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Neuronal responses and topographic organization of feature selectivity in the cerebral
cortex are shaped by ascending inputs and by intracortical connectivity. The mammalian
primary auditory cortex has a tonotopic arrangement at large spatial scales (greater than
300 microns). This large-scale architecture breaks down in supragranular layers at smaller
scales (around 300 microns), where nearby frequency and sound level tuning properties
can be quite heterogeneous. Since layer 4 has a more homogeneous architecture, the
heterogeneity in supragranular layers might be caused by heterogeneous ascending
input or via heterogeneous intralaminar connections. Here we measure the functional
2-dimensional spatial connectivity pattern of the supragranular auditory cortex on micro-
column scales. In general connection probability decreases with radial distance from each
neuron, but the decrease is steeper in the isofrequency axis leading to an anisotropic
distribution of connection probability with respect to the tonotopic axis. In addition to this
radial decrease in connection probability we find a patchy organization of inhibitory and
excitatory synaptic inputs that is also anisotropic with respect to the tonotopic axis. These
periodicities are at spatial scales of ∼100 and ∼300 μm. While these spatial periodicities
show anisotropy in auditory cortex, they are isotropic in visual cortex, indicating region
specific differences in intralaminar connections. Together our results show that layer 2/3
neurons in auditory cortex show specific spatial intralaminar connectivity despite the overtly
heterogeneous tuning properties.
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INTRODUCTION
The ability of many mammalian species to analyze auditory scenes
requires an exquisite representation of the auditory world. The
primary auditory cortex (A1) is a key structure underlying the
perception of sounds and the processing of auditory informa-
tion. On a large scale the main organizational principle of A1 is
the tonotopic axis (Merzenich et al., 1973, 1975), which is inher-
ited from the 1-dimensional sensory epithelium of the cochlea
and also present at lower levels of the auditory system. In addi-
tion, A1 contains patchy organization of other sound features
within isofrequency bands, possibly indicating functional spe-
cializations of A1 (Reale et al., 1983; Matsubara and Phillips,
1988; Read et al., 2001; Ojima and Takayanagi, 2004; Ojima
et al., 2005). In contrast to the smooth maps of frequency pref-
erence obtained with low-resolution techniques, recent in vivo
2-photon imaging studies in mice have revealed that the frequency
organization of neurons in supragranular layers (layer 2/3) on
a local scale is very heterogeneous (Bandyopadhyay et al., 2010;
Rothschild et al., 2010). Since similar studies revealed that the
frequency organization in layer 4 is more homogeneous than in
layer 2/3 (Guo et al., 2012; Winkowski and Kanold, 2013), this
raises the question of which microcircuits underlie the differences
in frequency preference of nearby neurons within and between
layers.

Layer 2/3 of A1 is known to contain many cortico-cortical
connections (Song et al., 2006), thus it might contain specific
connectivity patterns at small spatial scales, referred to as microcir-
cuitry, that could underlie the observed heterogeneity in frequency
preference of nearby neurons. Prior anatomical studies in cat have
shown spatially biased inhibitory projections on large spatial scales
(Yuan et al., 2011a,b). In vitro studies using paired recordings in
thalamocortical slices from mice have indicated a general radial
decrease in intralaminar connection probability for excitatory and
inhibitory connections (Oswald et al., 2009). In vitro photostimu-
lation experiments using slices that preserve either the tonotopic or
the isofrequency axis have indicated a spatial anisotropy of excita-
tory connections in inputs from infragranular layers (Oviedo et al.,
2010). Here we directly investigate if excitatory and inhibitory
connection probability and connection strength in A1 layer 2/3
show anisotropies and also determine if the spatial anisotropies of
intracortical connections are a unique feature of A1 or a general
characteristic of sensory cortex.

To investigate the existence and spatial arrangement of excita-
tory and inhibitory microcircuits in layer 2/3 of mouse auditory
cortex we developed a tangential slice preparation in which
intralaminar connections are preserved in all spatial directions.
We find that layer 2/3 of auditory cortex contains excitatory and
inhibitory microcircuits that on average demonstrate a decrease
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in connection probability as a function of the distance from each
cell-center. We also find that connection probability and con-
nection strength shows spatial patchiness and that the spatial
patchiness is anisotropic relative to the tonotopic axis. How-
ever, we find that the visual cortex lacks the anisotropy of
this patchy arrangement of synaptic connections. Together these
results indicate the presence of an intermingled connectivity
pattern in auditory cortex that shapes its responses. Further-
more, our results indicate that the cerebral cortex is not a
uniform processor, but that different sensory regions contain
microcircuits that are specialized for a particular processing
task.

