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Abstract: Acute myeloid leukemia (AML) is a hematologic malignancy characterized by abnormal
proliferation and a lack of differentiation of myeloid blasts. Considering the dismal prognosis this
disease presents, several efforts have been made to better classify it and offer a tailored treatment
to each subtype. This has been formally done by the World Health Organization (WHO) with the
AML classification schemes from 2008 and 2016. Nonetheless, there are still mutations that are not
currently included in the WHO AML classification, as in the case of some mutations that influence
methylation. In this regard, the present study aimed to determine if some of the mutations that
influence DNA methylation can be clustered together regarding methylation, expression, and clinical
profile. Data from the TCGA LAML cohort were downloaded via cBioPortal. The analysis was
performed using R 3.5.2, and the necessary packages for classical statistics, dimensionality reduction,
and machine learning. We included only patients that presented mutations in DNMT3A, TET2, IDH1/2,
ASXL1, WT1, and KMT2A. Afterwards, mutations that were present in too few patients were removed
from the analysis, thus including a total of 57 AML patients. We observed that regarding expression,
methylation, and clinical profile, patients with mutated TET2, IDH1/2, and WT1 presented a high
degree of similarity, indicating the equivalence that these mutations present between themselves.
Nonetheless, we did not observe this similarity between DNMT3A- and KMT2A-mutated AML.
Moreover, when comparing the hypermethylating group with the hypomethylating one, we also
observed important differences regarding expression, methylation, and clinical profile. In the current
manuscript we offer additional arguments for the similarity of the studied hypermethylating mutations
and suggest that those should be clustered together in further classifications. The hypermethylating
and hypomethylating groups formed above were shown to be different from each other considering
overall survival, methylation profile, expression profile, and clinical characteristics. In this manuscript,
we present additional arguments for the similarity of the effect generated by TET2, IDH1/2, and WT1
mutations in AML patients. Thus, we hypothesize that hypermethylating mutations skew the AML
cells to a similar phenotype with a possible sensitivity to hypermethylating agents.
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1. Introduction

Acute myeloid leukemia (AML) is a hematologic malignancy characterized by aberrant
differentiation and abnormal proliferation of myeloid blasts [1–3]. Continuous efforts are being
made to uncover the biology of AML, with implications both in prognosis and in tailoring new
therapeutic options for these patients. These efforts can be formally observed in the AML World Health
Organization (WHO) classification in 2008 and 2016 [4,5].

Over time, several research groups have shown different prognostic capabilities of expression and
methylation profiling [6–8]. Nonetheless, most molecular biology markers used in clinical practice are
represented by gene mutations, while DNA methylation and RNA expression are commonly only used
within the research setting [6,9–12]. This might be due to economic reasons, levels of evidence, and the
reproducibility that can be achieved. Nevertheless, the epigenome and transcriptome are known to
be different between AML patients, having a good potential to act as tools for classifying AML and
choosing the best available therapy. Thus, an inferred epigenome and transcriptome considering
mutations that affect genes implicated in methylation could be useful to improve our understanding of
the biology of AML as well as the AML clinical practice.

Important pathways in AML are formed by key genes implicated in methylation,
hydroxymethylation, and demethylation [13–16]. These are represented by, but not limited to,
DNMT3A, TET2, IDH1/2, WT1, ASXL1, and KMT2A. DNMT3A is a de novo DNA methyl transferase
that in physiological conditions transforms a non-methylated CpG into a hemymethylated CpG.
In AML, it has been shown that DNMT3A can present mutations in an important portion of cases,
which induce a global hypomethylation, changes in AML biology, and a worse prognosis [17].
TET2 physiologically leads to the hydroxymethylation of methylated CpG, initiating the demethylation
process. Most mutations in TET2 lead to the formation of non-functional forms of TET2, associated
with a decrease in its function and a hypermethylated genome [15]. In contrast to TET2, IDH1/2
present few mutations that can be commonly observed in AML and that induce the formation of
2-hydroxy-glutarate, a metabolite that inhibits TET2, leading to similar effects to TET2 mutations [15].
WT1 is a gene that physically interacts with TET2, aiding in the process of hydroxymethylation. As in
the case of TET2, most mutations observed in WT1 lead to the formation of a non-functional protein,
indirectly determining a diminished activity of TET2 [18]. ASXL1 is a gene that has been observed
to be important in interacting with TET2 and can be mutated in several myeloid malignancies [19].
KMT2A presents roles in methylating H3K4, DNA binding, and either inhibiting methylation or
modifying the chromatin conformation. Mutations in this genes are generally represented either by
amplifications or fusions, with patients presenting a hypomethylated epigenome and generally having
a worse prognosis [20–23].

