC).

For each library, a comprehensive set of protein selections
were performed in an attempt to recover amino acid combi-
nations able to bind each of the 64 possible 3 bp DNA tar-
gets. As depicted in the cartoon of Figure 1D, the two con-
stant fingers function as anchors as they will bind to the se-
quence they are known to specify and these target sequences
are placed adjacent to the 3 bp test target specific to the se-
lection. The anchor finger binding then places the random
finger in a position to interact with the 3 bp target unique
to each selection. Only helices able to interact with that se-
quence will have sufficient affinity to recruit polymerase to a
weak promoter that drives the reporter gene, HIS3. As these
cells are grown on media that lacks histidine, only cells that
harbor a ZF with a helix that can interact with the desired
sequence will activate the reporter and survive the selection.
In addition, the stringency of the selection can be controlled
by the addition of 3-amino triazole (3-AT, a competitive in-
hibitor of HIS3) in the selection media. However, to main-
tain a low stringency and recover as many functional helices
as possible, all of our protein selections were performed with
2-mM 3-AT which we have previously shown is the minimal
stringency that will still eliminate background, false positive
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survival. To screen the libraries we plated a minimum of
5 × 108 cells on 2 mM 3AT plates, though the great ma-
jority of screens considered over 1 × 109 cells. Below are
the protein sequences used for each library screened and the
general target sequences for each reporter. BRPs are listed
position 9 followed by position –2.

Mode 1 – BRP = RS
GTERPYACPVESCDRRFSRSDELTRHIRIHTGQK

PFQCRICMRNFSRSDNLRAHIRTHTGEKPFACDI
CGRKFSXXXXLXXHTKIHLRGS

Mode 1 – BRP = RA
GTERPYACPVESCDRRFSRSDELTRHIRIHTGQK

PFQCRICMRNFSRSDNLRAHIRTHTGEKPFACDI
CGRKFAXXXXLXXHTKIHLRGS

Mode 2 – BRP = RR
GTERPYACPVESCDRRFSRSDELTRHIRIHTGQK

PFQCRICMRNFSRSDNLRAHIRTHTGEKPFACDI
CGRKFRXXXXLXXHTKIHLRGS

Mode 3 – BRP = VS
GTERPYACPVESCDRRFSRSDELTRHIRIHTGQK

PFQCRICMRNFSRSDNLRAHIVTHTGEKPFACDI
CGRKFSXXXXLXXHTKIHLRGS

Mode 4 – BRP = KS
GTERPYACPVESCDRRFSRSDELTRHIRIHTGQK

PFQCRICMRNFSRSDNLRAHIKTHTGEKPFACDI
CGRKFSXXXXLXXHTKIHLRGS

Mode 5 – BRP = IN
GTERPYACPVESCDRRFSRSDELTRHIRIHTGQK

PFQCRICMRNFSRSDNLRAHIITHTGEKPFACDI
CGRKFNXXXXLXXHTKIHLRGS

Mode 6 – BRP = KR
GTERPYACPVESCDRRFSRSDELTRHIRIHTGQK

PFQCRICMRNFSRSDNLRAHIKTHTGEKPFACDI
CGRKFRXXXXLXXHTKIHLRGS

In each protein above, omega is present as an N-terminal
fusion to these proteins. The base specifying residues at po-
sitions –1 through 6 are bold and underlined for each fin-
ger. italic letters represent BRs while ‘X’s’ are the positions
in each library that were randomized. The libraries were
cloned into our expression vector using the restriction sites
Kpn1 and Xba1 as shown below:

ggtaccGAACGCCCATATGCTTGCCCTGTCGAGTC
CTGCGATCGCCGCTTTTCTCGCTCGGATGAGC
TTACCCGCCATATCCGCATCCATACCGGTCAG
AAGCCCTTCCAGTGTCGAATCTGCATGCGTAA
CTTCAGTCGTTCTGATAACCTTCGCGCCCACATC
XXXACCCACACCGGCGAGAAGCCTTTTGCCTG
TGACATTTGTGGGAGGAAGTTTXXXNNSNNSN
NSNNSCTGNNSNNSCATACCAAAATCCATTTACG
TCAGAAGGACGTCTAAGtctaga

Binding sites were cloned into the GHUC vector (35) be-
tween Not1 and EcoRI allowing for the regulation of HIS3
or GFP from the same target. The targets between those
restriction sites followed the format below. A set of 64 re-
porters were constructed, one for each 3 bp target repre-
sented as ‘NNN’:

All selections: gcggccgcAANNNAAGGCGTAACgaattc

Characterizing the specificity of zinc finger by selecting inter-
acting sequences from random DNA libraries

The original application of the omega-based bacterial one
hybrid system was to characterize the DNA-binding prefer-
ence of transcription factors (36). For this purpose, the tech-
nique has been successfully applied to factors from many
model organisms with similar predictive value to any other
common method. To characterize the full-length specificity
(all KLF6 and Snai2 proteins) we used the 28 bp random li-
brary employed in those published screens (23). To charac-
terize individual fingers recovered in this paper, we created a
new library in the pH3U3 vector that places a 4 bp region of
random DNA sequences in the same position that the tar-
gets are placed in each of the individual mode screens (see
cartoon in Figure 2C). However, because this library offers
relatively low complexity (256 members) it is possible that
a false positive could easily dominate a selection. To avoid
this, we also installed a 20 bp barcode in the vector 400 bp
upstream of the reporter. By doing so we can determine if
a low number of very similar 4 bp sequences are actually
selected for as they will be paired with many different bar-
codes. Conversely, if a false positive cell escaped selective
pressure, only one sequence would be represented both at
the target and barcode. Therefore, we first filtered by only
considering unique barcodes once per selection and then us-
ing those 4 bp targets to create our logos that represent the
factor’s specificity. As above, the sequence between the Not1
and EcoR1 sites of the reporter plasmid is listed below for
the 28 bp library and between Age1 and EcoRI for the 4 bp
library indicating placement of the barcode:

28 bp library:
gcggccgcNNNNNNNNNNNNNNNNNNNNNNNNNN

NNCgaattc
4 bp library:
accggtAGNNNNNNNNNNNNNNNNNNNN(barco

de)GCATCAAATAAAACGAAAGGCTCAGTCGAA
AGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCG
GTGAACGCTCTCCTGAGTAGGACAAATCCGCC
GGGAGCGGATTTGAACGTTGCGAAGCAACGGC
CCGGAGGGTGGCGGGCAGGACGCCCGCCATAA
ACTGCCAGGCATCAAATTAAGCAGAAGGCCAT
CCTGACGGATGGCCTTTTTGCGTTTCTACAAACT
CTTTTGTTTATTTTTCTAAATACATTCAAATATG
TATCCGCTCATGACATTAACCTATAAAAATAGGC
GTATCACGAGGCCCTTTCGTCTTCAAACGCGT
GTACACCCGGGCGGCCGCAANNNNAAGGCGTA
ACgaattc

Binding site selections were carried out as described
above, in minimal media challenged by 3-AT. However,
binding site selections often require higher stringencies to
avoid self-activating sequences. Therefore, these selections
were carried out at 5 mM 3AT. In addition, the library com-
plexity is much smaller than our protein selections. For the
28 bp library we routinely plate 5 × 107 cells which covers
the diversity required for nearly any 12 bp target. With the
4 bp library, we plated ∼5 × 104, a 195-fold over sampling
of the library space, but simple to screen in our system.
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Defining boundary residue pairs by B1H selection in mode
exclusive contexts

To define what BRPs would be functional in each mode we
searched for helices that uniquely represented each mode.
To do so, we analyzed our mode selection data to find he-
lices found only in a single mode for a given target, or at least
highly enriched in a single mode (see Supplemental Table
S3). We think of these helices as mode exclusive as their ac-
tivity on that particular target appears to be dependent on
the mode employed. We can then think of these helix–target
pairs as representative of the parameters particular to that
mode. However, it is possible that a rare but unique helix
would be recovered in a single mode by chance. Therefore,
to reduce the impact of potential sampling error, we reduced
or analysis to consider only core helices as there are poten-
tially 400 versions of each protein that has the same residues
at the four core helical positions. As a result, it would be in-
credibly unlikely that a core helix is found in only one mode
by chance. An example is the core helix DRCR. We recov-
ered over 5000 reads for this core helix in the CCC target
selection in mode 1 but not in any other mode.

