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Elastic mechanics solution 
of thermal expansion of bi‑material 
curved beam and its application 
to negative thermal expansion 
metamaterials
Jingxiang Huang1,3, Minghui Fu1,3 & Binbin Zheng2*

Thermal stress impacts various engineering fields significantly, such as aerospace and precision 
instruments. This adverse effect can be greatly reduced, if not eliminated, by the application of micro-
thermal expansion materials, and bi-material beams are widely utilized in the design of micro-thermal 
expansion structures, thereby exhibiting great application potentials. The elasticity solution of 
bi-material curved beam under free thermal expansion has been proposed by scholars. Based on this 
solution, the simplified form is proposed in this paper, and extended to the case where the rotation 
angles at both ends of the circular arc are constrained under thermal loads. Besides, the geometric 
parameters and the nonlinear problems of the thermal expansion of bi-material curved beam are 
analyzed. In addition, a novel type of negative thermal expansion material has been designed by 
applying the bi-material curved beam to the tetra chiral and anti-tetra chiral materials. The proposed 
material has greater negative thermal expansion effect than the traditional tetra and anti-tetra chiral 
materials that are with straight beams.

The coefficient of thermal expansion (CTE) is an important indicator of the thermophysical properties of materi-
als and is used to characterize geometric variations caused by temperature changes. Most natural materials have 
positive CTEs that expand when heated and shrink when cooled and they are called positive thermal expansion 
(PTE) materials. However, some materials have extremely small or even negative CTEs and they are called micro-
thermal expansion materials and negative thermal expansion (NTE) materials. For example, some zeolites are 
NTE materials1. In engineering fields such as aerospace and precision instruments, thermal stress or expansion 
caused by ambient temperature change has affected structural safety or instrument accuracy. Therefore, micro-
thermal expansion materials, which can alleviate these problems, exhibit high application potential2.

An intuitive design for microthermal expansion materials is mixing PTE and NTE materials in an appropri-
ate proportion3. However, natural NTE materials are rare and their NTE effect can only be observed in narrow 
temperature ranges that are either very low or high4. More significantly, natural NTE materials tend to have 
significant anisotropy and low mechanical strength, which are unsuitable for engineering applications5,6. This 
led to the studies of NTE materials focusing on the composition of two or more PTE materials, the advantage of 
which is that CTEs can be flexibly controlled by meso-structural design.

According to the thermal expansion deformation mechanism of the material lattice, NTE metamaterials 
can be divided as ones that are stretch-dominant and ones that are bending-dominant2. The former achieves 
the NTE effect via axial deformation. Examples include planar structures based on the bi-material triangle7–12, 
spatial structures based on the bi-material tetrahedron13,14, cylindrical shell structures15, and three-dimensional 
structures based on the bi-material triangles16,17. These tend to exhibit high relative stiffness, but they have a 
limited regulation range of CTE. The latter includes ones that mainly achieves the NTE effect via the bending 
of bi-material straight beams or curved beams when heated. Examples include chiral structures18,19, anti-chiral 
structures19–21, and re-entrant structures22. These are essentially some of the auxetic materials with beams being 
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replaced by bi-material beams. Also, some bending-dominant NTE structures consist of two kinds of single-
material beams. Examples include star-shaped structures with reinforcing rods and their three-dimensional 
extension23,24, re-entrant hexagonal structures with reinforcing rods25, and other novel re-entrant structures26. 
It is worth noting that bi-material beams are widely used in the bending-dominant NTE materials and these 
materials usually have high flexibility, a wide range of adjustment of CTEs, and they can simultaneously achieve 
NTE and negative Poisson’s ratio (NPR)20. Therefore, bi-material beams are greatly significant for manufacturing 
intelligent sensors and realizing structural multi-functional integration. With the development of the fabrication 
methods of these metamaterials such as 3D printing, experimental validation of the properties of these materials 
became reality which promoted the development of research in this field27,28.