The aim of this study was to determine the differences that the presented mutations induce in
AML regarding methylation, expression, and clinical profile.

2. Material and Methods

TCGA Analysis

cBioPortal was used to download clinical, methylation, and expression data from the TCGA cohort
on adult AML [24–26]. The results shown here are based upon data generated by the TCGA Research
Network: https://www.cancer.gov/tcga (accessed on 21 January 2020). Data analysis was performed
using R version 3.5.2. Oncoprints were generated using the cBioPortal platform. The normality of the
data was assessed using the Shapiro-Wilk test and histogram visualization. For the comparison of two
groups with continuous variables, we used the Mann-Whitney-Wilcoxon test. For comparing multiple
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groups with continuous variables, we used the Kruskal-Wallis test. The analysis of contingency tables
was performed using Fisher’s test. Survival analysis was performed using Kaplan-Meier curves and the
log-rank test. Unsupervised machine learning was performed using pheatmap and prcomp to generate
the needed heatmaps and principal component analysis (PCAs), respectively. Supervised machine
learning was performed using randomForest. The differential expression analysis was performed using
the DEseq2 package [27], with an lfcThreshold of 0.32 and using the Benjamini-Hochberg p adjustment
method. Functional enrichment analysis was performed using FENet [28], topGO, and GO.db [29].
A p value under 0.05 was considered statistically significant.

3. Results

3.1. Patient Selection

We included the patients that had transcriptomic and methylation profiles available and presented
mutations in any of the following genes: TET2, IDH1, IDH2, WT1, KMT2A, DNMT3A, ASXL1.
After applying these criteria, 85 patients were initially included (Figure 1A). Because these genes are
known to highly influence DNA methylation and thus expression [13,15,18,30–32], we further included
only the patients in which only one of the seven genes was mutated, so that the influence of each
mutation could be observed without the influence of the other mutations included. After applying this
second filter, the resulting cohort included 57 patients. Considering that ASXL1 was mutated only in
one patient, that patient was excluded from the analysis to avoid overfitting, thus using a cohort of
56 AML patients for further analyses (Figure 1B).
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Figure 1. (A) Oncoprint representing patients before the mutual exclusivity condition was applied;
(B) Oncoprint representing patients after the mutual exclusivity condition was applied.

3.2. Clinical Data and Survival Analysis

The available clinical parameters analyzed were represented by gender, age,
French-American-British (FAB) classification transposed in the equivalent WHO-NOS (Not Otherwise
Specified), white blood cell count (WBC), bone marrow blast percentage, peripheral blood blast
percentage, and cytogenetic risk. Clinically, patients with hypermethylating mutations had a higher
peripheral blast percentage and included more AML patients without maturation compared with
the hypomethylating mutations group, the latter including acute monoblastic/monocytic leukemia
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more frequently. The cytogenetic risk most frequently reported in both hypermethylating (83%) and
hypomethylating (84%) groups was represented by intermediate cytogenetic risk (Table 1).

Table 1. Clinical differences between hypermethylators and hypomethylators (bold numbers are
statistically significant data).

Hypermethylating Hypomethylating
p Value

(n = 24) (n = 32)

Sex
Female 14 (58%) 15 (47%)

0.430Male 10 (42%) 17 (53%)
Median age (quartile 1, quartile 3) 61 (38, 67) 58 (48, 66) 0.684

WHO NOS

AML with minimal maturation 3 (13%) 2 (6%)

0.00271

AML without maturation 10 (42%) 4 (13%)
AML with maturation 6 (25%) 5 (16%)

Acute myelomonocytic leukemia 5 (21%) 9 (28%)
Acute monoblastic/monocytic leukemia 0 (0%) 11 (34%)
Acute megakaryocytoblastic leukemia 0 (0%) 1 (3%)

Median WBC (quartile 1, quartile 3) (/µL) 16.95 (5.40, 60.33) 42.70 (8.13, 91.20) 0.224
Median bone marrow blast percentage (quartile 1, quartile 3) 76 (59, 87) 76 (57, 86) 0.734

Median peripheral blood blast percentage (quartile 1, quartile 3) 51 (17, 86) 10 (4, 58) 0.0048

Cytogenetic risk

Good 2 (8%) 0 (0%)

0.388
Intermediate 20 (83%) 27 (84%)

Poor 1 (4%) 4 (13%)
Not determined 1 (4%) 1 (3%)

In subgroup analysis, in the hypermethylating group, the only difference between the four
mutations was in age (Table 2), whereas in the hypomethylating group, there were no differences in
the clinical parameters (Table 3).