To define the BRPs that offer features exclusive to each
mode we created libraries that randomized the BR positions
with the set of mode exclusive helices (Supplemental Table
S3). We then screened these libraries with the complemen-
tary targets (listed in Supplemental Table S3) to select BRPs
that are functional with each mode exclusive helix (see car-
toon, Figure 3A). In each case, the library diversity consists
of 400 amino acid combinations, however, we plated 50 000
cells in each selection, a >100-fold over sampling of each li-
brary. Below is a general template of the protein sequences
for the mode exclusive libraries:

Mode exclusive library sequence: GTERPYACPVESCD
RRFSRSDELTRHIRIHTGQKPFQCRICMRNFSRS
DNLRAHIXTHTGEKPFACDICGRKFXDPRCLSRHT
KIHLRGS

Above is an example sequence for the mode exclusive he-
lix DPRCLSR. The bold and underlined ‘X’s’ at the BR po-
sitions are randomized and this protein library would then
be challenged to activate the CCC reporter. For each mode-
exclusive helix listed in Supplemental Table S3, the helix
residues listed would be coded in place of the blue residues
above and the library screened with the listed, complemen-
tary 3 bp target.

Building the libraries

While all libraries were built using the same approach, be-
low we detail how the approach using the original mode li-
braries as the example.

For each library, the vector DNA (LPPC-omega with
a Kanamycin insert between Kpn1 and Xba1) was
prepped by maxiprep (Qiagen:12963) of 1L overnight
culture. The recovered DNA was digestion with kpnI-
HF (NEB:R3142L) and XbaI (NEB:R0145L), followed
by gel isolation using minelute gel extraction kits (QIA-
GEN:28606). Library inserts were amplified using degen-
erate primers with high fidelity Expand polymerase. The
DNA was purified by PCR purification (Qiagen) then di-
gested with Kpn1 and Xba1 before gel isolation. For each

library, 15 ug of LppC-omega backbone was ligated with
5 ug insert using T4 DNA Ligase (NEB:B0202S) in a 150 ul
reaction overnight at 16◦C.

All mode libraries were built in a similar fashion: To con-
firm the success of the library build, 1 �l of ethanol pre-
cipitated library ligation was electroporated into 85 ul of
our �rpoZ E. coli strain and recovered for 1 h in 10 ml
SOB (Difco:244310) + 0.5% glucose (SOC). The culture
was serially diluted onto carbenicillin (100 �g/ml) plates,
kanamycin (50 �g/ml) plates, and plates containing both
antibiotics. If the CFU on the carb plate was 100× the
CFU on the dual antibiotic plate and kan plate, the library
build was considered a success. Note that we have previously
shown that by using the Kanamycin cassette as the fragment
removed from the parent vector we are able to quantify lig-
ation background to true insertion by comparing the frac-
tion of the ligated material that still contains the Kan cas-
sette versus those that only contain that ampicillin marker,
expressed elsewhere on the plasmid. If the ligation was suc-
cessful, the remaining library DNA was electroporated into
electrocompetent cells (85 �l cells per 1 ul DNA), and re-
covered by shaking at 37◦C in 1 l SOC. After 1 h, a small
amount of culture was serially diluted and plated on car-
benicillin, the CFU on this plate represents the total library
size (each library was built to over 1 × 109 complexity). Af-
ter dilution, carbenicillin was added at 100 �g/ml to the 1 l
culture and grown until the OD was between 0.5 and 0.7
compared to a negative control. The DNA was then isolated
from the pellet by maxiprep (Qiagen:12963). The resulting
DNA is used for B1H selections.

B1H ZF selections

ZF selections were performed as previously described (10).
Briefly, libraries were built in a vector that will express the
ZF-omega fusion using a strong promoter (LppC). The
binding site reporters were built by placing the binding site
of interest 10 BRP upstream of the −35 box of the pro-
moter that drives HIS3 and GFP expression in the previ-
ously described GHUC vector (35). For example, for the
‘AAA’ selections, a reporter with the binding site 5′ AAA-
AAG-GCG 3′ was placed 10BRP upstream of the promoter,
and so on. These sites were cloned between the Not1 and
EcoRI sites of the reporter plasmid.

For selection, the �rpoZ selection strain was transformed
with one of the ZF libraries and one of the reporter plasmids
by electroporation. The cells were expanded in 10 ml SOC
for 1 h at 37◦C with rotation, recovered and resuspended
in minimal media supplemented with histidine and grown
with rotation for an additional hour at 37◦C. Finally, cells
were washing in minimal media that lacks histidine, recov-
ered in 1 ml of this media, and 20 �l plated in serial dilu-
tion on rich plates containing Kanamycin and Carbenicillin
to quantify double transformants. This plate was grown at
37◦C overnight while the remaining 980 �l of the trans-
formed cells was stored at 4◦C. Once grown, the serial di-
lutions were counted and a volume containing a minimum
of 5 × 108 cells were taken from the transformants stored at
4◦C and plated on selective media. These plates contain 3-
AT concentrations best suited for the experiment (protein
selections for mode were done at low stringency, 2 mM,
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while binding site selections from the 28BRP or 4BRP li-
brary were done at 5 mM. In previous work we have shown
10 mM is a suitable high stringency while 20 mM is helpful
only in extreme cases of very high affinity proteins). Cells
were grown on the selection plates for 36–48 h at 37◦C.
Colonies were counted and cells were pooled by scraping
everything from these plates and harvesting the DNA. This
DNA was used as the template for Illumina sequencing. All
selections resulted in hundreds to thousands of surviving
colonies while reporters combined with a negative control
result in zero to single digit surviving colonies.

GFP expression assays

In the GHUC vector, a GFP cassette follows HIS3 after
an internal ribosome entry site (Shine-Dalgarno sequence)
that separates the two coding sequences. In this way, the
same sequence that can drive HIS3 in our selections can also
activate GFP allowing for a visualization and quantification
of activation driven by a unique protein-DNA interaction.
To do so, two plasmids, one containing the unique omega-
ZF construct to be tested and one containing a unique, cor-
responding binding site upstream of the HIS3/GFP cas-
sette, were transformed into our �rpoZ E. coli strain via
heat shock, recovered for 1 h in SOC, and plates on dual
antibiotic rich media (2XYT) plates. The following day, sin-
gle colonies were picked in biological triplicate and incu-
bated for 8hr (or until OD ∼ 0.6) in 2XYT media + 2%
glucose. 5 ul of each culture was then used to inoculate 5 ml
of NM media supplemented with histidine, kanamycin, car-
benicillin and IPTG. These new NM cultures are incubated
overnight with rotation at 37C (∼18 h). The next day, 25 �l
of culture was resuspended in 500 ul PBS + 0.5% FBS and
analyzed by fluorescent activated cell sorting (FACS), where
mean GFP expression levels (AU) were recorded for each
sample.

Illumina prep

Helix selections, boundary residue selections, and 4 bp se-
lections were prepped for Illumina sequencing as follows.
Cells were scraped from selection plates and plasmid DNA
was recovered with Qiagen miniprep kits. The resulting
DNA was used as the template for PCR in order to attach a
barcode to each sample. A series of sixty four 8 bp barcodes
were designed to minimize similarity between each 8 bp se-
quence and avoid falsely including a variant in the wrong
bin because of mutations that occur in the PCR or illumina
reactions. Below, general templates for the oligonucleotides
used are provided with the barcode “N” regions and the re-
gion that anneals to our template underlined.

Barcodes used for helix selections.
Forward: AATGATACGGCGACCACCGAGATCTA

CACNNNNNNNNACACTCTTTCCCTACACGACG
CTCTTCCGATCTGACATTTGTGGGAGGAAGTTT

Reverse: CAAGCAGAAGACGGCATACGAGATNN
NNNNNNGTGACTGGAGTTCAGACGTGTGCTCT
TCCGATCTTTCTGTCTTAAATGGATTTTGGT

Barcodes used to sequence selected BRPs in mode exclu-
sive selections.

Forward: AATGATACGGCGACCACCGAGATCTA
CACNNNNNNNNACACTCTTTCCCTACACGACG
CTCTTCCGATCTGTCGTTCTGATAACCTTCGC

Reverse: CAAGCAGAAGACGGCATACGAGATNN
NNNNNNGTGACTGGAGTTCAGACGTGTGCTCT
TCCGATCTGACGTAAATGGATTTTGGTATG

Barcodes used binding site selections.
Forward: AATGATACGGCGACCACCGAGATCTA

CACNNNNNNNNACACTCTTTCCCTACACGACG
CTCTTCCGATCTCAGCTGGCAATTCCGACGT

Reverse: CAAGCAGAAGACGGCATACGAGATNN
NNNNNNGTGACTGGAGTTCAGACGTGTGCTCT
TCCGATCTCGAGCCGGAAGCATAAAGTGTA

Amplification from recovered templates were done in 96-
well formats according to the manufacturer’s suggested re-
action conditions using 15 cycles of amplification. After
PCR, each reaction was run on a 1.0% agarose gel to con-
firm the PCR reaction worked. If successful, 5 ul of each re-
action was pooled, purified, and run out on a 1.0% agarose
gel and recovered using a Qiagen gel extraction kit. The
DNA was eluted from the Qiagen minelute column in 25
�l of elution buffer. The product concentration was mea-
sured (Thermo scientific, Nanodrop 2000c) and diluted to
10 nM and sent for Illumina sequencing at the core facility,
the NYU Genome Technology Center.

