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Abstract

Background: RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress
gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in
numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear.

Methodology/Principal Findings: Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous
or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats.
Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed
regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse
embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in
these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in
detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer2/2 ES cells. Instead, we
found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed
cell lines.

Conclusion/Significance: We found that Dicer, a key component of RNA silencing pathways, can be detected in association
with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the
enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the
transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize
that Dicer functions in maintaining integrity of rDNA arrays.
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Introduction

RNA interference (RNAi) and microRNA (miRNA) pathways

represent RNA silencing mechanisms utilizing short RNA

molecules, produced by RNAse III family enzyme Dicer, to guide

sequence-specific silencing of gene expression. Factors involved in

RNA silencing also participate in the formation and maintenance

of heterochromatin. The connection between RNA silencing and

chromatin is best established for Schizosaccharomyces pombe and

plants where chromatin-associated silencing complexes were

extensively characterized (reviewed in [1,2]). Components of

RNA silencing were implicated in transcriptional silencing and

heterochromatin also in animals but, unlike in plants and S. pombe,

the mechanistic aspects of the connection remain unclear [3]. In

mammals, transfected siRNAs were reported to cause heterochro-

matinization of targeted genes in a process possibly involving

Argonaute proteins [4–6]. In addition, mammalian Dicer was

implicated in the formation of centromeric heterochromatin [7,8],

and in regulation of intergenic transcription at the human and

chicken b-globin locus [9,10]. However, recent data indicate that

some of the Dicer effects on epigenetic mechanisms can be

indirectly mediated by miRNAs, what warrants caution when

interpreting results obtained with cells depleted of Dicer or

Argonaute proteins [11,12].

The uncertainty about small-RNA mediated epigenetic silenc-

ing in mammals contrasts with experimentally supported model of

heterochromatin formation in S. pombe where Dicer cleaves

transcripts from centromeric and other repeats to produce short

RNAs that recruit complexes inducing local formation of

heterochromatin (reviewed in [2]). Other RNA silencing factors

such as Ago1 and Rdp1 operate in cis as stable components of

heterochromatin at centromeres, telomeres, mating type locus,

and ribosomal DNA (rDNA) repeats [13]. Since mutations of

RNAi machinery components lead to increased mitotic recombi-
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nation of rDNA repeats in S. pombe, the RNAi pathway may also

control integrity of rRNA gene arrays [13]. A similar role has been

proposed also for quelling, an RNA silencing mechanism in

Neurospora crassa [14].

Mammalian ribosomal RNA (rRNA) genes are organized, like

in other organisms, in tandemly-repeated arrays. Human rDNA

comprise approximately four hundred 43-kb repeats composed of

a 13-kb transcribed region and a 30-kb intergenic spacer (IGS).

Human rDNA arrays are localized together with satellite repeats

on short arms of acrocentric chromosomes [15]. Mouse rDNA has

a similar organization [16]. Transcriptional and epigenetic

regulation of rDNA has been extensively studied (reviewed in

[16,17]). In established mammalian cell lines, approximately half

of rDNA promoters are inactive and methylated [16,18]. Silencing

of rDNA is mediated by the chromatin nucleolar remodeling

complex (NoRC), which is guided by 150–300 nucleotide-long

noncoding RNAs (pRNAs) that are complementary to the rDNA

promoter. Mutations that abrogate RNA binding of TIP5, the

large subunit of NoRC, impair association of NoRC with rDNA

and fail to promote histone H3 lysine 9 (H3K9) and and histone

H4 lysine 20 (H4K20) methylation and HP1 protein recruitment.

Knockdown of pRNAs abolishes the nucleolar localization of

NoRC, decreases DNA methylation, and enhances rDNA

transcription [19,20]. Connection between pRNAs and RNA

silencing pathways is uncertain as analysis of rDNA-derived small

RNAs provided no evidence that pRNAs are processed by Dicer

[21].

However, several links between RNA silencing and rRNA

expression in animals can be found in the literature. Drosha, a

mammalian RNase III family enzyme responsible for processing of

primary miRNA transcripts to precursor miRNAs, was implicated

in pre-rRNA processing [22] though reports contradicting this

possibility have also appeared [23]. rRNA fragments are always

found among cloned small 20-25-nt-long RNAs although they do

not seem to stem from Dicer processing and their physiological

role remains unclear [21,24]. Interestingly, Peng and Karpen have

reported decreased H3K9 dimethylation and increased recombi-

nation of repetitive DNA, including rDNA, in Drosophila mutants

in Su(var)3-9 and Dicer-2 genes, suggesting that RNA silencing

pathway is also involved in modulating rDNA chromatin in insects

[25].

Here, we report that Dicer is physically associated with rDNA

repeats on chromosomes of human and mouse cells. Analysis of

rDNA chromatin and rRNA biogenesis suggests that Dicer is not

directly regulating expression or processing of rRNA in mamma-

lian cells. Possibly, Dicer association with rDNA chromatin is

indicative of its role in maintenance of rDNA tandem repeats.