Timoshenko proposed the analytical formula of curvature29 in 1925 for the thermal expansion of bi-material 
straight beams and this formula has been widely used30. The formula also applies to bi-material circular beams, 
except that curvature needs to be replaced by curvature increment31. This conclusion has also been widely 
used20,31,32. Ni et al. covered the actuation material on the frame beam to form a bi-material beam and studied 
its thermal expansion33. The result can be the same as the formula in Ref31 when the coverage is 100%. However, 
the analysis in the current study shows that there exists large error between the formula in Ref31 and the numeri-
cal simulation results, and wrong results can even occur in some cases when the center angle of the arc is small 
(< 80°) or when the ratio of the beam thickness to the beam radius exceeds 1/10. For example, positive value of 
CTE may be calculated as negative for certain center angles. Therefore, it is necessary to propose a more accurate 
theory to study the thermal deformation of bi-material circular beams. In 2019, Gonczi proposed the elasticity 
method of thermal expansion bending of bi-material circular arc curved beam with the utility of the theory of 
elastic small deformation, and verified its validity through numerical simulation results34. However, there was a 
lack of further parameter analysis on the thermal expansion effect and other properties of circular arc.

In this paper, based on the idea in Ref34, the elasticity solution for thermal expansion bending of bi-material 
circular arc curved beam was proposed, and the result was simplified with almost no influence on the accuracy. 
Based on this result, the CTE of the bi-material circular arc was studied and the finite element result shows 
that this formula has a very high accuracy that no matter how small the central angle is or how large the ratio 
of thickness to radius is, it is almost identical with the finite element result. Therefore, it can be better applied 
to the parameter analysis and optimization design of flexible NTE structures composed of bi-material circular 
arc curved beam. In addition, the analytical results in Ref34 are extended to the case where the rotation angles 
at both ends of the circular arc are constrained, and the geometric parameters and the nonlinear problems of 
thermal expansion of bi-material curved beam are analyzed. Besides, two novel NTE metamaterials are designed 
by applying the bi-material circular arc to the tetra chiral/anti-tetra chiral honeycomb. Parameter analyses 
show that the proposed metamaterials could obtain higher NTE values compared with the NTE metamaterials 
proposed earlier by Yu et al.19.

Derivation, simplification and verification of analytical formulas
Pure bending of a single‑layer curved beam under thermal–mechanical coupling.  Figure  1 
shows a curved beam subjected to the equal bending moment M at the two ends and a homogeneous tempera-
ture load �T , where a , b and c represent the inner radius of blue region, the radius of the boundary between 
blue region and red region, and the outer radius of red region, respectively. ϕ represents the polar angle in 
polar coordinates. The curvature center O is defined as the coordinate origin, and the polar angle is measured 

Figure 1.   Pure bending of the curved beam under the action of force couple and temperature variation.
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counterclockwise from the x-axis of the curved beam. Based on the theory of elastic small deformation, Gonczi 
proposed the stress field and displacement field inside the curved beam, and the boundary condition when there 
is no bending moments at both ends of the curved beam34.

For material i ( i = 1, 2):

where Ai ,Bi ,Ci ,D1,D2,D3 are the undetermined coefficients, σρi , σϕi represent the normal stress and the circum-
ferential stress of material i, uρi , uϕi represent the normal displacement and the circumferential displacement of 
material i, respectively. ρ and ϕ represent the polar radius and the polar angle in the polar coordinates.Ei ,µi ,αi 
represent the modulus, Poisson’s ratio and CTE of material i, respectively. �T represents the change of tempera-
ture. It should be mentioned that the blue and red regions represent material 1 and 2, respectively.

The boundary conditions are as follows:

In Eq. (1), D1,D2,D3 represent the rigid body displacements and rotations of a circular arc, and they are 
regarded as arbitrary constants without affecting the stress and strain field of the circular arc. Therefore, if the 
center of the circular arc is taken as the reference point, it can be set as D1 = D2 = D3 = 0 . In this way, the 
number of undetermined coefficients in Eq. (1) is equal to the number of equations in Eq. (2), and the equations 
are solvable:

where

A2, B2, C2 can be obtained by interchanging material parameters and a, c in A1, B1, C1.
By substituting Eq. (3) into Eq. (1), the displacement component at ρ = b can be obtained:

Figure 2 shows the schematic diagram of the deformations at both ends of a curved beam. According to the 
geometric relationship, the relative deformation at both ends of the curved beam is:

In this way, the equivalent CTE of the curved beam can be obtained:
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where A1, B1, C1 are given by Eq. (3).

