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Abstract: Nitrogen is the limiting nutrient for plant growth in peatland ecosystems. Nitrogen addi-
tion significantly affects the plant biomass, diversity and community structure in peatlands. However,
the response of belowground microbe to nitrogen addition in peatland ecosystems remains largely
unknown. In this study, we performed long-term nitrogen addition experiments in a permafrost peat-
land in the northwest slope of the Great Xing’an Mountains. The four nitrogen addition treatments
applied in this study were 0 g N·m−2·year−1 (CK), 6 g N·m−2·year−1 (N1), 12 g N·m−2·year−1 (N2),
and 24 g N·m−2·year−1 (N3). Effects of nitrogen addition over a period of nine growing seasons
on the soil microbial abundance and community diversity in permafrost peatland were analyzed.
The results showed that the abundances of soil bacteria, fungi, archaea, nitrogen-cycling genes (nif H
and b-amoA), and mcrA increased in N1, N2, and N3 treatments compared to CK. This indicated
that nitrogen addition promoted microbial decomposition of soil organic matter, nitrogen fixation,
ammonia oxidation, nitrification, and methane production. Moreover, nitrogen addition altered the
microbial community composition. At the phylum level, the relative abundance of Proteobacteria
increased significantly in the N2 treatment. However, the relative abundances of Actinobacteria and
Verrucifera in the N2 treatment and Patescibacteria in the N1 treatment decreased significantly. The
heatmap showed that the dominant order composition of soil bacteria in N1, N2, and N3 treatments
and the CK treatment were different, and the dominant order composition of soil fungi in CK and
N3 treatments were different. The N1 treatment showed a significant increase in the Ace and Chao
indices of bacteria and Simpson index of fungi. The outcomes of this study suggest that nitrogen
addition altered the soil microbial abundance, community structure, and diversity, affecting the soil
microbial carbon and nitrogen cycling in permafrost peatland. The results are helpful to understand
the microbial mediation on ecological processes in response to N addition.

Keywords: nitrogen input; soil microbial functional gene abundance; soil microbial community
diversity; permafrost peatland

1. Introduction

Nitrogen (N) is the primary restricting factor for plant growth in terrestrial ecosys-
tems [1]. Since the industrial revolution, N deposition has increased significantly [2,3]. The
current global N deposition ranges from 0.05 to 2 g N·m−2·year−1 [4], and it is expected to
increase 2.5-fold by the end of the current century [5]. A continuous rise in N deposition
has become a global eco-environmental concern [6]. N deposition is the most vital driving
factor for carbon sink in China’s terrestrial ecosystem [7]. The aggravation of N deposition
has resulted in soil acidification [8]. This, in turn, has altered the composition and diversity
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of plants and microorganisms [9,10], as well as the soil carbon (C) and N biogeochemical
cycles [11], influencing the ecosystem stability. Soil microbes are involved in different bio-
geochemical cycles, including C and N mineralization [12,13], and they play a crucial role
in ecological functioning of the ecosystem. Bacterial and fungal communities are vital com-
ponents of the soil microbial community and play a crucial role in ecological functioning
of ecosystem [14]. The abundance of functional genes encoding key enzymes has gained
substantial attention over the recent years. The altered abundance of crucial enzymes
could unravel the soil N transformation response mechanism to N addition [15]. Previous
studies have shown that N addition could remarkably alter the microbial abundance and
community composition by enhancing N availability in the soil, as well as the relationship
between above- and belowground ecosystems in peatlands [16,17]. Understanding how
microbial abundance and community operate in ecological and biogeochemical processes
is essential to understand the mechanisms underlying microbe-driven changes in soil C
and N cycling under N addition.

The response of soil microbe to N addition depends on the microbial species, the
N treatment duration and amount, and the ecosystem type. The fungal community is
more sensitive than the bacterial community to N deposition [18]. A low amount of N
addition could increase bacterial and fungal abundance, but a high amount of N addi-
tion could decrease bacterial abundance [19]. Mineral N addition decreases soil bacterial
diversity, while organic N addition increases soil bacterial diversity [20,21]. As shown
previously, short-term N addition increased the richness and Shannon and McIntosh in-
dices of bacterial and fungal communities in the paddy soil [22]. However, long-term
N addition decreased bacterial richness by changing soil pH and plant composition in
temperate steppe grassland and increased fungal diversity and relative abundance of
complex carbohydrate-decomposing bacterial and fungal groups in alpine meadows [23].
Biogeochemical processes and ecosystem functions are directly associated with altered
abundance, diversity, and composition of soil microbial communities [18,24]. To predict
the responses of ecosystem functions to altered N element levels, it is essential to under-
stand how N addition shapes microbial communities and how these shifts are linked to
crucial processes of element cycling. However, the effects of long-term N addition on
soil microbial abundance, community composition, and diversity in permafrost peatlands
remain ambiguous. Thus, the responses and potential mechanisms of microbial community
structure to N addition need to be explored by more field experiments due to limited data
and inconsistent responses with other soil.