Such a role would be consistent with the fact that Dicer associates

with both active and silenced rDNA genes throughout the cell

cycle. In addition, our data provide an insight into epigenetic

status of rRNA genes in mouse embryonic stem (ES) cells and

different tissues.

Results

Localization of Dicer on mammalian chromosomes
We have immunostained mitotic chromosomes of human

HEK293 cells using two polyclonal antibodies, D349 and D350,

raised against different epitopes of human Dicer (Fig. S1). Both

antibodies produced characteristic ‘‘pair of dots’’ signals at short

(p) arms of a set of distinctly shaped chromosomes, recognized as

acrocentric chromosomes 13, 14, 15, 21, and 22 (Fig. 1). Co-

staining for CENP-A, a centromere-specific protein, demonstrated

that signals visualized with anti-Dicer antibodies were close to but

not overlapping with the pairs of CENP-A-specific signals,

consistent with the Dicer localization on p-arms of acrocentric

chromosomes (Fig. 1A).

To verify that Dicer is localized at rDNA loci, we co-stained

mitotic chromosomes with antibodies against UBF, an RNA

polymerase I factor involved in rRNA transcription [16]. Signals

detected with both anti-Dicer antibodies co-localized with those

specific for UBF (Fig. 1B). A similar pattern of Dicer and UBF co-

localization was also observed with mitotic chromosomes prepared

from human lymphocytes and HeLa cells, and mouse P19 cells

(Fig. 1B).

Specificity of rDNA staining with anti-Dicer antibodies was

confirmed using expression plasmids expressing HA-, EGFP-,

Flag-, or Myc-tagged Dicer. Transiently expressed tagged Dicer

detected by anti-EGFP, anti-HA, anti-Flag, or anti-Myc antibodies

also colocalized with UBF signal (Fig. 2), further confirming that

Dicer is physically present on mitotic rDNA chromatin in

mammalian cells.

Specific association of Dicer with transcribed and
promoter regions of rDNA repeats

To delineate Dicer localization in rDNA more precisely, we

performed chromatin immunoprecipitation (ChIP) analysis in

HEK293 cells with the anti-Dicer D349 antibody and used the

immunoprecipitated DNA for real-time PCR analysis with primer

pairs covering different regions of the human rDNA repeat

(Fig. 3A). We found a specific enrichment at the promoter (42-kb

region) and throughout the transcribed part of rDNA (1-, 3-, 6-,

and 13-kb regions), with the highest peak at around 1-kb

downstream of the transcription start site. In IGS, the enrichment

was very low (Fig. 3B). Similar results were obtained using

HEK293 cells in the G1-phase of cell cycle, indicating that the

association of Dicer is not specific to M-phase when nuclear and

cytoplasmic compartments are not separated by nuclear mem-

brane (Fig. 3C). ChIP experiments performed with HeLa cells also

showed Dicer enrichment at rDNA promoter and transcribed

region (data not shown). Analysis with primers specific for b-

satellite and satellite III sequences that surround the rDNA arrays

[15] indicated no Dicer-specific enrichment exceeding that seen at

the rDNA intergenic spacer (data not shown).

To obtain additional support for the association of Dicer with

mammalian rDNA chromatin, we have analyzed Dicer-deficient

(Dicer2/2) mouse ES cells, using heterozygous (Dicer2+/2) ES

cells as a control [26]. ChIP analysis performed with anti-Dicer

D349 antibody revealed enrichment of rDNA in Dicer expressing

mouse ES cells although enrichment was lower than in human

cells (Fig. 3D, E). However, similarly to human cells, the antibody

preferentially enriched promoter and transcribed regions (1-, 4-,

and 43-kb), but no intergenic 17-kb and 21-kb mouse rDNA

regions (Fig. 3D, E). Most importantly, the ChIP analysis

performed with Dicer2/2 cells showed a statistically significant

drop to background level in the enrichment of 1-, 4-, and 43-kb

regions (Fig. 3E), indicating that the D349 antibody monitors a

conserved association of Dicer with rDNA. Analysis of chromo-

some spreads from mouse ES cells by indirect immunofluores-

cence did not yield reliable staining of rDNA with Dicer D349 and

D350 antibodies as the signal was very weak and difficult to

distinguish from background staining (data not shown). This is

consistent with a lower enrichment of rDNA in ChIP experiments

performed with mouse ES cells and could possibly be due to a low

level of Dicer associated with rDNA in ES cells or a lower Dicer

expression in these cells when compared to HEK293 cells (Fig.

S1B and C).