Formula simplification.  The study in Ref34 proposed only the solving method of Eq. (3) but did not show 
the final results, the reason of which may be that the results are too complex. To solve this problem, in this sec-
tion, Eq. (7) is simplified by introducing small quantity hypothesis which makes the formula more applicable. 
h1
/

b and h2
/

b are usually small for beams. Assuming that:

Substitute Eq. (8) into Eq. (3) and remove the higher-order terms of h
/

b , the following is obtained:

By Substituting Eq. (9) into Eq. (7), the following is obtained:
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Figure 2.   Deformations at both ends of the curved beam.
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Equation (9) does not involve Poisson’s ratio µ1 and µ2 , as in the expansion of Eq. (3) after substituting Eq. 
(8) into it, the terms involving µ1 and µ2 are all higher-order terms of h

/

b , so they are eliminated. This indicates 
that the Poisson’s ratio of the base material has a negligible effect on the bi-material beam CTE. In fact, further 
calculation confirms that the numerical results of simplified formula Eq. (10) are almost identical with those 
of the original analytical formula Eq. (7). Therefore, considering µ1 and µ2 or not does not affect the NTE and 
NPR of the bi-material beam.

When h1 = h2 = h
/

2 , Eq. (10) can be further simplified to

Validation of effectiveness.  In 1996, Lakes derived the analytical formula of the CTE of bi-material 
curved beam as follows utilizing curvature increment instead of curvature in Timoshenko’s analytical formula 
for the thermal expansion of bi-material straight beams31:

In this section, we will use the finite element method to compare the accuracy and scope of application of 
the derived simplified formula and the formula in Ref31 [Eq. (12)].

The 8-node plane stress element CPS8R of the finite element software Abaqus was utilized. Take θ = 180◦ 
as an example of numerical verification. Figure 3a shows the finite element model. The distance between the 
interface of the two materials and the center of the circle is b = 80 mm , and the thicknesses of the two materi-
als are h1 = h2 = 8 mm . The two materials are PI ( E1 = 2.5 Gpa , µ1= 0.34 , α1 = 30 ppm

/

◦C ) and PMMA 
( E2 = 2.5 Gpa , µ2 = 0.3 , α2 = 70 ppm

/

◦C ), as mentioned in previous studies33. The upper part represents 
Material 1 and the lower part represents Material 2, with a grid of 100 (circumferential) × 6 (radial) and geo-
metric nonlinearity is not considered in this section. After testing, the calculation results converge under this 
density of grids.

The middle section of arc is fixed and a temperature load of 1 °C is applied to obtain the equivalent CTE. 
Figure 3b shows the deformation of the beam. Then, the accuracy of the obtained analytical solution is verified 
by checking the error of the analytical solution and the numerical simulation when h

/

b changes.
With the thicknesses of two layers being equal ( h1 = h2 = h

/

2 and θ = 180◦ ), the accuracy of the proposed 
simplified formula and Eq. (12) as h

/

b varied is investigated. Figure 4a shows the equivalent CTE α calculated 
by the proposed simplified analytical method (Simplify, blue curve), Eq. (12) (Ref31, red curve), and the finite 
element method (FEM, scatters) when h

/

b increases from 1/16 (i.e. h = 5 mm ) to 1/5 (i.e. h = 16 mm ). Further 
study revealed that the relative error of results calculated via Eq. (12) remains at around 5.5% while the results 
calculated via the proposed simplified analytical formula are highly consistent with numerical simulation results 
and the relative error remains at around 0, which indicates that the result is indeed the elasticity solution of the 
bi-material curved beam. It is worth noting that here, the relative error at a certain h

/

b is defined as the absolute 
value of the difference between the results calculated via the analytical formula and the numerical simulation 
results divided by the largest absolute value of the FEM results. Therefore, the proposed simplified analytical 
formula can be utilized to obtain the equivalent CTEs of complex structures based on bi-material curved beams.
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Figure 3.   Finite element model: (a) initial state; (b) contour plots of displacement along x direction.
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Figure 4b shows the applicable scopes of the proposed simplified formula and Eq. (12) at h
/