Most permafrost peatlands are located at high latitudes. These peatlands are often
N-limited, due to slow decomposition in cold, acidic, and frequently waterlogged soils,
along with more N stored in peatland soil tightly bound with organic matter, compared
with other ecosystems [25,26], which are more sensitive to environmental changes. A
high climatic temperature promotes soil organic matter mineralization through microbial
decomposition, releasing available N that could be absorbed and utilized by plants [27].
The projected 3 ◦C rise in temperature will increase N mineralization by 7 g N·m−2·year−1,
whereas a 7 ◦C rise in temperature will increase N mineralization by 9.4 g N·m−2·year−1

in high-latitude regions [28]. Thus, global warming and N deposition can alleviate the
existing N limitation and increase N availability in peatlands [29]. However, only a few
studies have explored the response of the soil microbial function and community diversity
to altered levels of N elements in permafrost peatland, and the relationship between soil
microbial community composition and environmental factors remains unclear. Long-
term field studies are scarce, thus hindering determination of the extent and direction
of the impact. Thus, it is important to investigate the responses of the soil microbial
communities to N addition in permafrost peatlands. In this study, a long-term N addition
experiment was performed in the northwest slope of the Great Xing’an Mountains. After
nine growing seasons, we collected soil samples and applied real-time PCR (RT-PCR)
and high-throughput sequencing techniques to determine the change in the soil microbial
functional gene abundance and community diversity under four levels of N addition.
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RT-PCR was used to detect the abundances of bacteria, fungi, archaea, nif H, bacteria-amoA
(b-amoA), nirK, nirS, mcrA, and pmoA genes. Illumina Miseq sequencing of bacterial 16S
rRNA and fungal ITS genes was used to assess the effect of N addition treatments on the
soil bacterial and fungal community composition and diversity. In this study, we focused
on two aspects: (1) the response of soil microbial abundance to N addition in N-limited
peatland; (2) the relationship of soil substrate properties with the composition and diversity
of microbial communities under N addition. We hypothesized that N addition would
increase soil microbial abundance and community diversity in permafrost peatland by
increasing soil nutrient contents, and that the response would be greater than other soil
systems due to stronger N limitation.

2. Materials and Methods
2.1. Site Description

The study was conducted in a permafrost peatland located at the northwest slope
of the Great Xing’an Mountains in Northeast China (52◦94′ N, 122◦86′ E). The active
layer is 50 cm to 60 cm above the permafrost layer. The mean annual air temperature
is −3.9 ◦C, and the mean annual precipitation is 450 mm, with 45% falling as rain from
July to August [30]. The dominant plant species are Eriophorum vaginatum L., Vaccinium
uliginosum L., Chamaedaphne calyculata L. Moench, Ledum palustre L., and Sphagnum spp.

2.2. Experimental Design and Sampling

The experiment was established in autumn 2011. A total of 12 plots were established;
each plot was 2 m × 2 m and separated by a 1 m buffer to prevent increased horizontal
movement and lateral loss of N. This experiment entailed a total of four N addition
treatments: 0 g N·m−2·year−1 (CK), 6 g N·m−2·year−1 (N1), 12 g N·m−2·year−1 (N2),
and 24 g N·m−2·year−1 (N3); each treatment was applied to three replicated plots. For
each N addition treatment, NH4NO3 was first dissolved in 1 L of surface water and then
sprayed evenly on the target area. The same amount of surface water without NH4NO3
was sprayed in the CK treatment. The treatments were applied during the growing season
(from May to September) of 2012 to 2020. The soil samples were sampled from 0–20 cm
below the plant litter layer from each plot on 13 August 2020, and five sampling points
were collected with a soil drill from each plot and mixed to form a composite sample. The
soil samples were divided into subsamples for further analysis. One of the subsamples was
stored at −80 ◦C to determine the functional gene abundance and community diversity
of soil microbes. The second soil subsamples were stored at 4 ◦C for dissolved organic
carbon (DOC), ammonia nitrogen (AN), and nitrate nitrogen (NN) content determination.
The remaining soil subsamples were air-dried to determine the soil total carbon (TC), total
nitrogen (TN), and total phosphorus (TP) content, as well as soil pH.