ORF ZF sequences used (modified BRPs bold and under-
lined) for ZF-TF GFP and specificity experiments

EGR1. WT (RA): GTERPYACPVESCDRRFSRSDE
LTRHIRIHTGQKPFQCRICMRNFSRSDHLTTH
IRTHTGEKPFACDICGRKFARSDERKRHTKIHLR
QKD*

RR: GTERPYACPVESCDRRFSRSDELTRHIRIHT
GQKPFQCRICMRNFSRSDHLTTHIRTHTGEKPF
ACDICGRKFRRSDERKRHTKIHLRQKD*

KA: GTERPYACPVESCDRRFSRSDELTRHIRIHT
GQKPFQCRICMRNFSRSDHLTTHIKTHTGEKPF
ACDICGRKFARSDERKRHTKIHLRQKD*

VA: GTERPYACPVESCDRRFSRSDELTRHIRIHT
GQKPFQCRICMRNFSRSDHLTTHIVTHTGEKPF
ACDICGRKFARSDERKRHTKIHLRQKD*

VS: GTERPYACPVESCDRRFSRSDELTRHIRIHT
GQKPFQCRICMRNFSRSDHLTTHIVTHTGEKPF
ACDICGRKFSRSDERKRHTKIHLRQKD*

KLF6. WT (RS): GTGRRRVHRCHFNGCRKVYTKS
SHLKAHQRTHTGEKPYRCSWEGCEWRFARSDELT
RHFRKHTGAKPFKCSHCDRCFSRSDHLALHMK
RHL*

Mode 4 KS: GTGRRRVHRCHFNGCRKVYTKSSH
LKAHQRTHTGEKPYRCSWEGCEWRFARSDELT
RHFKKHTGAKPFKCSHCDRCFSRSDHLALHMK
RHL*

Mode 3 VS: GTGRRRVHRCHFNGCRKVYTKSSH
LKAHQRTHTGEKPYRCSWEGCEWRFARSDELT
RHFVKHTGAKPFKCSHCDRCFSRSDHLALHMK
RHL*

Mode 5 IN: GTGRRRVHRCHFNGCRKVYTKSSH
LKAHQRTHTGEKPYRCSWEGCEWRFARSDELT
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RHFIKHTGAKPFKCSHCDRCFNRSDHLALHMK
RHL*

WT (RS), position 3Tyr: GTGRRRVHRCHFNGCR
KVYTKSSHLKAHQRTHTGEKPYRCSWEGCEWR
FARSDELTRHFRKHTGAKPFKCSHCDRCFSRS
DYLALHMKRHL*

WT (RS), position 3Asn: GTGRRRVHRCHFNG
CRKVYTKSSHLKAHQRTHTGEKPYRCSWEGCE
WRFARSDELTRHFRKHTGAKPFKCSHCDRCFSRS
DNLALHMKRHL*

WT (RS), position 3Asp: GTGRRRVHRCHFNG
CRKVYTKSSHLKAHQRTHTGEKPYRCSWEGCE
WRFARSDELTRHFRKHTGAKPFKCSHCDRCFSRS
DDLALHMKRHL*

WT (RS), position 3Thr: GTGRRRVHRCHFNG
CRKVYTKSSHLKAHQRTHTGEKPYRCSWEGCE
WRFARSDELTRHFRKHTGAKPFKCSHCDRCFSRS
DTLALHMKRHL*

WT (RS), position 3Ser: GTGRRRVHRCHFNGCR
KVYTKSSHLKAHQRTHTGEKPYRCSWEGCEWR
FARSDELTRHFRKHTGAKPFKCSHCDRCFSRS
DSLALHMKRHL*

*shown are the position 3 mutants in mode 1, the equiv-
alent mutations were also made in each of the mode tem-
plates above.

Snail. WT (RA):
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIRTHTGEKPFSCPH
CNRAFADRSNLRAHLQTHSDVKKYQCKNCSKT
FSRMSLLHKHEESGCCVAH

Mode 2 (RR):
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIRTHTGEKPFSCPH
CNRAFRDRSNLRAHLQTHSDVKKYQCKNCSKT
FSRMSLLHKHEESGCCVAH

Mode 3 (VS):
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIVTHTGEKPFSCPH
CNRAFSDRSNLRAHLQTHSDVKKYQCKNCSKT
FSRMSLLHKHEESGCCVAH

Mode 4 (KS):
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIKTHTGEKPFSCPH
CNRAFSDRSNLRAHLQTHSDVKKYQCKNCSKT
FSRMSLLHKHEESGCCVAH

Mode 5 (IN):
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIITHTGEKPFSCPH
CNRAFNDRSNLRAHLQTHSDVKKYQCKNCSKT
FSRMSLLHKHEESGCCVAH

WT (RA), position 6 His:
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIRTHTGEKPFSCPH
CNRAFADRSNLRHHLQTHSDVKKYQCKNCSKTF
SRMSLLHKHEESGCCVAH

WT (RA), position 6 Arg:
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIRTHTGEKPFSCPH
CNRAFADRSNLRRHLQTHSDVKKYQCKNCSKTF
SRMSLLHKHEESGCCVAH

WT (RA), position 6 Lys:
GTQSRKSFSCKYCDKEYVSLGALKMHIRTHTL

PCVCKICGKAFSRPWLLQGHIRTHTGEKPFSCPH
CNRAFADRSNLRKHLQTHSDVKKYQCKNCSKTF
SRMSLLHKHEESGCCVAH

*shown are the position 6 mutants in mode 1, the equiv-
alent mutations were also made in each of the mode tem-
plates above.

ZNF713 (WT). TGEKPYKCDECGKRFSQRIHLIQH
QRIHTGEKPFICNGCGKAFRQHSSFTQHLRIHTG
EKPYKCNQCGKAFSRITSLTEHHRLHTGEKPYEC
GFCGKAFSQRTHLNQHERTHTGEKPYKCNECG
KAFSQSAHLNQHRKIHTREK

ZNF713 (F1,2 BRP mutation)
TGEKPYKCDECGKRFSQRIHLIQHQIIHTGEKP

FICNGCGKAFRQHSSFTQHLRIHTGEKPYKCNQC
GKAFSRITSLTEHHRLHTGEKPYECGFCGKAFSQ
RTHLNQHERTHTGEKPYKCNECGKAFSQSAHL
NQHRKIHTREK

ZNF713 (F2,3 BRP mutation)
TGEKPYKCDECGKRFSQRIHLIQHQRIHTGEKP

FICNGCGKAFRQHSSFTQHLIIHTGEKPYKCNQCG
KAFSRITSLTEHHRLHTGEKPYECGFCGKAFSQR
THLNQHERTHTGEKPYKCNECGKAFSQSAHLN
QHRKIHTREK

ZNF713 (F3,4 BRP mutation)
TGEKPYKCDECGKRFSQRIHLIQHQRIHTGEKP

FICNGCGKAFRQHSSFTQHLRIHTGEKPYKCNQC
GKAFSRITSLTEHHILHTGEKPYECGFCGKAFSQR
THLNQHERTHTGEKPYKCNECGKAFSQSAHLN
QHRKIHTREK

ZNF713 (F4,5 BRP mutation)
TGEKPYKCDECGKRFSQRIHLIQHQRIHTGEKP

FICNGCGKAFRQHSSFTQHLRIHTGEKPYKCNQC
GKAFSRITSLTEHHRLHTGEKPYECGFCGKAFSQ
RTHLNQHEITHTGEKPYKCNECGKAFSQSAHLN
QHRKIHTREK

QUANTIFICATION AND STATISTICAL ANALYSIS

Recovery of B1H selection data by next generation sequenc-
ing

Illumina fastq files were demultiplexed by the Genome
Technology Center at NYU Langone Health. For the mode
library screens, the randomized region corresponds to 21 nt
which were trimmed from all amplicons and translated with
transeq (EMBOSS).

Filtering used to determine success of selections and recover
positive helices. Since the functional selection works at the
protein level, and only in extreme cases is there only one
coding scheme for a helix in our library, a protein that is
being selected for should be recovered with more than one
coding strategy. Therefore, we used both reads and the pres-
ence of multiple coding schemes to validate a recovered se-
quence as a true or false positive. First, only protein se-
quences with >10 sequencing reads were considered. Sec-
ond, protein sequences coded by a single unique 21-nt se-
quence were classified as false positives and eliminated as
it is extremely unlikely that the protein would be selected
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for by only one coding variant of that protein. In addition,
a false positive that has escaped selective pressure might be
missed by this filter as the PCR step and the sequencing step
can often lead to single nt mutations, which would then in-
dicate that the protein was actually coded by more than one
sequence. However, what we find is that in these cases there
are many low read count single nt mutations that occur sim-
ilar to one parent sequence with significantly more reads. To
account for this, these sequences are removed if for a pro-
tein sequence, we found more than 1 log difference between
the 21-nt with the highest read count and the 21-nt with the
second highest read count.