(bθ) = 1
/

10 , that 
is, the slenderness ratio of the arc is 0.1. When θ is small (< 54°), numerical simulation results show that the α of 
the curved beam is positive, while the result of Eq. (12) is negative. Besides, for any θ , the relative error of results 
calculated via Eq. (12) remains at around 20% while the results calculated via the proposed simplified analytical 
formula are highly consistent with numerical simulation results and the relative error remains at around 0, which 
not only indicates that small θ is not the applicable scope of Eq. (12), but the accuracy of the proposed simplified 
formula is very high. This proves the advantage of the proposed simplified formula.

Discussions
Parameter analysis.  First, the effect of the thickness of curved beam on its equivalent CTE is investigated. 
Figure 4a shows that the curved beam exhibits negative CTE, while NTE effect degrades as h

/

b increases. This 
can be attributed to the increase of the flexural rigidity of the curved beam with the increase of its thickness. As 
h
/

b increases, the curved beam is more difficult to bend, thereby its NTE effect is affected. Meanwhile, the abso-
lute value of CTE ranges from 250–910 ppm/°C, which is an order of magnitude higher than that of component 
materials, specifically in the range of h

/

b shown in Fig. 4a. Therefore, bi-material curved beams can not only 
achieve NTE but also magnify the sensitivity of thermal expansion.

Then, the effect of the central angle θ of curved beam on its equivalent CTE is investigated. Figure 4b shows 
the equivalent CTE of the curved beam decreases monotonously from positive values to negative values as θ 
increases from 40° to 180°. This can be attributed to the increase of the rotation angles at both ends of the curved 
beam during thermal deformation with the increase of radian, which leads to a larger NTE. Therefore, according 
to the analyses above, h

/

b shall be minimized and θ shall be maximized to achieve the maximum NTE effect.
Also, the effects of the thickness ratio h1

/

h2 of the two materials on the equivalent CTEs of the curved beam 
were investigated. Figure 5 shows α versus h1

/

h2 at h
/

b = 1
/

5 . Each curve corresponds to a different θ . As 
observed, α decreases then increases as h1

/

h2 increases. This phenomenon is due to fact that when there exists 
a large difference between the thicknesses of the two materials, the bi-material beam will be closer to the single-
material beam which is PTE, and the NTE effect will not be good enough compared with the bi-material beam 
with a certain ratio of the thicknesses of the two materials. Therefore, to obtain the maximum NTE effect of 
bi-material curved beams, understanding how to obtain the minimum α is necessary.

Maximum NTE.  In this section, the relationships between h1
/

h2 and other parameters are studied, in par-
ticular when the curved beam has the maximum NTE effect (minimum CTE). Take the derivative of Eq. (10) 
with respect to h1

/

h2 and let the expression equal 0, the analytical relationships between h1
/

h2 and other param-
eters when α reaches the extreme value can be obtained. When α reaches the extreme value, 

(

h1
/

h2
)

−2 is 
approximately proportional to E1

/

E2 and the proportional coefficient is not only dependent on h
/

b and θ , but 
also independent from α1 and α2 , as shown in Fig. 6a, which indicates that the ratio of static moments of the two 
layers should be specified to achieve maximum NTE. Figure 6b shows the curves of a specific proportional coef-
ficient E1h

2
1

E2h
2
2
 corresponding to different h

/

b and θ when maximum NTE effects are achieved, and these curves will 
become the guidance of the design of the maximum NTE of bi-material beams.

Figure 4.   Results of the simplified formula, Ref31, and finite element method: (a) Equivalent CTE versus h
/

b at 
b = 80 mm and θ = 180

◦ ; (b) Equivalent CTE versus θ at b = 80 mm and h = 16 mm.
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Extensions of the analyses
Extension of the analytical formula.  For the structure in Fig. 7a, there are no bending moments at both 
ends of the bi-material beams during thermal expansion. Both ends of the bi-material beam can be regarded as 
free boundaries according to the antisymmetry of the structure. Therefore, the proposed analytical formula can 
be used to calculate the equivalent CTE. However, for the structure in Fig. 7b, bending moments exist at both 
ends of the bi-material beam during thermal expansion according to the symmetry of the structure, in which 
case the third equation of Eq. (2) is not valid. However, modifying the formula derivation in “Pure bending of a 
single-layer curved beam under thermal–mechanical coupling” section can solve this problem.