2.3. Microbial Functional Gene Abundance and Community Diversity Analysis

DNA from 0.3 g of soil samples was extracted using a FastDNA®Spin Kit for Soil
(MPbio, Irvine, CA, USA), according to the manufacturer’s instructions. The extracted DNA
was stored at −80 ◦C prior to functional gene and sequencing analysis. The abundances of
bacteria, fungi, archaea, nif H, b-amoA, nirK, nirS, mcrA, and pmoA genes were determined
by RT-PCR, which was performed on the ABI StepOne instrument (Applied Biosystems,
Beverly, MA, USA) and SYBR green dye. RT-PCR analysis for each soil sample was
replicated three times. RT-PCR primers for target gene amplification and the detailed
procedure are presented in Table S1. The 25 µL PCR reaction mixture contained 12.5 µL
of SYBR Buffer (TaKaRa, Beijing, China), 0.4 µL of each primer (10 µM), 0.5 µL of ROXII
(TaKaRa, Beijing, China), 0.88 µL of 3% BSA, 0.63 µL of DMSO, and 10 ng of template DNA.
For standard curve generation, the amplicon products of phylogenetic and functional
markers were purified using a Cyclic Purification Kit (OMEGA Bio-Tek, Norcross, GA,
USA), ligated to the vector pMD18-T (TaKaRa, Beijing, China), and then transformed into
TOP10 Escherichia coli competent cells. The plasmids were extracted using the Plasmid
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Mini Kit (OMEGA Bio-Tek, USA/Georgia). The specificity of plasmids was determined
through the Basic Local Alignment Search Tool [31], and the plasmid concentration was
determined using a Nanodrop 2000 (Thermo, Waltham, MA, USA). The standard curve
was obtained by continuous dilution of known copy number plasmids.

For microbial community analyses, the V3–V4 region of the 16S rDNA gene was ampli-
fied with primers 338f (5′–ACTCCTACGGGAGGCAGCAG–3′) and 806r (5′–GGACTACHV
GGGTWTCTAAT–3′) [32], and the ITS1 region of the 18S rDNA gene was amplified with
primers ITS1f (5′–CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2r (5′-GCTGCGTTCTTCA
TCGATGC–3′) [33] under the following conditions: initial denaturation at 95 ◦C for 3 min,
followed by 35 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 45 s, and a final
extension at 72 ◦C for 10 min. The PCR products were purified using a Qia quick PCR
Purification kit (Qiagen, Dusseldorf, Germany). The PCR products of different samples
were pooled and sequenced on the Illumina MiSeq platform (Illumina, San Diego, CA,
USA). Raw sequences of different samples were separated using barcodes, and up to one
mismatch was allowed while using the FLASH tool [34]. The quality of the sequence was
strictly filtered using the QIIME tool, and Btrim [35] was employed for quality trimming
and removing the low-quality regions (Q < 20), the sequences < 150 bp in length, and
singletons. The chimeric sequences were detected and removed using VSEARCH [36]
to obtain sequences. OTUs were classified using UCLUST at a 97% similarity level, and
singletons were removed. Rarefaction analysis was conducted using the originally detected
OTUs [37]. The taxonomic assignment was conducted using the Ribosomal Database
Project (RDP) classifier [38] with minimal 80% confidence estimates. The RDP classifier
was used to assign taxonomic data to each representative sequence. All sequences from
this study were deposited at NCBI with accession number PRJNA735903.

2.4. Soil Chemical Analysis

The soil total carbon (TC) content was determined via the dry combustion method
with the multi N/C 2100 analyzer (Analytik Jena, Jena, Germany). Dissolved organic
carbon (DOC) in the soil was determined, as per the method described by Ghani et al. [39].
Total N (TN) and total phosphorus (TP) in the soil samples were digested using sulfuric
acid and later quantified through an AA-3 continuous flow analyzer (Seal Analytical,
Germany/Norderstedt). Soil ammonium N (AN) and nitrate N (NN) were extracted with
2 mol·L−1 KCl and then analyzed with the AA-3 continuous flow analyzer (Seal Analytical,
Norderstedt, Germany). Soil pH values were analyzed in a 5:1 water–soil solution.

2.5. Statistical Analyses

Data were analyzed using SPSS software (v. 16.0, Chicago, IL, USA) with an accepted
significance level of α = 0.05. One-way analysis of variance (ANOVA) and a post hoc Dun-
can’s multiple-range test were performed to determine the significant differences between
the soil properties from different N addition treatments. A nonmetric multidimensional
scaling (NMDS) ordination to illustrate the clustering of bacterial and fungal community
composition variation was conducted on the Bray–Curtis distance of the order. Pearson’s
correlation coefficients between diversity indices and soil microbial functional group abun-
dance, as well as soil microbial community diversity indices, were calculated. Redundancy
analyses (RDA) were conducted on soil chemical properties with microbial diversity; spe-
cific bacteria and fungi were analyzed separately. RDA analyses were conducted with
CANOCO 5.0 software (Beijing, China).