Screening data preprocessing

A similar approach was used to filter data using Shan-
non entropy as previously described (10). Both filtering ap-
proaches produce similar results. Here, results were demul-
tiplexed using custom python tools (37). After demultiplex-
ing, sequences with insertions, deletions or mutations in
constant regions were discarded. Next, the encoding diver-
sity of each helix was evaluated through their entropy us-
ing the Shannon entropy equation normalized by the num-
ber of potential ways to code the peptide sequence using
NNS codons. In the library, helices are represented by mul-
tiple nucleotide sequences. However, selection occurs at the
protein level. Consequently, helices represented by a sin-
gle DNA sequence are likely to be spontaneous growing
colonies. Finally, helices represented by less than ten reads
or a normalized entropy <0.07 were dropped.

Motif derivation from selections

The DNA specificity motif of each helix was constructed
using the frequency of reads of each nucleotide at each po-
sition. Next, the six DNA-specifying amino acids of each
helix were concatenated to their corresponding boundary
pair. Finally, the eight amino acid sequence was one-hot en-
coded to be used as input.

Selections analysis and comparison

After filtering, the helices were aggregated by adding reads
of helices with the same core specificity residues. Within
each mode, a graph was built considering two helices con-
nected if the hamming distance was equal to one. Network
plotting and properties were calculated using the Network
X package (38).

A position frequency matrix with the helices recovered
for each mode and 3 bp target was built. The principal com-
ponent analysis of the position frequency matrix was com-
puted using the Scikit-learn package in Python (39). For a
more granular comparison, the standardized euclidian dis-
tance of the position frequency matrix of the same 3 bp
target selection between modes was calculated using Scipy
python package (40).

Convolutional neural network

The model was implemented using Keras with Tensor-
flow backend. Before training, any sequence with specificity

residues present in the natural repertoire of natural ZF col-
lected by Najafabadi et al. and the 100 helices selected for
additional characterization, and a random selection of 4000
were filtered out of the training set. The random search
strategy was used for hyperparameters and architecture op-
timization. A total of five hundred trials allow us to ex-
plore models with one to three convolutional layers with a
wide variety on the numbers and sizes of filters. The mod-
els were ranked based on the performance of 10-fold cross-
validations on an independent dataset of D. melanogaster
ZFs (8). The architecture with the best performance has one
convolutional layer and two fully connected hidden layers.
The output layer is a 12-position vector representing the
DNA binding motif of the ZF for three bases. Relu and
Sigmoid activation functions were used for our hidden lay-
ers and output layer, respectively. The input as the amino
acid sequences were represented as a binary matrix by one-
hot encoding and is first transformed by a 1D-convolutional
layer, which computes the activations for 128 convolutional
filters with a stride and a size of 2 positions. We train the
model by minimizing the mean square error of the DNA
motif. Before training, all the helices present Any helix in the
training set present in any of the validation or test sets were
removed to avoid data leaking. RMS prop optimized the
loss function with a learning rate of 0.0001 and a batch size
of 512. Learning was terminated if the validation loss did
not improve over five consecutive epochs (early stopping).
The neural network output is normalized before comparing
with the experimental value.

Correlation score, validations and reference database

To measure the correlation score of a pair of motifs, we mea-
sured the Pearson correlation of their affinity scores across
50 000 random sequences of length 100 bp with GC con-
tent regulated to be within a reasonable range, and the affin-
ity scores calculated as described previously (7). Following
the method described by Najafabadi, for comparison of the
predicted with experimental motifs, we measured the cor-
relation score of all the possible alignments and the align-
ment with the maximum score per position with six or more
aligned positions was selected.

Six different datasets were used to benchmark the mod-
els; the ZifRC training dataset with 8112 natural zinc
fingers characterized by B1H screening (7). Najafabadi’s
Golden standard and Human datasets, a curated selec-
tion across organisms of transcription factors, and selection
of representative human transcription factors, respectively.
Narasimhan C.elegans dataset (41), which motifs were char-
acterized by PBM. Lastly, 100 validated motifs from the
selection extensively characterized (Supplementary Figure
S2) and a subset of 4000 ZFs removed from the training
set.

The full set of zinc fingers was downloaded from cis-
BP build 2.0 database (1). For each kingdom, a set of the
most common reference organisms was selected. For green
plants, A. thaliana, S. moellendorffii, B. distachyon,P. tri-
chocarpa, O. sativa, B. stricta, L. japonicus and P. patens.
For Fungi, N. crassa, S. commune, C. cinerea, S. pombe,
A. nidulans, S. cerevisiae, A. gossypii,and U. maydis. Finally,
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for Metazoa, C. elegans, D. melanogaster, D. rerio, X. tropi-
calis, G. gallus, M. musculus and H.sapiens.

The linker between two zinc finger need to be seven or
less amino acids long between the last His of the N-terminal
finger and the first Cys of the C-terminal finger to consider
them part of the same array.

All related algorithms were implemented in Python,
and Spearman correlations, Fisher exact test, t-test and
ANOVA one-way associated P values were calculated using
SciPy (40).

Molecular modelling

Structural models were generated with TLEAP in AM-
BER16 (42) using PDB file 1AAY as the template. Zinc
2+ ions were parametrized using ZAFF, the zinc AMBER
force field (43). All models’ protonation states were iden-
tified using the WHATIF (44). They were then explicitly
solvated in a 15 nm3 box of TIP3P water, and Sodium
counter-ions were added for overall charge neutrality, and
periodic boundary conditions were applied. Bonds to hy-
drogen were constrained using SHAKE (45), and the parti-
cle mesh Ewald (46) algorithm was used to treat long-range
electrostatic interactions. The non-bonded cut-off was set
at 12.0 Å. Systems were energy minimized using a combi-
nation of steepest descent and conjugate gradient methods.
The system was thermalized and equilibrated for 3 ns using
a multistage protocol. The first step was a 500 ps gradual
heating from 0 to 300 K, followed by 250 ps of density equi-
libration, and positional restraints were gradually removed.
The next step was 500 ps of constant pressure equilibra-
tion at 300 K. Berendsen thermostat, and barostat was used
throughout for both temperature and pressure regulation
(47). The final phase of equilibration for a total of 2 ns. Due
to the sensitivity of the system, the time step for the MD
equilibrations was 1 fs and 2fs for the simulations. MD cal-
culations were carried out with the GPU-accelerated AM-
BER16 code in conjunction with the FF99 Barcelona force-
field (48). During calculations, a snapshot was saved every 2
ps. Root mean square deviation (RMSD) was evaluated to
assess the equilibration of each run. Three independent MD
simulations were carried out per model producing a total of
620 ns of simulation time. The RMSD, RMSF, distances,
hydrogen bonds and clustering analysis of the trajectories
were obtained using the corresponding commands of the
CPPTRAJ module (49).

Data and code availability

Preprocessed sequencing and code are available upon re-
quest. The model of specificity can be applied to ZFs using
the utility ‘ZFPred’ found at repository: www.gitlab.com/
kimlab/zfgeomodes

RESULTS

Boundary residues influence zinc finger function

Many TF DBDs bind to a limited set of targets (1,50) while
ZFs are the exception to the rule offering flexibility in their
interactions that include multiple amino acid strategies to
bind any 3 bp target. Part of this plasticity may be due

to the ZF’s ability to engage the DNA with an assortment
of geometries that could influence and expand the number
of functional strategies (5,30). Conversely, other common
DBDs such as basic helix-loop-helix, leucine zippers, home-
odomains, forkhead and ETS domains can bind the DNA
as either monomers, dimers or both (51). The structural
constraints of the protein-protein interactions required for
dimerization may restrict the flexibility of these domains
and limit their sampling of novel specificities. For ZFs, the
assortment of functional geometries with which the domain
might engage the DNA has been suggested to be controlled
by helical positions 9 and −2 of adjacent ZF helices (30),
henceforth referred to as the boundary residues (BRs) or
together, boundary residue pairs (BRPs) (Figure 1B). How-
ever, the analysis of these ZF interactions is based on a small
collection of X-ray crystal structures resulting in a set of 8
adjacent ZF BRPs collected from 22 adjacent finger struc-
tures (Figure 1C, left). From such a small catalog, not only
is it difficult to say if all ZFs with the same BRPs will en-
gage the DNA in the same way, it is impossible to gauge
how these geometries influence function across all possible
targets or all possible helices. Moreover, many naturally oc-
curring ZF-TFs in human contain BRPs that are not found
in the structures nor are they recovered in a model derived
from these data (30) (Figure 1C, middle and right). There-
fore, we first set to exhaustively address how these modes
influence ZF function and DNA target preference by in-
vestigating whether a disparate set of BRPs predicted to
represent each mode allows the domain to interact with
any target with an expanded set of amino acid combina-
tions. To investigate this question we applied a bacterial hy-
brid assay to screen ZF libraries where the 6 base-specifying
residues of the third ZF helix of a three-fingered protein had
been fully randomized, presenting 64 million amino acid
combinations in each screen (Figure 1D). This approach
has previously been applied on smaller scales to success-
fully investigate ZF function (10,52). Six libraries were con-
structed, each representing one of the six common mode
BRPs modeled from structure. Each library was screened
in 64 independent selections to recover helices able to in-
teract with each of the 64 possible 3 bp targets. In total,
we performed 384 selections that theoretically assayed over
24 billion unique protein-DNA interactions. From these se-
lections we uncovered between 24 and 120 thousand func-
tional helices depending on which mode was employed (Fig-
ure 1E and Supplemental Table S1). However, not all target
selections enriched for functional helices. Mode 1 was the
most successful screen with only four of the 64 selections
failing to enrich functional helices (Figure 1F and Supple-
mental Table S2). Conversely, Mode 4 failed to enrich he-
lices in 23 of the 64 selections despite the fact that the mode
1 and mode 4 BRPs only differ from RS to KS, respectively.