According to the symmetry of Fig. 7b, the rotation angles at both ends of the beam are zero.
Therefore,

Substituting Eq. (1) into Eqs. (13) and (2) except the third equation, the following is obtained

(13)
∂uϕ

∂ρ
= 0

Figure 5.   The effects of h1
/

h2 on the equivalent CTE at h
/

b = 1
/

5.

Figure 6.   (a) Parameter relations at maximum NTE; (b) specific proportional coefficient curves corresponding 
to different h

/

b and θ at maximum NTE.
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Substituting Eq. (14) into Eq. (7), the following can be obtained

If h1
/

b and h2
/

b are small, the following can be obtained

This is the equivalent CTE of a bi-material beam under constrained rotations at both ends and also the 
equivalent CTE of the structure in Fig. 7b.

Nonlinear problems.  The derivations of the above formulae are based on small deformation. For the finite 
deformation problem, the incremental theory can be used. Based on the updated Lagrangian description (ULD), 
the deformation of the first incremental step is obtained from the initial state, and then the deformation state of 
the first incremental step is used as a known condition to find the unknown quantities of the second incremental 
step, and so on until the final incremental step is done.

Assume that before the ith incremental step, the radius of curvature of the beam is bi−1 and the center angle 
is θi−1 , then after the ith incremental step, the radius of curvature and the center angle of the beam become:

The coefficients A1, B1, C1 are shown in Eq. (9). It is important to note that these coefficients contain b, and 
need to be in incremental forms, too.

The average CTE of the arc is:

Figure 8 shows the results of the comparison between Eq. (18) and the nonlinear finite element method. The 
geometric parameters of the beam and temperature increment step are b0 = 80 mm , θ0 = 90◦ , h1 = h2 = 4 mm , 
T0 = 0 ◦C , �T = 0.5 ◦C . After the final incremental step, the radius of curvature of the beam is bfinal = 76.2 mm , 
and the central angle is θfinal = 95.4◦ . It can be seen that the results obtained by Eq. (18) are in good agreement 
with the finite element results, and the maximum error is only 0.66%, which shows that the analytical formula 
in this paper is also applicable to the incremental theory.

(14)















A1 =
a2b2jE1E2(α1−α2)�T

b2[b2(m−p)+c2(q−m)]+a2[b2(p−n)+c2(n−q)]
B1 = 0

C1 =
−b2jE1E2(α1−α2)�T

b2[b2(m−p)+c2(q−m)]+a2[b2(p−n)+c2(n−q)]

(15)α =
a2
[

b2
(

α1p− α2n
)

+ c2
(

α2n− α1q
)]

+ b2
[

b2
(

α2m− α1p
)

+ c2
(

α1q− α2m
)]

b2
[

b2
(

m− p
)

+ c2
(

q−m
)]

+ a2
[

b2
(

p− n
)

+ c2
(

n− q
)]

(16)α =

α2

[

2 b
h + 1+ 2 h1

h2

(

b
h − 1− µ1

)]

+ α1
E1h1
E2h2

[

h1
h2

(

2 b
h − 1

)

+ 2
(

b
h + 1+ µ2

)]

[

2 b
h + 1+ 2 h1

h2

(

b
h − 1− µ1

)]

+
E1h1
E2h2

[

h1
h2

(

2 b
h − 1

)

+ 2
(

b
h + 1+ µ2

)]

(17)















bi = bi−1 + uρ
�

�

ρ=bi−1

= bi−1 +
1
E1

�

−(1+ µ1)
A1
bi−1

− B1bi−1 + (1− µ1)(B1 ln bi−1 + C1)bi−1

�

+ α1�Tibi−1

θi = θi−1 +
∂uϕ
∂ρ

= θi−1 +
2B1θi−1

E1

(18)αi =
bi sin

(

θi
/

2
)

− b0 sin
(

θ0
/

2
)

b0 sin
(

θ0
/

2
)
∑

�Ti

Figure 7.   Two types of NTE metamaterials.
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In addition, the incremental theory can also be applied to the range of material nonlinearity. Two kinds of 
materials with non-linear physical parameters, high chromium steel and austenitic stainless steel, whose average 
CTEs (compared with 20 °C) and elastic moduli are shown in Tables 1 and 2, are used for analyzing.