Dicer in rDNA Chromatin
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Figure 1. Localization of Dicer on mammalian mitotic chromosomes. Chromosome spreads from human or mouse cells were stained with
anti-Dicer and other indicated antibodies. (A) Staining of HEK293 chromosomes with anti-CENP-A (red) and anti-Dicer D349 (green) antibodies. The p-
arms of acrocentric chromosomes stained by D349 antibody are indicated by arrows. The inset shows an example of a distinctly shaped acrocentric
chromosome with a pair of dots Dicer staining on p-arms. (B) Pairs of dots stained with anti-Dicer antibodies D349 (left column) and D350 (right
column) (red) co-localize with dots stained by anti-UBF antibody (green). The UBF staining co-localized with the D349 and D350 antibody stainings in
95,4% (n = 65) and 93,5% (n = 62) of all inspected HEK293 chromosomes, respectively. Likewise, pairs of dots stained with anti-Dicer antibodies D349
or D350 (red) co-localize with dots stained by anti-UBF antibody (green) on mitotic chromosomes prepared from HeLa cells, human primary
lymphocytes, and mouse teratocarcinoma P19 cells.
doi:10.1371/journal.pone.0012175.g001
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Dicer associates with active and inactive rRNA genes
To find out whether Dicer is preferentially associated with

active or inactive rRNA genes, we used bisulfite sequencing to

analyze promoter methylation in rDNA co-precipitated with D349

antibody from HEK293 cells. For comparison, we bisulfite-

sequenced rDNA immunoprecipitated with antibodies against

pan-acetylated histone H4 (H4ac, a marker for active genes) and

dimethylated histone H3K9 (H3K9me2, a marker for inactive

genes). As expected, the anti-H4ac antibody immunoprecipitated

hypomethylated rDNA while the anti-H3K9me2 antibody immu-

noprecipitated hypermethylated rDNA. Interestingly, D349 anti-

body enriched both hypo- and hypermethylated rDNA, suggesting

that Dicer association with chromatin does not discriminate

between active (hypomethylated) and silenced (hypermethylated)

rRNA genes (Fig. 4). Although we can not rule out that

hypomethylated DNA associated with Dicer represents silenced

genes, this possibility is unlikely since no similar fraction of

hypomethylated DNA was found in DNA associated with

H3K9me2.

No apparent involvement of Dicer in pre-rRNA
processing

To test whether Dicer plays a role in pre-rRNA maturation we

analyzed pre-rRNA processing in ES cells by pulse labeling the

RNA with [3H-methyl]methionine for 30 min and chasing the

label with nonradioactive methionine for 30 and 60 min.

Incorporation of the label into pre-rRNA in Dicer2/2 cells was

about two times lower than in control Dicer+/2 cells (Fig. 5A).

Consistently, transcriptome analysis indicated an approximate

two-times lower level of 45S pre-rRNA in Dicer2/2 as compared

to Dicer+/2 cells ([12], GEO Dataset GSE7141). However, as

revealed by pulse chase analysis (Fig. 5B), processing of 45S pre-

rRNA to mature rRNA species occurred without any obvious

differences between Dicer2/2 and control ES cells.

Common epigenetic marks are not affected by the loss of
Dicer in ES cells

To test if Dicer localization to rDNA is associated with changes

in chromatin structure and epigenetic regulations at the locus, we

analyzed histone modifications and DNA methylation at rDNA in

murine Dicer2+/2 and Dicer2/2 ES cells. We assessed chromatin

features important for proper transcription of rRNA, such as

loading of UBF [16], dimethylation of H3K4 (H3K4me2) [27] or

acetylation of H4K16 (H4K16ac) [28]. We also analyzed

H3K9ac, H3K9me2 and H3K9me3, modifications that have

been shown to be affected by loss of Dicer in S. pombe [13,29,30].

ChIP analysis showed that association of UBF was limited to the

promoter and transcription start regions and there was no

difference in the loading of UBF at the rDNA promoter between

Dicer+/2 and Dicer2/2 ES cell lines (Fig. 5C). Likewise, generally,

no marked differences in histone modifications H3K4me2,

H4K16ac or of H3K9 were observed between Dicer+/2 and

Dicer2/2 ES cells (Fig. 6A–E); an approximately 2-fold higher

enrichment for H3K9me3 in the intergenic region in Dicer2/2

cells when compared to control cells (Fig. 6E) could be caused by

Dicer-independent differences between these ES-cell lines, or

could be a consequence of Dicer depletion, which is known to

result in many changes in gene expression [12]. As expected for ES

cells, all silencing histone methylation marks were detected at

rather low levels throughout the rDNA locus [31]. In Drosophila,

Dicer and Argonaute proteins were shown to co-localize with

nuclear Polycomb protein bodies that are enriched in histone H3

methylated on lysine 27 (H3K27me) [32]. However, no pro-

nounced differences in the mono-, di-, and tri-methylation of

H3K27 were found between Dicer2/2 and Dicer-expressing ES

cells (Fig. 7).

Finally, analysis of rDNA from Dicer+/2 and Dicer2/2 ES cells

by bisulfite sequencing revealed that it was largely hypomethy-

lated, irrespective of the Dicer expression status. This contrasts

with the situation in HEK293 cells in which approximately half of

rDNA genes were methylated at the promoter (Fig. 5); depletion of

Dicer in HEK293 cells by RNAi [33] had no effect on the DNA

methylation status of rDNA (Fig. S2). Interestingly, the rRNA

promoter hypomethylation was not specific to ES cells, as it was

also found in primary tissues, including blastocysts (from which ES

cells are derived), oocytes, and testis, brain and liver (Fig. 8). This

rather unexpected finding is discussed in more detail in the

Discussion. Taken together, analysis of epigenetic marks and

pulse-chase analyses make it improbable that Dicer plays a role in

transcriptional regulation or processing of rRNA.