3. Results
3.1. Soil Chemical Properties

Soil TC content was found to be in the range of 388.57 mg·g−1 to 406.53 mg·g−1. TC
content was lower in the N3 treatment than in N1, N2, and CK treatments. DOC content
in all treatments ranged from 331.00 mg·kg−1 to 566.47 mg·kg−1. DOC content in the N1
treatment was higher than in CK, N2, and N3 treatments (Table 1). TN content ranged
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from 14.07 mg·g−1 to 24.70 mg·g−1 in the all treatments, and TN in N1 and N3 treatments
was lower than in the N2 treatment. Furthermore, AN content ranged from 39.94 mg·kg−1

to 123.41 mg·kg−1, and NN content ranged from 34.01 mg·kg−1 to 55.06 mg·kg−1 in all
treatments. AN was higher in the N1 treatment than in CK, N2, and N3 treatments.
Furthermore, NN was higher in N1 and N2 treatments than in CK and N3 treatments.
TP content ranged from 1.41 mg·g−1 to 1.98 mg·g−1 in all treatments. TP decreased
significantly with the increase in N addition (Table 1). Soil pH values ranged from 5.73
to 5.83, and they did not vary significantly with the addition of different amounts of N
(Table 1).

Table 1. Effects of nitrogen addition on the content of soil carbon, nitrogen and phosphorus. Values are means ± standard
error (n = 3). TC: total carbon; TN: total nitrogen; TP: total phosphorus; AN: ammonium nitrogen; NN: nitrate nitrogen; DOC:
dissolved organic carbon. CK: 0 g N·m−2·year−1; N1: 6 g N·m−2·year−1; N2: 12 g N·m−2·year−1; N3: 24 g N·m−2·year−1.
Different letters indicate a significant difference among different concentrations of nitrogen addition treatments (p < 0.05) as
estimated by one-way ANOVA and a post hoc Duncan’s multiple-range test.

TC
(mg·g−1)

TN
(mg·g−1)

TP
(mg·g−1)

AN
(mg·kg−1)

NN
(mg·kg−1)

DOC
(mg·kg−1) pH

CK 403.23 ± 12.77a 14.07 ± 1.08c 1.98 ± 0.01a 39.94 ± 9.48c 45.75 ± 17.22ab 421.53 ± 91.65ab 5.73 ± 0.02a
N1 406.53 ± 2.53a 18.28 ± 0.62b 1.79 ± 0.29ab 123.41 ± 1.13a 55.06 ± 0.82a 566.47 ± 63.89a 5.76 ± 0.02a
N2 392.89 ± 10.55a 24.70 ± 1.09a 1.70 ± 0.12ab 46.56 ± 5.76c 53.82 ± 2.44ab 331.00 ± 15.51b 5.75 ± 0.20a
N3 388.57 ± 9.92a 16.90 ± 1.22b 1.41 ± 0.20b 95.81 ± 10.57b 34.01 ± 0.19b 351.33 ± 87.57b 5.83 ± 0.06a

3.2. Soil Microbial Functional Group Abundance

Abundances of bacteria, fungi, archaea, nif H, b-amoA, denitrification genes (nirK,
nirS), mcrA, and pmoA were determined using RT-PCR analysis. In all four N addition
treatments, bacterial abundance (3.71 × 1012 copies·g−1 to 5.36 × 1012 copies·g−1 dry soil)
was more higher than fungal abundance (7.44 × 109 copies·g−1 to 4.92 × 1010 copies·g−1

dry soil) and archaeal abundance (3.10 × 108 copies·g−1 to 9.92 × 109 copies·g−1 dry soil)
(Figure 1). Compared with CK, the abundances of bacteria, fungi, and archaea were higher
in N addition treatments and highest in the N2 treatment. In addition, the abundances of
nif H, b-amoA and mcrA were higher in N addition treatment groups than in CK (Figure 1).
The abundance of nirK tended to increase with the increase in N addition level, but this
increase was not significant (Figure 1).
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Figure 1. The effect of nitrogen addition on soil microbial functional gene abundance in per-
mafrost peatland. CK: 0 g N·m−2·year−1; N1: 6 g N·m−2·year−1; N2: 12 g N·m−2·year−1;
N3: 24 g N·m−2·year−1. Different letters indicate a significant difference among different concentra-
tions of nitrogen addition treatments (p < 0.05) as estimated by one-way ANOVA and a post hoc
Duncan’s multiple-range test.
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3.3. Soil Microbial Community Composition and Diversity