Besides, the physical parameters corresponding to the temperatures that are not given in the tables can be 
obtained by linear interpolation. Considering that the CTEs given in the tables are relative to the initial configu-
ration, that is, based on total lagrangian description (TLD), it needs to be transformed into the CTEs based on 
ULD, and the transformation formula is as follows:

In the iterative process, the CTE and elastic modulus corresponding to the temperature of the final state are 
substituted into Eq. (18) for iterative calculation. It should be noted that in this algorithm, to obtain the equivalent 
CTEs of the temperature corresponding to a certain iterative step, it is necessary to take the temperature as the 
final state and use the corresponding physical parameters for another set of iterative calculations.

Figure 9 shows the results of the comparison between Eq. (18) and the nonlinear finite element method. The 
geometric parameters of the beam and temperature increment step are b0 = 80 mm , θ0 = 90◦ , h1 = h2 = 4 mm , 
T0 = 20 ◦C , �T= 0.5 ◦C . After the final incremental step, the radius of curvature of the beam is bfinal = 77.5 mm , 
and the central angle is θfinal = 93.24◦ . It can be seen that the results obtained by Eq. (18) are in good agreement 
with the finite element results, and the maximum error is only 0.8%, which shows again that the analytical for-
mula in this paper is also applicable to the incremental theory.

Novel NTE metamaterials
Structure design.  As shown in Fig. 10, two novel NTE metamaterials are designed in this paper by replac-
ing the straight ligaments in the tetra chiral/anti-tetra chiral honeycomb with bi-material curved beams, where 
the blue parts represent Material 1 (PI) in the inner layers of the curved beams, and the red parts represent 
Material 2 (PMMA) in the ring and the outer layers of the curved beams. In the chiral honeycomb, the ligaments 
are divided into two segments that bend in opposite directions. For both metamaterials, when the ambient 

(19)αULD =
ln (1+ αTLD�T)

�T

Figure 8.   Comparison between theoretical formula and finite element method of nonlinear CTE.

Table 1.   Average CTEs at different temperatures (compared with 20 °C).

Temperature (°C) 0 50 100 150 200 250 300 350 400

High chromium steel (ppm/°C) 9.29 9.59 9.94 10.20 10.45 10.67 10.96 11.19 11.41

Austenitic stainless steel (ppm/°C) 16.28 16.54 16.84 17.06 17.25 17.42 17.61 17.79 17.99

Table 2.   Elastic moduli at different temperatures.

Temperature (°C) − 20 20 100 150 200 250 300 350 400

High chromium steel (GPa) 203 201 198 195 191 187 181 175 165

Austenitic stainless steel (GPa) 199 195 191 187 184 181 177 173 169
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temperature rises, the curvature of the ligaments will increase, making the rings closer to each other, which will 
approximately produce NTE effect on the whole. Besides, the bending of the bi-material beam during thermal 
deformation is the basis of realizing the NTE effect, which leads to the rotation of the rings in the chiral structure 
and the rotation amplifies the NTE effect of the whole structure. Therefore, the bi-material design makes more 
contribution to the NTE than chirality. In fact, for the chiral structure in Fig. 10b, when the circles shrink, the 
NTE effect will be weakened and when the circle shrinks to a point, the structure will degenerate into the struc-
ture in Fig. 7a, whose NTE effect is much weaker compared with the structure in Fig. 10b.

The equivalent CTE.  First, the equivalent CTE of tetra chiral honeycomb is deduced. As can be seen in 
Fig. 11a, in the tetra chiral honeycomb, the radius of curvature of the ligament arc is b , the central angle is θ , and 
the radius of the ring is r.