Regarding survival analysis, the hypomethylating group showed a lower overall survival (OS)
(p = 0.007), but there was no difference in disease-free survival (DFS). In the hypermethylating group,
there was no significant difference in OS between mutations, but there was a statistically significant
difference in DFS (p = 0.018) between mutations. Analyzing the Kaplan-Meyer curves, it appears that
this difference was caused mainly by WT1 mutated patients (n = 5), while the other mutations showed
a similar trend between each other. In the hypomethylating group, there was no difference in survival
between mutations (Figure 2).

Table 2. Clinical differences between different hypermethylating mutations (bold numbers are
statistically significant data).

TET2 IDH1 IDH2 WT1 p
Value(n = 7) (n = 5) (n = 7) (n = 5)

Gender
Female 5 (71%) 2 (40%) 5 (71%) 2 (40%)

0.525Male 2 (29%) 3 (60%) 2 (29%) 3 (60%)
Median age (quartile 1, quartile 3) 61 (49, 72) 32 (27, 38) 67 (62, 70) 57 (53, 61) 0.0118

WHO NOS

AML with minimal maturation 0 (0%) 0 (0%) 2 (29%) 1 (20%)

0.153

AML without maturation 3 (43%) 5 (100%) 1 (14%) 1 (20%)
AML with maturation 3 (43%) 0 (0%) 2 (29%) 1 (20%)

Acute myelomonocytic leukemia 1 (14%) 0 (0%) 2 (29%) 2 (40%)
Acute monoblastic/monocytic leukemia 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Acute megakaryoblastic leukemia 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Median WBC (quartile 1, quartile 3) (/µL) 9.80
(3.95, 30.75)

39.80
(8.20, 63.70)

11.50
(3.80, 38.40)

27.70
(27.10, 61.60) 0.339

Median bone marrow blast percentage (quartile 1, quartile 3) 63 (51, 86) 86 (85, 91) 72 (57, 81) 72 (61, 86) 0.255
Median peripheral blood blast percentage (quartile 1, quartile 3) 32 (15, 60) 85 (83, 88) 43 (14, 68) 52 (49, 63) 0.164

Cytogenetic risk

Good 1 (14%) 0 (0%) 0 (0%) 1 (20%)

0.7187
Intermediate 6 (84%) 4 (80%) 6 (84%) 4 (80%)

Poor 0 (0%) 0 (0%) 1 (14%) 0 (0%)
Not determined 0 (0%) 1 (20%) 0 (0%) 0 (0%)
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Table 3. Clinical differences between the hypomethylating mutations.

DNMT3A KMT2A
p Value

(n = 23) (n = 9)

Gender
Female 13 (57%) 2 (22%)

0.122Male 10 (43%) 7 (78%)
Median age (quartile 1, quartile 3) 58 (50, 71) 54 (45, 64)

0.571
WHO NOS

AML with minimal maturation 0 (0%) 2 (22%)
AML without maturation 4 (17%) 0 (0%)

AML with maturation 4 (17%) 1 (11%)
Acute myelomonocytic leukemia 6 (26%) 3 (33%)

Acute monoblastic/monocytic leukemia 8 (35%) 3 (33%)
Acute megakaryoblastic leukemia 1 (4%) 0 (0%)

Median WBC (quartile 1, quartile 3) (/µL) 75.20 (15.15, 98.70) 8.40 (2.30, 25.90) 0.00497
Median bone marrow blast percentage (quartile 1, quartile 3) 76 (55, 86) 75 (67, 83) 0.949

Median peripheral blood blast percentage (quartile 1, quartile 3) 11 (6, 76) 0 (0, 14) 0.0477

Cytogenetic risk

Good 0 (0%) 0 (0%)

0.0572
Intermediate 21 (91%) 6 (66%)

Poor 1 (4%) 3 (33%)
Not determined 1 (4%) 0 (0%)
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Figure 2. Kaplan-Meier curves showing the differences in overall survival (OS) and disease-free
survival (DFS) between the hypermethylating and hypomethylating groups and in subgroup analysis
between mutations.

3.3. Clustering and Principal Component Analysis

For the methylation profile, a certain enrichment of hypermethylating and hypomethylating
mutations, respectively, was observed between the two most distant clusters on the heatmap.
This discrimination between the hypermethylating and hypomethylating groups is lower when
considering the expression profile.