In the CK plot, the dominant bacterial phyla were Actinobacteria (22.81%) and Aci-
dobacteria (21.45%), followed by Proteobacteria (18.05%), Chloroflexi (9.6%), Bacteroidota
(8.26%), Verrucomicrobiota (4.62%), Desulfobacterota (2.88%), Patescibacteria (2.52%), Myx-
ococcota (1.44%), Firmicutes (1.04%), Gemmatimonadota (0.91%), Nitrospirota (0.88%),
and Planctomycetota (1.14%) (Figure 2a). Actinobacteria was the most dominant bacterial
phylum in all N addition treatments. The Proteobacteria relative abundance in the N2
treatment was significantly higher than that in N1 and N3 treatments. However, the relative
abundances of Actinobacteria and Verrucifera in the N2 treatment and Patescibacteria in the
N1 treatment were significantly lower than in the N3 treatment (Figure 2a). In the CK plot,
the dominant fungal community was Ascomycota (49.89%), followed by Basidiomycota
(44.31%), Mortierellomycota (1.41%), unclassified-k-Fungi (2.91%), Rozellomycota (1.16%),
Chytridiomycota (1.06%), and Monoblepharomycota (0.21%). Ascomycota was the most
dominant fungal phylum in all N addition treatments. The abundance of Basidiomycota
decreased, while the abundances of Mortierellomycota and Rozellomycota increased with
the increase in N addition amount. However, no significant differences were observed
across the fungal phyla in different N addition treatments (Figure 2b).
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Figure 2. The effect of nitrogen addition on relative abundances of (a) bacteria phyla and
(b) fungi phyla. Displayed are phyla with >1% relative abundance. Unclassified bacterial and
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NMDS analysis based on Bray–Curtis similarity distance of order showed that the
composition of soil bacteria in N1, N2, and N3 treatments clustered more closely together
than in the CK treatment (Figure 3a), and fungal composition in CK, N1, and N2 treatments
clustered more closely together (Figure 3b). The heatmap graphically showed that the
order of soil bacterial and fungal communities differed with N addition treatment, which
supported the NMDS analyses (Figure 4). We observed that the composition of soil bacterial
dominant order in N1, N2, N3, and CK treatments were different. The relative abundances
of Solibacterales, Pedosphaerales, and Corynebacteriales were highest in the CK treatment
and lowest in N3, N2, and N1 treatments, respectively; there was a significant difference
in abundance between CK and different N addition treatments (p < 0.05) (Figure 4a). Fur-
thermore, the dominant order composition of soil fungi was different between CK and
N3 treatments. Compared with the CK treatment, the relative abundance of unclassi-
fied_p_Mortierellomycota, Coniochaetales, and unclassified_c_Monoblepharidomycetes
showed significant differences under N3 treatment (p < 0.01) (Figure 4b).
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The Shannon, Simpson, Ace, and Chao indices were used to estimate and compare the
alpha diversity of bacterial and fungal communities in N1, N2, and N3. We observed that
Ace and Chao indices of bacteria in N1 treatment were significantly higher than in CK and
differed significantly between N1 and CK treatments (Figure 5C,D). The Simpson index
of fungi in the N1 treatment was significantly higher than in CK, N2, and N3 treatments
(Figure 6B).

3.4. The Relationship between Soil Microorganisms and Soil Chemical Properties under
Nitrogen Addition

Correlation analysis of microbial abundance and soil chemical properties showed
that the abundances of bacteria, fungi, archaea, and b-amoA were significantly and pos-
itively correlated to TN. The abundance of b-amoA was significantly and positively cor-
related to AN (Table 2). Moreover, the relative abundances of Proteobacteria (r = 0.792,
p < 0.01), Actinobacteria (r = 0.589, p < 0.05), Bacteroidota (r = 0.659, p < 0.05), Myxococcota
(r = 0.620, p < 0.05), and Gemmatimonadota (r = 0.668, p < 0.05) were positively correlated
to TN (Figure 7a). The relative abundance of Ascomycota was negatively correlated to
TP (r = −0.674, p < 0.05). The relative abundances of Basidiomycota (r = 0.696, p < 0.05),
Mortierellomycota (r = 0.605, p < 0.05), and Rozellomycota (r = 0.687, p < 0.05) were pos-
itively correlated to TN. The relative abundance of Mortierellomycota was negatively
correlated to pH (r = −0.673, p < 0.05). The relative abundance of unclassified-k-Fungi
was negatively correlated to TC (r = −0.787, p < 0.01). The relative abundance of Mono-
blepharomycota was negatively correlated to TC and pH (r = −0.590, p < 0.05; r = −0.673,
p < 0.05) (Figure 7b).
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Figure 6. The alpha diversity of soil fungi under nitrogen addition treatment. CK: 0 g N·m−2·year−1; N1: 6 g N·m−2·year−1;
N2: 12 g N·m−2·year−1; N3: 24 g N·m−2·year−1. (A): Shannon index; (B): Simpson index; (C): Ace index; (D): Chao index.
Different letters indicate a significant difference among different concentrations of nitrogen addition treatments (p < 0.05) as
estimated by one-way ANOVA and a post hoc Duncan’s multiple-range test.