Analysis of the 384 selections reveals that mode has a
large impact on ZF function. For example, a principal com-
ponent analysis (PCA) demonstrates that modes with simi-
lar geometries produce more similar data (Figure 2A), while
substantial differences in function remain. For example,
while modes 1 and 4 are the most similar both in struc-
ture and specificity (according to the PCA), as mentioned
above, mode 4 failed to enrich for helices in 19 of the tar-
get screens that were successful in mode 1 (Figure 1F). To

http://www.gitlab.com/kimlab/zfgeomodes
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Figure 2. Mode Similarity and Predicted Function. (A) Principal component analysis to compare the complete data sets provided by each mode library
screen of 64 targets. (B) Comparison of helices predicted to have altered function between modes (See also Supplementary Figure S1). The tested helices are
examples that were recovered in one mode selection (left), but not another (right), for the same target. In each case, the mode tested is listed after the helical
residues used at positions –1 through 6 for each test construct. These helices were expressed with the BRPs for either mode tested and then challenged
to activate a GFP reporter. The mean fluorescence of three replicates is shown (error bars = S.E.M.). The dotted red line indicates mean background
GFP activation from a negative control. (C) A cartoon representing the 4bp reporter library created to determine the DNA-binding preference of helices
recovered in our screens. In each case a unique helix is expressed as the third finger of a 3-fingered protein. The first two fingers are common to all proteins
in our assay. A functional interaction between the test helix and a sequence in our library is required for activation of the HIS3 reporter and survival
on minimal media. At least 10 helices were tested for each mode. (D–G) Examples of predicted and determined specificities for helices recovered in our
screens. For each comparison a logo on the left has been generated from the frequency with which that helix was recovered across all binding sites of a mode
library screen (See also Supplementary Figure S2). On the right is the determined specificity of that helix by selecting sequences from our random 4bp
reporter library. (D) An example comparison of predicted and determined specificities where the preferred base is accurately predicted at all three positions.
The percent of helices tested that fall in this category is noted to the left. (E) An example comparison of predicted and determined specificities where the
preferred base is accurately predicted at two of three positions and the predicted base at the third position is one of the top 2 recovered. The percent of
helices tested that fall in this category is noted to the left. (F) An example comparison of predicted and determined specificities where the preferred base is
accurately predicted at two of three positions, and at the unmatched position the predicted base does not appear to be selected for. The percent of helices
tested that fall in this category is noted to the left. (G) Comparison of predicted and determined specificities where the preferred base is accurately predicted
at 1 of 3 positions. The percent of helices tested that fall in this category is noted to the left.

confirm these results are a true reflection of function and
not a sampling issue, we tested a series of helices based on
their enrichment in one mode, but absence in an alternative
mode, for the same binding site selections. These ZFs were
then challenged for their ability to activate a GFP reporter
driven by the complementary binding site (Figure 2B, Sup-
plementary Figure S1). In all examples, the helix activated
GFP significantly stronger in the mode it was recovered in
compared to the alternative, with four of the five alternatives
producing fluorescence levels similar to a negative control.
We also confirmed that recovery in screens of two differ-
ent modes demonstrates that the given helices have positive
function in both modes (Supplementary Figure S1). In this
case, all helices strongly activated the GFP reporter. These
results demonstrate that the presence or absence of a he-
lix in the proteins recovered from our selection screens is a
reasonable approximation of function in that mode. There-
fore, our results demonstrated the profound influence that
mode can have on function where, depending on mode, ∼6–

38% of the 3 bp targets are unable to be specified by any
ZF amino acid strategy. In addition, as recovery of a helix
within a selection is an approximate measure of function,
we used the recovery frequency of each helix in these se-
lections to predict helix specificity. In particular, summing
the recovery frequency across all 64 binding sites (treated
as nucleotide sequences) yields a target specificity. We then
experimentally tested the specificity of over 100 helices, at
least 10 helices representing each mode, by selecting their
interaction partners from a random DNA library (Figure
2C). We find that by taking this approach we accurately pre-
dict the preferred base at all three positions of the binding
site over 55% of the time and two of three preferred bases
over 93% of the time (Figure 2D–G, Supplementary Figure
S2). These results indicate that recovery of any ZF across
modes and targets is a reasonable reflection of ZF function
and specificity. Interestingly, in 23% of the ZFs tested we
find evidence of extended specificity 5′ to the core 3 bp tar-
get (see Figure 2G and Supplementary Figure S2), however
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Figure 3. Defining the sets of boundary pairs included in each mode. (A) Cartoon of B1H selections to define functional BRPs within each mode. For each
library, a helix was chosen that was enriched in a single mode-target pair across all of our screens (see Supplemental Table S3). These were considered ‘mode
exclusive’ helices (in the example the blue helix interacts with TAC exclusively in a single mode). Mode exclusive libraries were generated by randomizing
the BRs between the common second finger of the 3-fingered protein and each mode-exclusive helix in the third finger position. Only functional BRPs
were able to activate the HIS3 reporter and survive the selective conditions. (B) Table of the top 10 BRPs recovered in the mode exclusive screens. This
table is displayed as a heat plot to indicate the relative enrichments of each BRP per mode (see Also Supplementary Figure S3 and Supplemental Tables
S4–S10). (C) Principal component analysis that includes a seventh mode screen across all 64 targets that uses the BRP ‘RA’. This second screen allows us
to demonstrate the reproducibility of screens that use BRPs determined to be within the same mode. Here the two mode 1 screens tested used BRPs RS
and RA and they are most similar to one another (See also Supplementary Figure S4). (D) The frequency with which the five most common mode 1 BRPs
are present in model organisms that use ZFs as their most common DNA-binding domain (See also Supplementary Figure S5).

with our limited set of specificities we were unable to find a
trend in helical composition or BRPs that would explain the
specificity extension. Still, considering this extension and
the potential for a cross-strand contact 3′ to the core tar-
get, it is possible that some ZFs influence base preference at
5 bp not the 3–4 commonly noted.

Expanding the boundary residue pair definition

Many naturally occurring ZF pairs do not use the BRPs em-
ployed in our screens making it difficult to determine if the
results are generalizable. In fact, we still cannot predict the
mode that any untested BRP is best represented by de novo.
To provide a more detailed view of the BRP-mode land-

scape we analyzed our mode selections for helix–target pairs
that are indicators of mode-exclusive function. We searched
for helix-target pairs that were recovered in a single mode,
or significantly more represented in one mode than any oth-
ers, and used these as examples of ZF function that is de-
pendent on, and therefore representative of, that mode’s en-
gagement with the DNA (Supplemental Table S3). Next,
we created libraries of fully randomized residues at the two
BRs in scaffolds that employed these mode-exclusive helices
(Figure 3A). We screened 2–3 helices for each mode, total-
ing 13 mode-exclusive screens. From these results we find
that the BRPs that we used in our original mode selections
are recovered in the top 2 pairs for three out of the six modes
(Modes 1, 2 and 5) while the BRPs used by the other three
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mode screens were recovered in the top 8 (Figure 3B). In-
terestingly there appears to be overlap between many of the
modes where the same BRPs appear in more than one mode,
implying that our definition of mode-exclusive should be
thought of as a fluid approximation. Moreover, there are
inconsistencies between our selected mode BRPs and the
previously reported model (30) that might be explained by
the small number of structures used for that model, the in-
ternal placement of some ZFs in these structures that place
them under the influence of two BRPs simultaneously, or
the BRPs that we chose for our primary libraries that dic-
tated the design of our mode-exclusive screens. Neverthe-
less, since we cannot definitively say whether BRPs recov-
ered in the same screen actually engage the DNA in the
same way without structures, high frequency of recovery
for any BRP in any of our screens should be thought of
more as an indicator of function than an absolute defini-
tion of geometry. That said, the overlap between common
BRPs often occurs in the most similar modes. For example,
RS and RT are both recovered in the top 3 for the similar
modes 1 and 4 while 6 of the top 10 BRPs found in mode
2 are also found in mode 6. In addition, with the exception
of mode 3, the results of each independent mode-exclusive
screen are more correlated with other screens of the same
or similar modes (e.g. 1 with 4 and 2 with 6) than with more
disparate modes (Supplementary Figure S3). These redun-
dancies make sense as they accommodate general trends ob-
served for each mode. For example, mode 1 appears to be
defined by an Arginine at position 9 and a small amino acid
at position −2 while mode 4 appears to be strongly biased
towards a Serine or Threonine at position −2 but tolerates
a more diverse set of amino acids with longer side chains at
position 9. Thus, the RS and RT BRPs satisfy both of the
mode 1 and mode 4 requirements. Similarly, both modes 2
and 6 can be defined by a preference for a basic residue at the
−2 position with the flexibility to accommodate a diverse set
of amino acids at position 9. To test the consistency of these
results we made substitutions in the mode-exclusive helices
that would be consistent, or inconsistent, with our BRP def-
inition of mode and tested the ZFs ability to activate a GFP
reporter. In all cases, the BRPs predicted to remain in the
proper mode significantly outperform the out of mode sub-
stitutions (Supplementary Figure S4). Finally, to test how
representative these results are of the mode influences, we
built a second mode 1 library to represent the most common
BRP recovered in our mode 1-exclusive screens, RA. The li-
brary consisted of 64 million amino acid combinations and
was screened across all 64 targets, consistent with the previ-
ous mode library screens. We find by PCA that both mode
1 screens (BRPs RA and RS) are more similar to one an-
other than they are to any other mode (Figure 3C) and are
both functional across more targets (95% and 93% success-
ful) than any other mode. These results demonstrate con-
sistent, mode-related results across the mode defining BRPs
that we have determined here.