In Figure 3 we depicted the heatmaps and PCAs for the methylation and expression profiles.
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3.4. Supervised Machine Learning

When analyzing the predictive capabilities between hypermethylating and hypomethylating
groups, hypermethylating mutations were determined with an accuracy of 75%, and hypomethylating
mutations were determined with an accuracy of 81.25% with an out of bag (OOB) of 21.43%.

When only hypermethylating mutations were introduced in the algorithm, the accuracy varied
from 0 to 14.3%, and the OOB was 91.65%. When only hypomethylating mutations were introduced in
the algorithm, all mutations were classified as KMT2A with an OOB of 71.88%.

3.5. Differential Expression Analysis and Functional Enrichment Analysis

When comparing the hypermethylating with the hypomethylating group without setting a
threshold, 484 genes were upregulated and 647 were downregulated. When the lfcThreshold was set,
89 genes were upregulated and 103 were downregulated. When the latter genes were analyzed with
topGO, 213 processes were found to be different between the two groups. When comparing WT1 with
TET2 + IDH1/2, we observed that without setting a threshold 15 genes were upregulated and 74 were
downregulated. When the lfcThreshold was set, 3 genes were upregulated and 31 were downregulated.
When the latter genes were analyzed with topGO, 43 processes were found to be different between the
two groups.

When comparing TET2 with IDH1/2, we observed that without setting a threshold 74, genes were
upregulated and 31 were downregulated. When the lfcThreshold was set, 34 genes were upregulated
and 10 were downregulated. When the latter genes were analyzed with topGO, 40 processes were
found to be different between the two groups. When comparing IDH1 with IDH2 without a threshold
set, 5 genes were upregulated and 14 were downregulated. When the lfcThreshold was set, there
were no genes upregulated and 5 were downregulated. When the latter genes were analyzed with
topGO, 92 processes were found to be different between the two groups. The counterintuitive number
of processes was caused by three differentially expressed HLA-D family genes. When comparing
DNMT3A with KMT2A without a threshold, 90 genes were upregulated and 84 were downregulated.
After setting the lfcThreshold, 40 genes were upregulated and 35 were downregulated. When the latter
genes were analyzed with topGO, 157 processes were found to be different between the two groups.

On the functional networks generated, the network with most nodes and edges was generated by
the DE genes between the hypermethylating and hypomethylating groups, followed by the comparison
between DNMT3A and KMT2A. After them, the networks formed in the hypermethylating group had
a clear drop in nodes and edges, giving another argument for the similarity between the genes selected
for the hypermethylating group (Figure 4).
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The second group from the titles was always considered as the baseline. Upregulation was represented
with red circles, while downregulation was represented with green circles.

4. Discussion

In the current study, we have shown that mutations in TET2, IDH1/2, and WT1 present similar
methylation, expression, and clinical profiles, making a case for these mutations to be clustered together
in further AML classifications.

Both in the case of IDH1 R132 and of IDH2 R140 or R172, it has been shown that they switch IDH1/2
from generating α-keto-glutarate into generating D-2-hydroxyglutarate [15,33,34]. The generated
metabolite, 2-hydroxiglutarate, has been shown to have an inhibitory effect on TET2, leading to similar
effects to the loss of function that TET2 can present [35,36]. Other studies on IDH1/2 mutations have
shown that these can induce an impaired differentiation in AML blasts, thus explaining the more
frequent immature forms of AML that occur in the hypermethylating group [15,35,37].

WT1 mutations are generally represented by loss-of-function mutations [38]. It has been shown
that truncated WT1 messenger RNA is degraded, thus reducing the amount of protein produced [39].
Because of the known interaction between WT1 and TET2, a reduction in WT1 would potentially
reduce TET2 activity, a fact that could be observed indirectly in the current study [18].

In accordance with published data, we consider that a large amount of evidence shows the
equivalence between TET2, IDH1/2, and WT1 mutations in AML, with similar global and gene-specific
CpG methylation profiles between them and similar expression profiles.

Wild-type DNMT3A acts as a de novo DNA methyltransferase, and its mutations are generally
associated with hypomethylation compared with the wild-type allele, especially in the case of R882
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mutations [30]. Because DNMT3A mutations generally lead to an impaired function of DNMT3A leading
to globally hypomethylated genome, it can be hypothesized that AML presenting DNMT3A mutations
will have a different methylation and expression profile compared with the hypermethylating group.
This hypothesis was confirmed in our study, as the hypomethylating and hypermethylating groups
present different WHO-NOS subtypes, OS, CpG methylation, and expression profiles. An association
of DNMT3A mutations with myelomonocytic or monoblastic/monocytic AML was previously observed
and could potentially be used as an argument of the validity of these results [40].