Discussion

We have found that mammalian Dicer is physically associated

with rDNA chromosomal in mammalian cells. Dicer associates

with both transcribed and silenced rRNA genes and it is mostly

localized to rDNA region encoding to 45S pre-rRNA. Our data

argue against a possibility that the rDNA-associated Dicer has a

role in establishing transcriptionally repressive or permissive

chromatin, or in rRNA precursor processing. Apart from the

analysis of rDNA-associated Dicer, our data provide a compre-

hensive view of the rDNA chromatin structure in the transcribed

region and ISG in mammalian cells.

Analysis of H3K9 and H3K27 modifications confirmed

results of a previous study of rDNA in ES cells, which analyzed

chromatin structure at the 39 end of the transcribed rDNA

region [31]. Additionally, we characterized chromatin structure

of the rRNA promoter and the IGS. We found UBF present at

the rRNA promoter but not in the IGS. Interestingly, the rRNA

promoter had rather low levels of ‘‘active’’ marks, such as

H3K4me2 and H3K9ac when compared to the GAPDH

promoter. Repressive histone marks, such as H3K9 methylation

and acetylation levels were also low. In contrast to the previous

Figure 2. Localization of tagged Dicer proteins on mammalian
mitotic chromosomes. Transiently expressed tagged Dicer proteins
are detected at rDNA loci. Constructs expressing proteins bearing
different tags at the N terminus were transfected to HEK293 cells and
the tag was visualized by anti-EGFP, anti-HA, anti-Flag, or anti-Myc
antibodies.
doi:10.1371/journal.pone.0012175.g002

Dicer in rDNA Chromatin
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analyses of UBF binding in human HeLa and mouse A9 cells,

which suggested that UBF binds throughout rDNA repeat [34],

we did not observe enrichment of UBF in the intergenic spacer

in mouse ES cells; similarly, Nemeth et al. [35] found that in

mouse NIH 3T3 cells the UBF factor is most abundant at the

rDNA enhancer/promoter region and not enriched at the

intergenic spacer. Nemeth et al. [35] also provided data about

occupancy of other transcription factors and on chromatin

structure, including some histone modifications, at rDNA genes

in NIH 3T3 cells.

Figure 3. Association of Dicer with transcribed and promoter regions of mammalian rDNA repeats. (A) Structure of the human rDNA
repeat and positions of primers used for the ChIP analysis. (B) ChIP analysis performed with HEK293 cells using Dicer D349 antibody and an unspecific
antibody as a control. Real-time quantitative PCR was performed with the immunoprecipitated DNA using primer pairs indicated in panel A. The
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primers were located in the gene promoter region. Values are calculated as percentage of the
input DNA used at 1:100 dilution. They represent means (+/2 SEM) of at least 4 independent experiments. The red line represents the threshold of
the 0.5% of input level, above which enrichments were considered as significant. (C) ChIP analysis performed with G1-phase HEK293 cells shows
pattern of enrichment of Dicer on rDNA repeats similar to that seen with total population of HEK293 cells. Values represent means (+/2 SEM) of at
least 3 independent experiments. For other details, see panel B. (D) Structure of the mouse rDNA repeat and positions of primers used for the ChIP
analysis. (E) Loss of rDNA enrichment by the Dicer D349 antibody in mouse Dicer knockout ES cells. The ChIP was performed with mouse Dicer+/2 and
Dicer2/2 ES cells similarly as with HEK293 cells. Real-time quantitative PCR was performed with the precipitated DNA using primer pairs indicated in
panel D. Values represent means (+/2 SEM) of at least 7 independent experiments. Statistical significance of the drop in enrichment at 1-kb, 4-kb and
43-kb regions was determined by two-tailed t-test and the p-values were 0.015, 0.026 and 0.003, respectively. For other details, see panel B.
doi:10.1371/journal.pone.0012175.g003
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It has been repeatedly documented that DNA methylation is

associated with transcriptional inactivation of rDNA (for recent

review, see [17]). Our data indicate that DNA methylation is not

consistently found in mammalian rDNA. In fact, except of

transformed cell lines, we only rarely saw clones diagnostic of

hypermethylation upon bisulfite sequencing of DNA isolated from

primary tissues or cells, including liver and testis, oocytes and

blastocysts, and also undifferentiated and differentiated ES cells.