Microorganisms 2021, 9, 2498 10 of 17

Table 2. Pearson correlation analysis of soil microbial abundance and soil chemical properties. TC: total carbon; TN: total
nitrogen; TP: total phosphorus; AN: ammonium nitrogen; NN: nitrate nitrogen; DOC: dissolved organic carbon. * significant
at the 0.05 level, ** significant at the 0.01 level. Bold text indicates statistically significant correlations.

Indicator Bacteria Fungi Archaea nifH B-amoA nirK nirS mcrA pmoA TC TN TP AN NN DOC pH

Bacteria 1
Fungi 0.42 1
Archaea 0.85 ** 0.75 ** 1
nif H 0.17 0.68 * 0.30 1
B-amoA 0.75 ** 0.31 0.51 0.46 1
nirK 0.14 0.73 ** 0.36 0.73 ** 0.27 1
nirS 0.31 0.48 0.35 0.44 0.28 0.78 ** 1
mcrA 0.26 0.73 ** 0.41 0.94 ** 0.48 0.74 ** 0.47 1
pmoA 0.81 ** 0.42 0.65 * 0.19 0.61 * 0.13 0.21 0.22 1
TC −0.05 −0.36 −0.24 −0.45 0.11 −0.35 −0.25 −0.55 0.11 1
TN 0.86 ** 0.75 ** 0.92 ** 0.36 0.63 * 0.35 0.42 0.47 0.70 −0.13 1
TP 0.08 −0.52 −0.09 −0.55 −0.25 −0.44 −0.20 −0.26 0.34 0.28 −0.28 1
AN −0.01 −0.17 −0.30 0.43 0.58 * 0.10 −0.02 0.36 −0.04 0.22 −0.09 −0.32 1
NN 0.49 −0.10 0.33 −0.26 0.40 −0.22 0.10 −0.28 0.19 0.18 039 0.13 0.02 1
DOC 0.02 −0.44 −0.35 −0.19 0.37 −0.10 0.11 −0.67 0.07 0.74 ** 0.18 0.23 0.56 0.36 1
pH −0.18 0.03 −0.17 0.18 0.04 −0.38 −0.53 0.04 0.04 0.12 −0.04 −0.30 0.15 −0.13 −0.13 1
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The RDA of soil chemical properties and alpha diversity indices of microbial commu-
nity in all N treatments is shown in Figure 8. The Shannon index of bacteria was positively
correlated to TC, TN, DOC, AN, and NN; however, the Simpson index of bacteria was
negatively correlated to TC, TN, DOC, AN, and NN. The Shannon index of bacteria was
negatively correlated to TP and pH, and the Simpson index of bacteria positively corre-
lated to TP and pH. Ace and Chao indices of bacteria were positively correlated to TN,
DOC, AN, pH, and NN, but negatively correlated to TC and TP. With 23.9%, 20.6%, and
15.4% contribution rates, AN, TN, and TC contributed remarkably to bacterial diversity,
respectively (Figure 8a). The Shannon index of fungi was positively correlated to TC and
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TN, but negatively correlated to AN, NN, DOC, and pH. Simpson, Ace, and Chao indices
of fungi were positively correlated to AN, NN, DOC, and pH, but negatively correlated to
TP. The contribution rates of AN and TP to fungal diversity indices were 56.7% and 29.3%,
respectively (Figure 8b).
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TN: total nitrogen; TP: total phosphorus; AN: ammonium nitrogen; NN: nitrate nitrogen; DOC:
dissolved organic carbon. CK1, CK2, CK3: 0 g N·m−2·year−1; N1-1, N1-2, N1-3: 6 g N·m−2·year−1;
N2-1, N2-2, N2-3: 12 g N·m−2·year−1; N3-1, N3-2, N3-3: 24 g N·m−2·year−1. The red arrows and
blue arrows represent soil chemical properties and the alpha diversity indices of bacteria and fungi
microbial communities, respectively.