Boundary residue pairs in nature

Since our BRP selections appear a reasonable proxy of
mode activity, we next set to use these results to better define
the BRPs in nature. To do so we considered that BRP sub-

stitutions resulted in reduced activity for the mode-exclusive
ZFs and this reduction is related to the frequency with
which the BRP was recovered in the screens (Supplemen-
tary Figure S4). Therefore, BRPs recovered with either high
(at least 1% of recovered sequences), moderate (within the
95th percentile), and low frequency (the remainder) can be
binned into groups of high confidence, low confidence and
nonfunctional BRPs, respectively (Supplemental Tables S4–
S9). While the relationship between the frequency of recov-
ery and activity is not linear, the general inclusion in these
groups does appear to be predictive of strong, weak, or non-
functional BRPs. However, since the set BRPs within each
confidence group is different depending on mode, a BRP
might be high confidence in one mode but predicted to be
nonfunctional in an alternative. This simply implies that ZF
function is both dependent on the compatibility of the he-
lix with its target and whether that helix is functional in the
mode it is presented in. Therefore, to predict ZF function
based on mode, we must first ask if the BRP is likely to
be functional at all and next whether the helix is likely to
be functional in the mode presented. With this in mind we
note that across all 13 mode-exclusive screens we recovered
a total of 62 high confidence BRPs that can be further di-
vided by mode designation. An additional 85 BRPs fall into
our low confidence category (Supplemental Table S10). Fi-
nally, we believe the remaining 253 BRPs are unlikely to be
functional or they require very specific contexts that enables
engagement with the DNA. Interestingly, a survey of the
human ZF-TFs demonstrates that over 74% of human ZF
pairs use BRPs that fall in our high confidence category and
91% fall into either the high or low confidence groups (Sup-
plemental Table S11). While these results indicate that most
ZFs present a functional geometry, this is likely a high-end
estimate as we have already shown that a helix across differ-
ent geometries can present significantly different levels of
function.

To provide a more general view of BRPs across King-
doms, we compared the distant Metazoan, Fungal and
Green Plant ZF-TF BRPs and find that the most common
Mode 1 BRPs from our screens (RA/RT/RS) are common
in Metazoan and Fungal ZFs while the more distant Green
Plants have instead enriched for mode 2 BRPs (QK, RK,
QR and RR) (Supplementary Figure S5). As Fungi have
a closer last common ancestor to human and have been
shown to have ZFs that can explore a large diversity of bind-
ing specificities (11), it is interesting that the frequency of
these Mode 1 BRPs have also been enriched in human con-
currently with the expansion of the total number of ZF-TFs.
Our results demonstrate the diverse functionality of this
mode that supports more helical binding strategies across
more functional targets. At the same time, ZFs in Green
Plants frequently utilize less prolific, non-mode 1 BRPs and
their ZF-TFs have not expanded at the same level represent-
ing just 4% of the TFs in Arabidopsis thaliana compared to
the ∼50% of human factors. In fact, we find the five most
common mode 1 BRPs are represented in high frequency
(23–43%) for several model organisms where ZFs represent
their most common DBD (Figure 3D). What’s more, when
we consider the 47,000 natural fingers investigated previ-
ously by synthetic screen (7), all fingers were presented ad-
jacent to a common, fixed finger that displays an Arg at po-
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sition 9. This means the ZFs tested may have been sampled
in and out of their natural mode depending on what amino
acid is present at position 9 in the finger that is naturally
adjacent to it. While only 17% of the ZFs were functional
in that screen, our results would predict that over 73% of
those functional fingers were presented in mode 1. In addi-
tion, only ZFs in that screen that present the common mode
1 BRPs RS, RA, RT and RN were more likely to be recov-
ered in the functional group than the non-functional group
(Supplemental Table S12). These results indicated that nat-
ural fingers from ZF-TFs, regardless of their natural mode,
are more likely to be functional when presented in mode 1.

Zinc finger promiscuity

Since mode can have influence on function across targets, it
is possible that the mode might influence function within
a target. We next considered whether some modes pro-
vide more strategies than others to bind the same sequence.
To avoid the influence of potential sampling error for any
unique 6 amino acid helix, we grouped helices with the same
residues at the core binding positions −1, 2, 3, and 6, refer-
ring to these as ‘core helices’. This allows for diversity at
positions 1 and 5, providing 400 version of every core he-
lix and significantly reducing the likelihood that a core he-
lix selected in one mode would be absent in another due to
sampling error alone. This approach has been used before to
approximate helical strategies as positions 1 and 5 are typi-
cally minor contributors to specificity (10,53,54). We found
that mode 1 can utilize more unique core helices across all
targets and, on average, significantly more core helices per
3 bp target (Figure 4A, B, and Supplemental Table S13). In
addition, over 84% of the core helices used to bind a given
target in a non-mode 1 selection are also found in at least
one of the mode 1 screens. These results indicate that the
flexibility provided across multiple mode geometries do ex-
pand the number of functional helices but most solutions
are enabled by mode 1. Nevertheless, 16% of the helices do
appear to depend on a geometry outside of mode 1, or 1634
of the 10 193 core helices recovered across all of our screens.

Since there are more mode 1 helices that can bind a given
target, we next asked the reverse question, are there more
mode 1 helices that offer the flexibility to bind more than
one target? When we again consider core helices, we find
that on average mode 1 core helices are recovered in more
target selections than for any of the other modes, indicat-
ing that in general, mode 1 helices can be more promis-
cuous (Supplementary Figure S6 and Supplemental Table
S13). While this increased promiscuity is slight, it is signifi-
cant (ANOVA P < 0.00001) and increased flexibility could
enable a ZF-TF to sample a new target with a single-base
substitution that may provide an evolutionary advantage
while still binding its natural target. This flexibility would
certainly contribute to the expansion of a domain. There-
fore, we considered how promiscuity might be related to he-
lix similarity. We created connectivity plots for each mode
screen using the recovered core helices across all selections.
Each helix that differs by a single core amino acid is repre-
sented by a node while edges represent a single amino acid
change between core helices. The size and color of the node
indicates the number of target sequences the helix was able

to bind (Figure 4C and Supplementary Figure S7). While
both mode 1 plots are densely connected with the most
promiscuous helices clustered in the center, non-mode 1 plot
are sparse with distinct but separate clusters. For instance,
the average node degree in mode 1 is 23 versus less than
20 for other modes (meaning a higher connectedness of the
graph), while betweenness centrality is 0.0004 in mode 1 ver-
sus 0.0007 and higher in other modes (meaning less cluster-
ing of the graph, t-test P < 0.00001, see Supplementary Fig-
ure S7) (55). The more promiscuous helices are again at the
center of these clusters, having both a higher average degree
and betweenness centrality (see Supplementary Figure S7).
These results imply that promiscuous helices within a mode
are often related to large groups of helices that are also func-
tional in that mode. This may provide an advantage as a
promiscuous finger might sample multiple sequences and if
one provided an evolutionary advantage, a secondary muta-
tion that locked in that specificity would likely still be func-
tional.