Figure 4. Methylation status of the Dicer associated rDNA as
revealed by bisulfite sequencing. The sequenced region, spanning
positions –186 to +20 of the rDNA repeat [38], is divided into three
domains: core promoter (core p), upstream control region (UCE) and
sequences upstream of UCE. Black dots represent methylated CpG
nucleotides. Each row of dots represents one bisulfite-sequenced clone.
The clones originate from two independent experiments. HEK293
(input), bisulfite sequencing of the rRNA promoter region of total
HEK293 DNA. Dicer (D349), DNA immunoprecipitated with anti-Dicer
antibody D349. H3K9me2, DNA associated with histone H3 dimethy-
lated on lysine 9 (marker for inactive genes). H4ac, DNA associated with
acetylated histone H4 (marker for active genes).
doi:10.1371/journal.pone.0012175.g004

Figure 5. Analysis of pre-rRNA transcription and processing in
mouse Dicer+/2 and Dicer2/2 ES cells. (A) Incorporation of 3H-
methyl-label into total cell RNA. Mouse Dicer+/2 and Dicer2/2 ES cells
were cultured for 30 min in the presence of [3H-methyl]-methionine.
Incorporation measured for Dicer+/2 ES cells was set as 100%. The
values represent means (+/2 SD) from samples collected at 0, 30 and
60 min of after labeling with [3H-methyl]-methionine. (B) Analysis of
pre-rRNA processing by agarose gel electrophoresis. Equal amounts of
RNA isolated from cells cultured for 30 min in the presence of [3H-
methyl]-methionine and chased with unlabeled methionine for 0, 30
and 60 min were separated on agarose gel and RNA was visualized by
fluorography. (C) UBF association with rRNA promoter is not affected in
Dicer2/2 ES cells. The ChIP was performed with UBF antibody [49] as
described in Figure 2E. Results are shown relative to the 1:100 dilution
of respective input DNAs and represent means (+/2 SEM) of at least 3
independent experiments.
doi:10.1371/journal.pone.0012175.g005

Dicer in rDNA Chromatin
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Only in brain DNA we observed methylation of CpG at position -

143 in approximately 40% of clones. However, even in this case

the distribution of methylation in sequenced clones was hetero-

geneous, which contrasts with the two very distinct patterns of

methylation in HEK293 cells (Fig. 3). A survey of the literature

and our own data point to extreme diversity of the DNA

methylation patterns of rDNA promoters in somatic cells.

Published bisulfite sequencing data reveal three patterns of DNA

methylation at rRNA promoters: (1) very low (if any) methylation

in some clones and strong hypermethylation represented by long

stretches of methylated CpGs in other clones [36,37]; (2) more

mosaic distribution of methylated CpGs across individual clones

[38]; (3) low, if any, methylation in mouse cells and some primary

human cell types (Fig. 7). Considering very different CpG density

of the mouse and human rRNA promoters, we propose that CpG

methylation at rRNA promoters is an accessory, possibly non-

essential mechanism, which stabilizes rDNA silencing but is of

variable significance in different cells of different mammalian

species. rDNA methylation seems to have a stochastic cumulative

nature. It accumulates to larger extend in long-established

transformed cell lines such as NIH 3T3 [35], HEK293 or HeLa

[36] (and this work), in non-dividing neuronal cells [37], and aged

cells [39]. This suggests that the main role of rDNA methylation is

long-term stabilization of the most advantageous expression level

of rRNA in specific cells.

We report for the first time association of Dicer with chromatin.

This association is relatively stable and remains preserved during

mitosis as evidenced by staining of metaphase chromosomes. This is

similar to several non-histone proteins (for example, the transcrip-

tion factor UBF [40] or the chromatin remodeling protein ATRX

[41]), which remain associated with rDNA chromatin during

mitosis. Immunofluorescent staining of interphase cells with anti-

Dicer antibodies did not provide conclusive evidence in support of

nucleolar localization of Dicer because of a high background

staining of whole mount cells (data not shown). In contrast to

interphase cells, the signal on mitotic chromosomes is much more

Figure 6. Analysis of H3K4, H4K16 and H3K9 modifications
at rDNA locus. The ChIP was performed with mouse Dicer+/2 and
Dicer2/2 ES cells similarly as in Figure 2, using antibodies against (A)
dimethylated H3K4, (B) acetylated H4K16, (C) acetylated H3K9, (D)
dimethylated H3K9, and (E) trimethylated H3K9. Results are shown
relative to the 1:100 dilution of respective input DNAs and represent
means (+/2 SEM) of at least 3 independent experiments.
doi:10.1371/journal.pone.0012175.g006

Figure 7. Analysis of enrichment of H3K27 methylation at
rDNA locus. (A) Monomethylated H3K27, (B) dimethylated H3K27 and
(C) trimethylated H3K27. Results are shown relative to the 1:100 dilution
of respective input DNAs and represent means (+/2 SEM) of at least 3
independent experiments.
doi:10.1371/journal.pone.0012175.g007

Dicer in rDNA Chromatin
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concentrated while the background signal is reduced by elimination

of the nucleoplasm, therefore allowing for Dicer detection. It is

unlikely that the observed staining of mitotic chromosomes is due to

non-specific cross-reactivity of Dicer antibodies. Using different

human and mouse cells, we detected the same unique staining

pattern with two different antibodies raised against distinct Dicer

peptides (Fig. 1). Furthermore, similar staining was observed with

four different anti-tag (anti-HA, anti-FLAG, anti-Myc, and anti-

EGFP) antibodies used to detect Dicer fusions with the respective

tags, which were transiently expressed in HEK293 cells (Fig. 2).