KMT2A has different modes of action, the most prominent known so far being its role in methylating
H3K4 [41]. Nevertheless, it has also been shown that KMT2A binds to unmethylated DNA and inhibits
methylation [23]. Thus, the most common mutations observed in these gene, amplifications, should
act as an inhibitor of CpG methylation [20,22,23,41–43]. Considering the results of this study, it cannot
be suggested that mutations in KMT2A have a similar effect to those in DNMT3A, as the expression
profile presents marked differences between the two gene mutations.

The presented mutations are mostly associated with intermediate cytogenetic risk [44], both in the
literature and in our study. Thus, this classification can be better tailored in the future for patients with
intermediate cytogenetics AML [17].

Because of the role that the included mutations have in modifying CpG methylation, it could be
hypothesized that AML presenting different mutations will respond different to hypomethylating
agents (HMA). The HMAs currently used in clinical practice outside clinical trials are azacytidine
(AZA) and decitabine (DAC).

The AZA mechanism of action is based on DNA hypomethylation. Of the administered AZA,
10–20% is converted to 5-aza-2′-deoxycytidine triphosphate and then incorporated in the DNA
strands [45]. Through the incorporation in DNA, it forms adducts between DNA and DNMT1. At high
doses, the DNA strand is not able to recover, and apoptosis occurs, while at lower doses the adducts
are degraded by the proteasome, and DNA synthesis is resumed in the absence of DNMT1, leading
to hypomethylation [46]. The other approved hypomethylating agent is DAC, which has the same
mechanism of action as AZA, but a part of the cellular metabolization is different when compared to
AZA. Both compounds are considered equivalent and are referred to as HMAs.

For AML, HMA monotherapy was first used in patients over 65 years with palliative intent,
with subsequent combinations being used in younger age groups [47]. Because of the mechanism of
action, it was assumed that single-agent treatment would be heavily influenced by mutations that
modify the DNA methylation profile, with TET2 receiving more attention compared to other genes
involved in DNA methylation, but the studies did not reach a consensus. Currently, the clinical
prognosis of patients treated with HMAs does not take into account TET2 or other equivalent mutations
such as IDH1/2 or WT1 [48,49].

One of the more successful combinations for AML was represented by HMA plus venetoclax
(VEN), the latter being a BCL2 inhibitor first used for relapse/refractory (R/R) chronic lymphocytic
leukemia (CLL). Because of the impressive results that VEN generated for CLL, it was further tested
for other hematologic malignancies, of which AML presented unexpectedly outstanding results [50,51].
It has been shown that HMA plus VEN increased the overall response rate (ORR) to 76% in R/R AML,
and in subgroup analysis of IDH1/2 mutated AML, the ORR reached 82%, showing the importance of
these mutations and their effect regarding the response to the HMA/VEN combination. In this case,
the increase in ORR was mainly considered to be caused by the VEN component of the combination.
Nonetheless, it should be considered whether the IDH1/2 mutations also influence the response to
HMAs in this instance.

Even if the current study presented TET2, IDH1/2, and WT1 mutations as equivalent from some
perspectives, it must be remembered that in some cases, these mutations might respond differently.
One of the most notable examples of this is represented by the case of specific IDH1/2 inhibitors such
as ivosidenib and enasidenib. Ivosidenib (IVO) is an inhibitor of IDH1 R132 that acts in synergy with
AZA inducing myeloid blast differentiation [52,53], with promising results of this combination in
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the clinical scenario for relapsed/refractory (R/R) AML [54]. This synergy was also observed for the
combination of HMA with the IDH2 inhibitor enasidenib (ENA), both decreasing the level of DNA
methylation in vitro and promoting blast differentiation [53,55,56].

The major limitation of the current study was the small patient cohort. The reason for not including
other databases was the fact that most other datasets on AML do not present can; thus, we would not
be able to assess KMT2A amplifications. Nevertheless, the results shown in our study are in agreement
with other publications, especially in the case of hypermethylating mutations.

5. Conclusions

The hypermethylation and hypomethylation groups described above were shown to be different
from each other considering OS, methylation profile, expression profile, and clinical presentation.
In this manuscript, we brought additional arguments for the similarity of the effect generated by TET2,
IDH1/2, and WT1 mutations in AML patients. Thus, we hypothesized that hypermethylating mutations
skew the AML cells to a similar phenotype with a possible sensitivity to hypermethylating agents,
which should be further assessed clinically.
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