Hydrogen bond stability may contribute to Mode 1 plasticity

Our results demonstrate mode 1 is able to functionally em-
ploy a more diverse set of amino acids and interact with
more targets successful. These results are surprising espe-
cially when we consider the similarity of many of the BRPs
employed. The BRPs of mode 1 (RS) and mode 4 (KS) both
present a basic residue at position 9 paired with a serine at
position −2 yet nearly 5-fold more target selections failed
in the mode 4 selections (Figure 1F) and on average, more
than 3 times as many core helices are recovered per target
in mode 1 relative to mode 4 (Figure 4B). Hence, we sought
a structural explanation for the advantage provided by the
Arg at position 9 and we carried out molecular dynamic
simulations (MD) for ZFs modeled after zif268 that rep-
resent mode 1 (position 9 = Arg) or mode 4 (position 9 =
Lys) geometries between fingers 2 and 3 of the protein (Fig-
ure 4D). We find that the position of finger 3 in the mode
4 MD fluctuates more when compared to finger 3 of mode
1 (Figure 4D, Supplementary Figure S8, and Supplemental
Table S14), consistent with lower binding affinity. In addi-
tion, we find that the hydrogen bond between the backbone-
carbonyl of Ser −2 and the side chains of the BRs in mode
1 occurs in 62% of the MD trajectory while only 15% in
mode 4 (Figure 4E and Supplemental Table S15). Further,
the Arg at position 9 in mode 1 makes additional hydrogen
bonds with the phosphate backbone of the DNA that are
not observed in the mode 4 MD. While additional contacts
are possible with residues in the linker, in the MD these ap-
pear to make a minor contribution in mode 1 with a more
substantial contact made between the backbone in mode 4
(Supplemental Table S16). Still, while possible, linker con-
tacts will be difficult to predict because the substantial di-
versity in ZF linkers will impact the feasibility and strength
of these additional interactions (Supplemental Table S11).
Nevertheless, the hydrogen bonds more frequently observed
between the BRs and the DNA in the mode 1 MD could in-
crease the baseline affinity of the ZFs, which might explain
the increased plasticity of mode 1 relative to mode 4 as an
increased baseline affinity could allow more low affinity he-
lices to survive our selections. Considering these potential



6396 Nucleic Acids Research, 2020, Vol. 48, No. 11

Figure 4. Helical plasticity across modes. (A) The number of unique core helices (positions −1, 2, 3, and 6) recovered across mode screens. (B) The average
number of core helices per target by mode. (C) Connectivity plot comparison of Mode 1 and Mode 4. These modes use the BRPs RS and KS, respectively.
Node color represents the number of target selections the helix was recovered in. Blue = 1, Green = 2–4, Yellow = 5 or more. (See also Supplementary
Figure S7). (D) Top 10 conformational clusters identified on the molecular dynamic simulations of zif268 in mode 1 and mode 4. (E) Detail of the hydrogen
bonds network of the BRs over the most frequent conformational cluster for mode 1 and mode 4. The numbers indicate the fraction of time a hydrogen
bond (dash lines) was observed during the simulations. The Arg at position 9 (green licorice) of mode 1 is found within hydrogen bond distance of the
backbone-carbonyl of Ser at position −2 (green licorice) four times more frequently than the Lys (green licorice) at position 9 of mode 4. The glutamic
acid at position 51 (purple licorice) of the finger linker demonstrates an alternative hydrogen bond pattern in mode 4 respective to mode 1.
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differences, we tested a series of three ZF-TFs that in mul-
tiple modes, mutating their wildtype mode 1 BRs, for their
ability to activate GFP and find in all cases mode 1 (wt)
produces the strongest output consistent with it offering the
highest affinity to DNA (Supplementary Figure S9).

Modes restrict zinc finger plasticity of transcription factors

To further test if mode 1 flexibility influences the ability of
ZF-TFs to more easily sample new specificities we assayed
a series of mutations in the 3rd ZFs of the human transcrip-
tion factors KLF6 and Snai2. KLF6 is a member of a family
of 18 orthologous human ZF-TFs that all bind similar tar-
gets using conserved residues at the core helical positions of
its three ZF domains. KLF6 has core helical residues that
match the consensus for all 18 family members, making it
an excellent example of the entire KLF family (Supplemen-
tary Figure S10). Based on our selections across modes we
identified single substitutions at position 3 of the KLF fin-
ger 3 helix that could transition its specificity from TGG to
TAG or TCG, in the context of the core residues naturally
expressed by finger 3 (Figure 5). We tested these substitution
in 4 different mode contexts by also varying the BRPs and
assaying the target specificity of each construct using a sim-
ilar bacterial hybrid screen previously used to characterize
hundreds of transcription factors across multiple model or-
ganisms (36,56,57). We find that while the mode 1 versions
of the proteins are all functional and each specify the pre-
dicted targets, the other modes are less flexible. In general,
mode 3 and mode 5 are less functional with significantly
fewer colonies surviving selective pressure for all mutants
and with multiple examples where the selections failed to
provide any enrichment over background. The Mode 4 vari-
ants are more successful than modes 3 and 5, enriching for
colonies above background in all but 1 selection. However,
in all cases Mode 4 appears less successful than mode 1,
producing far less colonies above background. In addition,
while the two variants tested to modify the KLF finger 3
target preference from TGG to TAG are both functional in
mode 1, mode 4 is only functional in one of the two (Figure
5, right). These results demonstrate that mode 1 would en-
able variants that provide TAG specificity more successfully
and with more strategies. Interestingly, a common strategy
selected to bind TCG uses Asp at the 3rd position of the
helix (Figure 5, left). While this mutation is functional in
modes 1 and 4, but not 3 and 5, it is the weakest of all mode
1 variants tested producing only 3-fold more colonies com-
pared to a negative control. Therefore, we next tested substi-
tutions of Ser and Thr at position 3 that are also commonly
enriched in this context to bind TCG. However, these sub-
stitutions would require two mutations at the DNA level
starting from the natural CAC codon of position 3. Again,
we find modes 1 and 4 are functional, modes 3 and 5 are not,
and mode 1 out performs mode 4 in each case. Therefore,
substitutions at position 3 of finger 3 in KLF factors could
transition the specificity in modes 1 and 4 but not 3 and 5.
Further, based on these results, the most functional transi-
tion to TCG specificity would go through an intermediate
where Tyr is at position 3 allowing for recognition of A or
C at the middle base. If C were favored, a second mutation
could switch the Tyr to a Ser and improve overall activity on

TCG targets. However, as the Tyr substitution is only func-
tional in mode 1, both of these specificity trajectories would
be dependent on the plasticity of mode 1.

Snai2, the human homolog of Slug (58), is a 4-fingered
transcription factor but only fingers 2 and 3 appear to spec-
ify its target. This makes Snai2 an excellent test case as func-
tion should be completely dependent on the single BRP be-
tween these two fingers. From our selection data it appears
modification of the finger 3 core helix (DSNA) at helical
position 6 could lead to tolerance of alternative bases at the
first base of its target, CAC. Our data would predict func-
tional substitutions in this core helix from Ala at position 6
to His, Arg or Lys with varying levels of mode-dependent
success. These mutations could modify binding preference
from CAC to at least tolerate AAC, GAC and TAC, allow-
ing altered target preference to any NAC target with a single
amino acid substitution. Therefore, we again screened a se-
ries of Snai2 variants in five modes to test the TFs ability
to transition specificity in each mode. Again, we find that
mode 1 is the most functional and able to transition to the
predicted binding tolerance for each substitution (Supple-
mentary Figure S11). Mode 2 is functional, to a lesser de-
gree, with two of the three substitutions while each other
mode is restricted to weak function with an Arg at posi-
tion 6 or no function in all cases. These results and those
above demonstrate that in KLF and Snai2, mode 1 enables
the flexibility for the ZFs to easily transition to new target
specificities that would be restricted in any other mode.