Association of Dicer with rDNA presumes that Dicer enters the

nucleus. Interestingly, dsRNA-binding domain (dsRBD) was

recently shown to play a role in nucleo-cytoplasmic shuttling of

ADAR1 [42] and we found that dsRBD of Dicer acts as a nuclear

localization signal and that Dicer shuttles between the cytoplasm

and the nucleus in human cells (M. Doyle and W. Filipowicz,

unpublished results). Shuttling of Dicer and the role of its dsRBD

in nuclear localization was also recently reported in S. pombe [43].

While Dicer localization to rDNA is supported by several lines

of evidence, its role there remains unclear. It is unlikely that Dicer

Figure 8. Methylation status of rDNA in mouse ES cells and selected tissues. (A) Schematic representation of mouse rRNA promoter
showing position of bisulfite-sequenced region. Black arrows represent enhancer repeats, black rectangles indicate position of the UCE and core
promoter elements. (B) Methylation status of rRNA promoter in mouse Dicer+/2 and Dicer2/2 ES cells, oocytes, blastocysts, liver, testis, and brain.
Black dots represent methylated CpG nucleotides. Each row of dots represents one bisulfite-sequenced clone. Oocyte data were pooled from 2
independent amplifications. The redundancy of the bisulfite-sequenced clones is very low as evident from low, if any, similarity of the methylation
pattern between clones containing at least one methylated cytosine.
doi:10.1371/journal.pone.0012175.g008
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is involved in processing of pre-rRNA or its fragments into siRNA

since siRNA-like small RNAs originating from rRNA and

accumulating in mammalian cells were demonstrated to be

produced in a Dicer-independent way [24,44]. However, rRNA-

derived small RNAs were found bound to P19 suppressor of RNA

silencing known to interact with small siRNA-like duplexes [21].

In addition, small RNAs were shown to induce transcriptional

silencing and changes in chromatin structure in mammalian cells

[4–6]. Could the rDNA associated Dicer be a part of a cis-acting

epigenetic system regulating rDNA expression by small RNAs?

Several lines of evidence argue against such a role.

Regulation of rDNA chromatin is complex and involves non-

coding RNAs. A recent study by Mayer et al. [20] demonstrated

that 150–300 nt-long RNA transcribed from the rDNA promoter

region is required for the functional integrity of the NoRC

complex, which is involved in heterochromatization and silencing

of rRNA genes. However, it is unlikely that Dicer plays a role in

the NoRC-mediated regulation. In contrast to NoRC, Dicer

association extends over an entire rDNA transcribed region. In

addition, small RNAs (,25-nt; size expected for the products of

Dicer cleavage) were not found among RNAs associated with TIP-

5, an RNA binding protein component of NoRC [20].

Furthermore, metabolic labeling experiments performed with

Dicer2/2 ES cells showed no apparent defect in pre-rRNA

processing in these cells. Although pulse-chase experiments revealed

decrease in the level of pre-rRNA synthesis in Dicer2/2 ES cells, this

finding is readily explained by a substantially slower growth of these

cells when compared to control Dicer+/2 cells ([12,26]). Furthermore,

we previously found that Retinoblastoma-like 2 (Rbl2), a transcrip-

tional repressor, is inhibited in ES cells by miRNAs of the miR-290-

295 cluster and, consequently, the Rbl2 level is elevated in Dicer2/2

cells, which are depleted of mature miRNAs [12]. Since Rbl2

overexpression has negative effect on rRNA synthesis [45], it is likely

that reduced rRNA expression in Dicer2/2 cells is, at least partially, a

consequence of the miRNA loss.

Recently, Peng and Karpen [25] reported that the RNAi

machinery is responsible for proper nucleolar architecture in

Drosophila. Loss of Dicer-2 in Drosophila led to a pronounced

decrease in dimethylation of H3K9 at the rDNA loci in

differentiated fly tissues. Dicer-2 mutant flies also showed

disrupted organization of nucleoli and decreased stability of rDNA

repeats. In contrast, we did not find any decrease in H3K9

methylation in mouse ES cells lacking Dicer. However, it should

be stressed that ES cells do not represent an optimal system to

study H3K9 methylation of the rRNA promoter as H3K9

repressive marks outside the IGS region are low, if not absent,

in rDNA in ES cells (Fig, 6E, D and [31]). Although estimation of

size of nucleoli in Dicer+/2 and Dicer2/2 ES cells by light

microscopy suggested a small increase in size of nucleoli in

Dicer2/2 ES cells (our unpublished results), this observation does

not provide any insight into a possible role of Dicer in rDNA

chromatin as the aforementioned changes might result from

disregulation of miRNA repression or other factors.