4. Discussion
4.1. Effect of N Addition on Soil Microbial Functional Gene Abundance in Permafrost Peatland

Soil microbes contribute significantly to all the biogeochemical processes of soil [12,13],
such as soil carbon mineralization, methane production and oxidation, N fixation, and
nitrification or denitrification [40]. The change of nutrient environment can affect the key
microbes related to soil C and N cycles in different directions and to different degrees.
Our observations supported our hypothesis that the microbial abundance in the soil of
permafrost peatlands increased under N addition. Compared with control, the abundances
of bacteria, fungi, archaea, nif H, b-amoA, and mcrA were higher in N addition treatments.
In line with our hypothesis, soil nif H (increased 110% to 213%) and b-amoA (increased
567% to 1262%) abundances in permafrost peatland were more sensitive to N addition than
agricultural soils (nif H: no effect; b-amoA: increased 313%) according to a meta-analysis
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result of 47 field studies [41]. However, contrary to our hypothesis, soil nirK (no effect)
and nirS (no effect) genes were less sensitive to N addition in permafrost peatland than in
agricultural soils, increasing 53% and 40%, respectively [41]. The abundances of bacteria,
fungi, archaea, b-amoA, and mcrA were found to increase under N addition, indicating
that N addition may promote microbial decomposition of soil organic matter, ammonia
oxidation, N fixation, and methane production. Previous studies have also demonstrated
that the abundances of bacteria, fungi, archaea [42], and b-amoA [43] increased with N
addition. Orr et al. [44] showed that N addition increased the abundance of N-fixing
bacteria and promoted the N-fixing function of soil microbes in cropland. In line with the
findings of our study, N addition induced an increase in abundance of nif H in Antarctic
soils [45]. The response of nif H to different levels of N addition was different, related to
the cultivar and the amount of added N [46]. As reported previously, Juraeva et al. [47]
found that the relative abundance of the nif H gene pool in plant roots was positively
correlated with N supply. Coelho et al. [48] also found that a low concentration of N
input could improve the nif H gene abundance in the rhizosphere of sorghum bicolor. We
previously found that N addition could increase the biomass of plant roots in the same N
addition plots [49]. Therefore, N addition could improve nif H abundance by promoting
plant root growth and secreting more exudates. In contrast, Tian et al. [50] demonstrated
that N addition decreased the abundance of N-fixing bacteria in forest ecosystems. N
addition did not have a significant effect on nirK gene abundance in permafrost peatland
soil. Previous researchers have also obtained consistent results suggesting that nitrite
reductase (NO-forming) is insensitive to environmental changes [51]. Wang et al. [18]
reported that N addition induced a decrease in the abundances of soil bacteria and fungi in
subtropical forest, which might have been associated with the significant decrease in soil
pH. A lower soil pH could trigger aluminum toxicity, hampering microbial growth [52].
However, in the current study, as N addition did not induce significant soil acidification,
we concluded that pH may be not the major regulatory factor for soil microbial abundance
in permafrost peatlands.

4.2. Effects of N Addition on Soil Microbial Community Composition and Diversity in
Permafrost Peatland

The community structure and diversity of soil microorganisms respond distinctly to
different N addition levels [53]. At the phylum level, the relative abundances of bacteria
showed different trends in response to different N addition levels. N addition could
alter microbial community composition [54], resulting in the altered relative abundance
of specific bacteria phyla [55]. Compared with CK, N1, and N3 treatments, the relative
abundance of Proteobacteria in the N2 treatment was highest. Proteobacteria, which
comprise eutrophic bacteria, grow and reproduce rapidly in high-N environments [16].
Moreover, N addition decreased the relative abundances of Acidobacteria and Verrucifera.
Furthermore, the relative abundances of Actinobacteria and Verrucifera in the N2 treatment
were significantly lower than in CK. In line with the findings of our study, N addition
induced a decrease in the abundances of Actinobacteria and Verrucifera in the topsoil
of subtropical acidic forests [56]. The plausible reason might be that Actinobacteria and
Verrucifera belong to the oligotrophic group, and their lower growth rate makes them more
suitable for soil conditions with lower nutrient levels [16]. Additionally, these microbes
have a lower ability to use carbon sources in a high-N environment [57]. We observed
that Ascomycota was the most dominant fungal phylum. In line with a previous study
by Zhu et al. [58], the abundance of Basidiomycota decreased, whereas the abundances
of Mortierellomycota and Rozellomycota increased with the N addition amount. The soil
bacterial dominant orders in different N addition and CK treatments were different, while
the dominant order composition of soil fungi in the CK treatment was different to that in
the N3 treatment. The relative increases or decreases in abundance of soil microorganisms
with the availability of nitrogen may be due to N addition directly or indirectly leading to
the transformation of lifecycle strategies of major microorganisms; thus, their response to
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N addition is inconsistent [16,59]. The altered structure and composition of soil microbial
community in the N addition reflected the altered nutrient absorption [60].