An improved specificity model based on BRP influences and
deep neural networks

Previous studies have used a number of different machine
learning techniques to build predictive models of DNA
binding specificity for ZFs including those based on k-
nearest neighbors (59), neural networks (60), support vec-
tor machines (61) and random forests (7). Although these
different approaches have proven to be useful tools, the in-
crement in computational power has made feasible the ap-
plication of more complex and powerful techniques. There-
fore, to take advantage of the wealth of data provided here,
and in particular the fact that it should take into account
the neighbor-effects on specificity, we implemented a new
prediction model based on convolutional neural networks.
Such methods have recently been shown to be powerful
when coupled with large amounts of data (62). In particu-
lar, we implemented a one-dimensional convolutional neu-
ral network (1D-CNN) using Keras (https://github.com/
fchollet/keras), where the input layer is the one-hot encoded
amino acid sequence of the helix in addition to the BRP and
the output layer is a 3 × 4 matrix representing the 3-base
binding motif of a zinc finger (See Figure 6A). The hyper-
parameters and the architecture of the network where de-
termined by random search using as evolution the two in-
dependent data sets generated by B1H, including the pre-
vious data from our lab (10) and Hughes et al. (63), as
well as the new data presented here. Finally, for testing and
performance comparison, we used a number of different
curated datasets from other methods, including Chip-Seq
(1,5,8,41,63). These present a variety of natural fingers from
various species, including human, fly and worm.

https://github.com/fchollet/keras
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Figure 5. Transcription factor specificity transitions are restricted by mode. (Top, center). Finger 3 of the KLF transcription factor family use a His at
position 3 of the helix (green) to contact a guanine at the middle base (B2) of its target, tGG. Four versions of KLF6, a representative member of the
KLF family, were constructed (see Supplementary Figure S10). Each version modified the BRPs between fingers 2 and 3 to create Mode 1, 3, 4, and 5
versions of the protein. Sequences that the KLF6 variants were able to interact with were selected from a 28bp random library by B1H selection. The fold
increase in the number of colonies that survived those selections relative to a negative control, are shown in addition to the specificity for finger 3 of KLF6
in mode 1. (Right panel) Transitioning specificity to tAG. Substitutions at position 3 of the helix from His to Asn or Tyr are predicted to provide Adenine
specificity at the middle base. These substitutions were made in the KLF6 variants as Modes 1, 3, 4 and 5 and subjected to B1H selection. The fold increase
in the number of colonies that survived those selections are shown in addition to the specificity for finger 3 of KLF6 in mode 1. (Left panel) Transitioning
specificity to tCG. Substitutions at position 3 of the helix from His to Asp, Thr, or Ser are predicted to provide cytosine specificity at the middle base. These
substitutions were made in the KLF6 variants as Modes 1, 3, 4 and 5 and subjected to B1H selection. The fold increase in the number of colonies that
survived those selections are shown in addition to the specificity for finger 3 of KLF6 in mode 1.

When comparing model performance with incremental
addition of more mode-specific training data, we observe
a steady increase in accuracy for each mode added, in line
with the intuition that our mode-specific data encodes some
of the neighbor-effects on specificity (see Figure 6B, C). We
also find that when compared to a previous model, our new
specificity predictor outperforms it in most datasets, while
performing similarly in others (see Figure 6 D–I). A util-
ity based on this model for ZF predictions, ZFPred, can be
found here, www.gitlab.com/kimlab/zfgeomodes.

DISCUSSION

The Cys2His2 zinc finger domain is the most common
DNA-binding in most metazoan genomes and despite its
seemingly simplistic interaction with the DNA, efforts to
provide predictive rules that define this domain have fallen
short. We applied the largest synthetic screen of any pro-
tein domain to better understand how ZFs engage their
DNA targets. Seven libraries, each consisting of 64 million
amino acid combinations, were screened in 448 selections
to uncover ZFs able to bind each of the 64 possible 3 bp
targets. The theoretical complexity sampled here, over 28
billion unique protein–DNA interactions, eclipses the di-
versity experimentally sampled in any prior work. These
screens and the models derived from them include several
orders of magnitude more ZF-target diversity than screens

of naturally occurring ZFs (∼16,000-fold) and 10X more
diversity than our original synthetic screen of zif268’s third
finger (7,10). Here, we demonstrate two benefits to this ex-
haustive approach. First, by systematically changing a sin-
gle variable that influence adjacent finger function and then
comprehensively screening the consequence on base recog-
nition, we are able to provide mechanistic insight into do-
main function that would be extremely difficult to derive
from the limited complexity that has evolved naturally. Sec-
ond, we are able to use this purely synthetic data to create a
model of ZF-TF specificity as accurate as any previously re-
ported. The implications of this synthetic model are impor-
tant to note. Other models include data produced for natu-
rally occurring ZFs and ZF-TFs that offer diversity through
the domain and between adjacent fingers and then use these
data to predict other ZF-TFs. Conversely, all proteins ex-
pressed in our screens are 90% identical and yet we are able
to predict the specificity of diverse ZF-TFs with the same
level of accuracy.

Our results also allow a preliminary prediction of ZF
function based on the BRPs employed. One benefit of pre-
dicting BRP functionality is that it allows us to begin to in-
vestigate which fingers of large ZF-TFs actually engage the
DNA. CTCF is an excellent example as only five of its 11
ZFs, fingers 3–7, are responsible for its target recognition.
Interestingly, our data predicts that the BRPs that surround
these five functional ZFs are low probability BRPs. Between

http://www.gitlab.com/kimlab/zfgeomodes
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Figure 6. Validation of the synthetic model of zinc finger specificity. (A) Schema of the network architecture trained with the mode selection screens. (B, C)
Effect of the consecutive expansion of the training set with new modes subsets on the performance of the network. Network performance was measured
as the mean square error of the predicted motif to the experimental D. melanogaster ZF-TFs and ZifRC datasets. Error estimations from independent
trainings over 10-fold cross-validations. (D−F) Comparison of performance of ZifRC and neural network across a series of single-finger datasets measured
by correlation score (described in the methods section) over different datasets: ZifRC training dataset with 8,112 motifs (D), a subset of 4000 motifs
removed from the neural network training set (E), 100 validated motifs from the selection (Supplementary Figure S2) also absent in the training set (F).
(G−I) Comparison of performance of ZifRC and neural network on a series of characterized ZF-TFs including 129 C. elegans factors (G) and two sets
curated by Najafadabi et al., 2015, the gold standard set (H) and a set of 39 human ZF-TFs (I).
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fingers 2 and 3 the BRP (NV) is predicted to be nonfunc-
tional and the BRP between fingers 7 and 8 (RH) is pre-
dicted to be low confidence, representing less than 0.5% of
the sequences recovered in the mode 6 screens alone. What’s
more, in the CTCF structure while fingers 3–7 are engaged
with the DNA with canonical angles and distances, fingers
2 and 8 appear removed from the major groove and inter-
act with the phosphate backbone (64). This offers at least a
preliminary example of predicted BRP function that is sup-
ported by structure though we caution that many more vari-
ables will ultimately impact adjacent finger activity and our
prediction of BRP functionality should be thought of as an
approximation. For example, the position within the ZF ar-
ray may influence the functionality of a given BRP as the
function of some ZFs are known to be dependent on po-
sition. However, we chose the C-terminal position for our
libraries as it reduces the influence on the library selection
to a single BRP and we have previously shown there is no
loss in predictive power by screening C-terminal libraries
versus internal ZF libraries. Nevertheless, it is important to
note that internal ZFs in ZF-TFs are under the influence of
both an N and C-terminal ZF and their BRPs.

In addition to predicting functional units, we have also
shown that BRP substitutions can reduce or ablate over-
all function in a set of natural TFs (Supplementary Fig-
ure S9) and provide categories of BRPs that would allow
for a first approximation of the consequence of BRP muta-
tions (Supplemental Tables S10 and S11). What’s more, mu-
tations at these positions have already been shown to have
disease-related consequences. Mutations at BRP position 9
are enriched in cancer samples (31). Interestingly the most
common change is from Arg at position 9 to Ile. Our data
would predict that when an Ile is present at position 9 only
four possible BRPs are likely to be functional and even in
these cases, a mutation that changes an Arg to an Ile would
modify the protein’s mode which could have severe conse-
quences on function. In fact, over 71% of these mutations
found in cancer samples transition a mode 1 ZF pair out of
mode (Supplemental Table S17). Therefore, our data would
suggest that that these mutations severely reduce function
by disrupting the natural adjacent finger geometry.

Finally, the impact of our investigation of adjacent finger
geometry is not limited to predictions of function, but has
also underscored the impact that ZF plasticity could have
on the utility of the domain and its prevalent use in com-
plex eukaryotes. The evolutionary expansion of the ZF-TFs
has been of great interest in recent years. While the driving
forces behind this expansion have been the focus of multi-
ple articles, few mechanistic explanations have been offered
for how the ZF domain would enable this expansion. Cer-
tainly, the modularity of the domain enables the addition
and subtraction of ZFs through duplication of the domain.
However, modularity is more complicated than simple du-
plication as our work demonstrates that duplication events
could easily result in nonfunctional ZF pairs as their func-
tion depends on whether the new BRs are compatible. With
this in mind, the screens reported here demonstrate that the
most common BRPs of mode 1 enable more flexibility in
base recognition than all other modes. If duplication were
to result in the presentation of the new ZF in an alterna-
tive mode, our results suggest that the amino acid strategy

of the helix would have a lower probability to functionally
engage the DNA. Not surprisingly, common model organ-
isms that use the ZF as their most common DBD also uti-
lize mode 1 with the highest frequency. In addition, the in-
creased function and helical diversity enabled by mode 1 in-
creases the likelihood that a mutation at one of the core heli-
cal residues will still bind DNA, potentially allowing a tran-
sition in specificity. The ability to sample new targets, while
the second allele of the TF maintains the normal function
of the protein, could offer additional evolutionary advan-
tages provided by mode 1 ZFs, and limited in other geome-
tries. Ultimately, our data support a model where the helical
plasticity enabled by the mode 1 BRPs simplifies specificity
transitions when evolution would favor them and provide
advantages for the duplication of the domain.
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