Mutations in components of the RNAi machinery, such as Rdp1,

Ago1 and Dcr1, exhibit increased mitotic recombination frequency

of rDNA repeats also in S. pombe [13]. While the frequency of wild-

type colonies showing a reporter gene loss at the tandem rDNA

array was 3.361023, the recombination frequencies of the RNAi

mutant cells were 5- to 10-fold higher [13]. A similar role have been

proposed in N. crassa [14]. The lack of evidence supporting

involvement of Dicer in transcriptional regulation of rDNA or in

pre-rRNA maturation raises a possibility that, by analogy to the

situation in S. pombe, N. crassa and Drosophila, the Dicer association

with rDNA in mouse and human cells reflects a role of this protein

in maintaining the integrity of rDNA repeats also in mammals.

While this hypothesis needs to be tested in the future, our data

represent the first step towards understanding the role of Dicer

association with rDNA in mammalian cells.

Materials and Methods

Cell culture and transfection
Human HEK293 and HeLa cells, and mouse teratocarcinoma

P19 cells were maintained in DMEM supplemented with 10%

fetal calf serum. The Dicer heterozygous (line D4) and Dicer-

deficient (line 27H10) ES cells (referred as Dicer+/2 and Dicer2/2,

respectively) were kindly provided by G. Hannon, Cold Spring

Harbor Laboratory, Cold Spring Harbor, NY [26]. They were

maintained on gelatin-coated plates with DMEM supplemented

with 15% fetal calf serum, Na pyruvate, b-mercaptethanol, non-

essential amino acids and mouse leukemia inhibitory factor.

Human lymphocytes were kindly provided by A. Wodnar-

Filipowicz (University Hospital, Basel). To generate plasmid

pNHA-Dicer, expressing the human Dicer protein tagged at the

N-terminus with the influenza hemaglutinin (HA) tag, a full-length

Dicer cDNA [46] was subcloned into pCI-N-HA expression vector

[47]. HEK293 cells were transfected with 1.6 mg of pNHA-Dicer

per well of the 6-well plate, using Lipofectamine 2000. The Myc-

and Flag- tagged human Dicer expression plasmids were kindly

provided by Michael Doyle (FMI). The EGFP-tagged human

Dicer was kindly provided by Maciej Drozdz (FMI).

Cytospin and immunostaining
Cells were treated with colchicine (0.2 mg/ml for 2 h) to block

the cells in metaphase. After shake-off or mild trypsinization,

mitotic cells were lysed in 75 mM KCl. Chromosomes were

spread on slides in the Cytospin (2,000 rpm for 10 min). After

several washing steps with 10 mM Tris-HCl, pH 8.0, containing

120 mM KCl, 20 mM NaCl, 0.5 mM EDTA, 0.1% Triton X-

100, and 0.1% Tween 20, chromosomes were fixed with 2%

paraformaldehyde, blocked with blocking buffer (PBS containing

5% normal goat serum and 0.2% Triton X-100), and stained with

indicated antibodies. The following primary antibodies were used

for staining the mitotic spreads: anti-Dicer D349 and D350 (Fig.

S1; [48]), anti-HA (Roche), anti-EGFP (Roche), anti- anti-Flag,

anti-Myc, anti-CENP-A (MBL), and anti-UBF (kindly provided by

B. McStay, University of Dundee [49]. After incubation for 2 h (at

antibody dilutions of 1:200, 1:50, 1:100, 1:100 and 1:200,

respectively), slides were treated with appropriate anti-rabbit,

anti-mouse or anti-sheep antibodies conjugated to ALEXA 488 or

594 (Molecular Probes; used at 1:500 dilution). The DeltaVision

system (Olympus IX70/100x objective) was used to acquire and

deconvolve the images.

Chromatin Immunoprecipitation
Chromatin immunoprecipitation (ChIP) was performed essen-

tially as described previously [50]. Cells were cross-linked by

adding formaldehyde directly to the medium to a final

concentration of 1%, at room temperature. Incubations lasted

for only 8 min to avoid excessive cross-linking and were stopped

by adding glycine to a final concentration of 0.15 M. Cell lysates

were sonicated to generate 300- to 1,500-base-pair DNA

fragments. After pre-clearing the samples with Protein A Agarose

(Upstate), the immunocomplexes were formed using anti-Dicer

(D349), anti-UBF [49], and anti-H3K9ac, anti-H3K9me2, anti-

H3K9me3, anti-H3K4me2, anti-H4K16ac, anti-H3K27me1,

anti-H3K27me2, anti-H3K27me3, and anti-H4ac antibodies (all

nine from Upstate), and an antibody against Drosphila RNA 39-
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terminal phosphate cyclase (our unpublished results) which served

as an unspecific control antibody. Immunocomplexes were

collected with 30 ml of Protein A Agarose (Upstate). The purified

DNA was used as a template for quantitative real-time PCR with

ABI Prism 7000 Sequence Detection System (Applied Biosystems)

and Platinum SYBR Green qPCR SuperMix (Invitrogen) together

with a 1:100 dilution of the respective input DNA. Sequences for

the specific primers are given in Table S1. Annealing of all primers

was at 55uC.