Consistent with our initial hypothesis, N addition increased the bacterial and fungal
diversity, but this depended on the N addition level. We observed that N1 treatment in-
creased the Ace and Chao indices of bacteria and the Simpson index of fungi in permafrost
peatlands. Li et al. [23] also reported that N addition increased fungal diversity and differ-
entially affected microbial community composition and structure by modifying microbial
preferences in alpine meadows soil. However, these positive effects were different from the
results of previous studies, which reported that N addition reduced the bacterial Chao1
index in agricultural grassland and forests soils [56,61] and the fungal Simpson index in
forests soils [62]. Furthermore, as reported previously, N addition decreased bacterial
richness by decreasing soil pH; thus, N addition negatively affected soil microbial com-
munities in forest soils [18,63]. However, in the current study, the soil pH did not change
significantly, suggesting that the altered soil microbial diversity was closely correlated with
soil nutrients, but little correlated with soil pH under N addition in permafrost peatlands.
Under the condition of long-term N addition, the composition of the soil microbial com-
munity may be altered, but the soil pH did not change significantly [64,65]. The results
showed that the responses of the Simpson index of fungi to N addition were more sensitive
than those of the Simpson index of bacteria. This finding is in line with Yang et al. [66],
who showed that soil fungal diversity was more sensitive than soil bacterial diversity
under global N addition, because soil fungi had a higher carbon and nutrient assimilation
efficiency than soil bacteria.

4.3. Effects of Soil Chemical Properties on the Soil Microorganisms under Nitrogen Addition in
Permafrost Peatland

N addition could alter soil properties directly or indirectly by affecting soil microbial
communities [63]. We observed that DOC decreased in N2 and N3 treatments, which
might have been due to N addition-induced increase in the soil labile carbon decomposi-
tion [28,67]. High levels of N addition decreased soil DOC concentrations, indicating that
soil active organic C, an energy source for microbial growth, responded to N addition. These
changes are most likely because N addition stimulated the growth of microorganisms and
changed C-use efficiency due to the exhaustion of active C substrates [68]. Fang et al. [69]
reported that the decrease in DOC concentration in soil was a consequence of changing
microbial decomposition and humidification processes. Soil TP content significantly de-
creased in the N3 treatment due to the increase in absorption and utilization of TP by plants
in a high-N environment [28,67], limiting P availability compared to N [23]. The integrated
effect of soil organic carbon stimulation resulted in no significant effect on TC in different
N addition treatments. N addition promoted the decomposition of active organic C. On
the other hand, N addition provided more N nutrition for plant growth, improved plant
productivity, and increased the carbon input of plant litter, resulting in an unclear change
in soil TC content [68]. However, current studies on soil carbon sequestration potential
under N addition-driven conditions are divergent [70]. N input significantly stimulated an
increase in soil carbon level in some ecosystems [71] but a significant decrease in others [72]
or remained constant [73], depending on ecosystem types and N addition level.

We analyzed soil microbial functional gene abundance and diversity along with soil
chemical properties in different N addition treatments. The outcomes suggested that bac-
terial, archaeal, and b-amoA abundances were closely related to TN, and that soil N is a
major factor regulating the abundances of soil bacteria, archaea, and b-amoA [74,75]. We
also observed that Proteobacteria, Actinobacteria, Bacteroidota, Myxococcota, Gemmati-
monadota, Basidiomycota, Mortierellomycota, and Rozellomycota were correlated to TN,
whereas Ascomycota was correlated to TP. This indicates that N addition influenced soil
microbial community structure by altering soil nutrient level.
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5. Conclusions

This study demonstrated that continued N addition for nine growing seasons in-
creased the abundances of bacteria, fungi, archaea, nif H, b-amoA, and mcrA in permafrost
peatland, indicating that N addition could stimulate the decomposition of soil organic mat-
ter, oxidation of ammonia, fixation of N, nitrification, and production of methane, thereby
affecting soil C and N cycling. Soil nif H and b-amoA abundances in permafrost were more
sensitive to N addition than agricultural soils, but nirK and nirS abundances were less
sensitive to N addition in peatland soil than in agricultural soils. N3 treatment changed the
dominant order composition of soil fungi. In addition, N1 treatment increased the Ace and
Chao indices of bacteria and the Simpson index of fungi. The positive effects of N addition
on diversity indices of soil bacteria and fungi were different from grassland and forests
soils, indicating that soil microbial diversity was closely correlated with soil nutrients but
not soil pH under N addition in permafrost peatlands. The results highlight the important
role of microbes in regulating soil ecological processes in permafrost peatlands under N
addition. This study focused only on the effects of N addition on belowground microbial
processes; thus, future studies should explore the interaction and response mechanism of
aboveground plants and soil microbes to N addition.
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