According to the geometrical relationship, the chord length of circular arc is:

and the distance between the two rings is:

The change of the distance between the centers of the two rings after the temperature rises �T is:

(20)l = 2b sin
θ

2

(21)L = 2

√

(

r cos
θ

2

)2

+

(

l − r sin
θ

2

)2

Figure 9.   Comparison between theoretical formula and finite element method of nonlinear CTE.

Figure 10.   Two novel NTE metamaterials: (a) anti-tetra chiral structure; (b) tetra chiral structure.
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As can be known from “Derivation, simplification and verification of analytical formulas” section:

Therefore, the equivalent CTE of the tetra chiral honeycomb is:

Then, the equivalent CTE of the anti-tetra chiral honeycomb is derived. As can be seen in Fig. 11b, in the 
anti-tetra chiral honeycomb, the radius of curvature of the semi-ligament arc is b , the central angle is θ , and the 
radius of the ring is r . The difference between tetra and anti-tetra honeycomb lies in that the distance between 
the two rings in anti-tetra honeycomb is:

The equivalent CTE of the anti-tetra chiral honeycomb can then be derived using the same method:

Finite element model.  The 8-node plane stress element CPS8R of the finite element software Abaqus is 
utilized to perform numerical simulation to verify the results derived in “Structure design” section. A single cell 
is used for analysis. The displacement loads in the y direction are applied to the midpoints of the cross section of 
the ends of the left and right ligaments of the structure, and the displacement loads in the x direction are applied 
to the midpoint of the ends of the upper and lower ligaments according to the antisymmetry. The temperature 
load of 1 °C is applied to the whole structure, and the equivalent CTE can then be obtained.

Validity and parameter analysis.  In this section, the change of CTEs of chiral/anti-chiral honeycombs as 
the curvature of the ligament changes is studied when the radius r and distance L of the rings remain unchanged. 
Meanwhile, the validity of the results has been verified by the comparison with the finite element results.

As shown in Fig. 12, the analytical solutions are basically consistent with the finite element results, and the 
maximum relative error of chiral honeycomb does not exceed 9% while the maximum relative error of the 
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Figure 11.   The geometry parameters of the novel metamaterials: (a) tetra chiral structure; (b) anti-tetra chiral 
structure.
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anti-chiral honeycomb does not exceed 6%. With the increase of central angle, the NTE effects of both chiral 
and anti-chiral honeycombs increase, which means that the design method of replacing bi-material straight 
beams with curved beams can effectively increase the NTE effect of this kind of metamaterial. Besides, when 
the central angles are equal to 0, the structures will become the NTE structures proposed by Yu et al.19 and it is 
obvious that the proposed metamaterials in this paper could obtain higher NTE values compared with those 
according to Fig. 12. The jagged shape of the curve for FEM in Fig. 12b is due to the great robustness at the 
junction between the ring and the ligament and specific optimization problems need to be further studied. It 
should be noted that AM still means the results from analytical methods and FEM means the results from finite 
element methods in Fig. 12.

Conclusion
In this study, the precise elasticity solution for the thermal expansion problem of bi-material curved beam is 
proposed based on the study in Ref34 and the simplified result is proposed based on the assumption that the 
slenderness ratio is small. This solves the problem that the accuracy of the formula in Ref31 at relatively large 
thicknesses (as compared to the radius) of the beam and small central angles are limited. The length of the sim-
plified result is much shorter than that of the original result, and at the same time, it is still in great agreement 
with the numerical simulation result. Also, parameters and the nonlinear problems of the bi-material beam are 
analyzed based on the simplified formula during thermal deformation, and the conditions under which the bi-
material circular beam achieves maximum NTE are identified. Finally, a class of novel NTE metamaterials are 
designed by introducing bi-material curved beams into tetra/anti-tetra chiral honeycomb, and the equivalent 
CTEs of this kind of metamaterials are given by using the simplified formula proposed in this paper. The pro-
posed analytical formula can effectively analyze the thermal expansion of bi-material circular beams and has 
great potential for applications.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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