FACS analysis
HEK293 cells were stained with 5 mg/ml of Hoechst33342 in

DMEM for 30 min and collected in PBS contatining 3% fetal calf

serum. The stained cells were sorted according to cell cycle phase with

MoFlow cell sorter (Dako Cytomation) and the G1-phase cells were

collected (4.56106 cells per experiment) and used for ChIP analyses.

Bisulfite sequencing
Bisulfite sequencing was performed as described previously [51].

200 ng of genomic DNA or DNA immunoprecipitated with a

specific antibody or DNA from 30 oocytes was used as a starting

material. Apart from ES cells, mouse samples were isolated from

12-weeks old C57BL/6 animals. Sequences for the primers

targeting the rDNA promoter were for human rDNA: forward

primer 59-ATGTTTTCGGTTTTCGTTTTGGA-39, reverse

primer 59-CATCCGAAAACCCAACCTCTCC-39; for mouse

rDNA: forward primer 59-GGTTAGTTGGAGTTTTGGAT-

TTTTTT-39, reverse primer 59-AAATAAACTAAACAAACAA-

AACAACCTTAAAT-39. PCR amplification conditions were as

described previously [51].

Metabolic labeling
Mouse Dicer+/2 and Dicer-deficient 2/2 ES cells were cultured

in a methionine depleted DMEM for 15 min. After starvation,

50 mCi/ml of [3H-methyl] methionine was added and cells were

cultured for additional 30 min in 37uC. The cells were collected

(time point 0 min) or cultured in normal DMEM for additional 30

or 60 min before collection. RNA was extracted using Trizol

Reagent according to manufaturer’s protocol. Incorporation of

[3H-methyl] methionine into RNA was analyzed by liquid

scintillation. For electrophoresis, equal amounts of total RNA

were separated on 1% formaldehyde-agarose gel and transferred

onto a charged nylon membrane (Hybond N+, Amersham).

Membrane was dried and sprayed with En3hance autoradiogra-

phy-enhancing spray (Perkin Elmer), wrapped into a polyethylene

foil and exposed on an X-ray film (X-OMAT, Kodak) for one

week.

Supporting Information

Figure S1 Dicer antibodies used in the study. (A) Western blot

analysis of a whole HEK293 cell lysate with the affinity purified

antibodies D349 and D350. D349 was used in dilution 1:5,000

and D350 in dilution 1:1,000. Sizes of molecular weight markers

(in kDa) are indicated. The 115-kDa band detected by D349 and

D350 represents Dicer degradation product since its intensity was

reduced in parallel with the full-length protein upon RNAi-

mediated knock-down of Dicer (data not shown). Both anti-Dicer

antibodies detect unspecific bands (asterisks) of approximate 40-

kDa mobility. The ,40-kDa proteins detected by D349 are

different from those detected by D350 antibody since they

electrophores with different mobility on a higher percentage

polyacrylamide gel (data not shown). (B) HEK293 and ES cells

contain different amount of Dicer. Western blots densitometry was

used to compare different Dicer protein levels in HEK293 cells

and ES cell lines D4 and 27H10. Note that enzymatically non-

functional truncated Dicer upon Cre-mediated Dicer deletion can

be detected in Dicer2/2 ES cells (27H1). The same amount of

lysate (total protein) was loaded in each lane. (C) Relative

enrichment of rDNA obtained with D349 antibody in different

cell types correlates with the level of Dicer expression in these cells.

Enrichment in a non-synchronized and FACS-sorted G1 phase

HEK293 cells is also compared. Black columns show rDNA

enrichment after chromatin immunoprecipitation with D349.

Gapdh sequences are not enriched.

Found at: doi:10.1371/journal.pone.0012175.s001 (1.83 MB TIF)

Figure S2 rDNA methylation in HEK293 cells depleted of

Dicer. Dicer knockdown in the previously established HEK293

2b2 cell line stably expressing anti-Dicer short hairpin RNA [1]

was induced with doxycyclin for six days. Bisulfite sequencing of

genomic DNA was performed as described in Material and

Methods. The sequenced region is the same as one shown in Fig. 4,

spanning positions 2186 to +20 of the rDNA repeat [2]. It is

divided into three domains: core promoter (core p), upstream

control region (UCE) and sequences upstream of UCE. Black dots

represent methylated CpG nucleotides. Each row of dots

represents one bisulfite-sequenced clone. Supplementary referenc-

es 1. Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ,

et al. (2006) Effects of Dicer and Argonaute down-regulation on

mRNA levels in human HEK293 cells. Nucleic Acids Res 34:

4801-4815. 2. Ghoshal K, Majumder S, Datta J, Motiwala T,

Bai S, et al. (2004) Role of human ribosomal RNA (rRNA)

promoter methylation and of methyl-CpG-binding protein MBD2

in the suppression of rRNA gene expression. J Biol Chem 279:

6783-6793.

Found at: doi:10.1371/journal.pone.0012175.s002 (0.75 MB TIF)

Table S1 Primers used for ChIP analysis.

Found at: doi:10.1371/journal.pone.0012175.s003 (0.06 MB

DOC)
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