MATERIALS AND METHODS
All procedures followed the University of Maryland College Park
animal use regulations. In vivo and in vitro physiology meth-
ods are similar to our prior studies previously (Zhao et al., 2009;
Viswanathan et al., 2012).

SLICE PREPARATION
Mice (C57BL/6) of either sex between P15–P25 were deeply
anesthetized with isofluorane (Halocarbon). A block of brain
containing A1 and the medial geniculate nucleus (MGN) was
removed and tangential slices (400 μm thick) were cut on a vibrat-
ing microtome (Leica) in ice-cold ACSF containing (in mM):

130 NaCl, 3 KCl, 1.25 KH2PO4, 20 NaHCO3, 10 glucose, 1.3
MgSO4, 2.5 CaCl2 (pH 7.35–7.4, in 95% O2–5% CO2). Slices
were cut by blocking the brain in a direction perpendicular
to the thalamocortical cutting angle of 15◦ (Zhao et al., 2009)
and then removing approximately 150 μm from the tangen-
tial surface. Before slicing, a cut was made in medial-lateral
(ML) direction of the intact brain, at the rostral end of the
approximate slice location. This straight cut was used so the
slice could be oriented in the recording chamber with respect
to the ML and rostral-caudal (RC) directions. The recording
location in A1 was confirmed by comparing with the location
of intact vasculature on the tangential slice (Figure 1A) and
inserting DiI into the remaining hemisphere and confirming ret-
rograde labeling of MBGv (Figure 1B). Tangential visual slices
were created by blocking orthogonal to the thalamocortical visual
slice angle (MacLean et al., 2006) for a horizontal cutting angle
35◦ from rostral and a coronal angle 65◦ relative to the hemi-
spheric midline. Slices were incubated for 1 hour in ACSF at
30◦C and then kept at room temperature. For recording, slices
were held in a chamber on a fixed stage microscope (Olym-
pus BX51) and superfused (2–4 ml/min) with ACSF at room
temperature to reduce spontaneous activity in the slice. 50 μM
(2R)-amino-5-phosphonovaleric acid (AP5, NMDA antagonist)
was added to reduce excitability for photostimulation experiments
performed at 40x magnification.

FIGURE 1 | A1 tangential slice preparation and biocytin stains of basal

dendritic arbors. (A) DIC image of the A1 tangential slice with the
vasculature preserved. Labels indicate approximate position of A1 relative to
the vasculature. (B) Retrograde labeling of auditory thalamus (MGN) after

insertion of DiI into remaining brain block after A1 tangential slice has been
cut. (C) Manual reconstructions of basal dendritic arbors from sample cells
labeled with biocytin contained in recording pipette. Scale bars 500 μm in A,
B, 50 μm in C.
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ELECTROPHYSIOLOGY AND PHOTOSTIMULATION
Whole-cell recordings were performed with a patch clamp ampli-
fier (Multiclamp 700B,Axon Instruments, CA, USA) using pipettes
with input resistance of 4–8 M�. Data acquisition was performed
by National Instruments AD boards and custom software (Ephus;
Suter et al., 2010). Ephus (http://www.ephus.org) is written in
MATLAB (Mathworks, MA, USA) and was adapted to our setup.
Voltages were corrected for an estimated junction potential of
10 mV. Electrodes were filled with (in mM) 115 cesium methane-
sulfonate (CsCH3SO3), 5 NaF, 10 EGTA, 10 HEPES, 15 CsCl, 3.5
MgATP, 3 QX-314 (pH 7.25, 300 mOsm). Biocytin or Neurobi-
otin (0.5%) was added to the electrode solution as needed. Series
resistances were typically 20–25 M�.

Photostimulation
0.5–1 mM caged glutamate (N-(6-nitro-7-coumarylmethyl)-L-
glutamate; Ncm-Glu; Kao, 2006) was added to the ACSF. Without
UV light, this compound has no effect on neuronal activity (Kao,
2006). UV laser light (500 mW, 355 nm, 100 kHz repetition rate,
DPSS, Santa Clara, CA, USA; 1–2 ms pulses) was split by a 33%
beam splitter (CVI Melles Griot), attenuated by a Pockels cell
(Conoptics), shuttered (NM Laser), and coupled into a microscope
via scan mirrors (Cambridge Technology) and a dichroic mirror
(Shepherd et al., 2003). The laser beam entered the slice axially
through an objective (Olympus 40×, 0.80 NA/water or Olympus
10×, 0.30 NA/water) and had a diameter of <20 μm at 10× and
<8 μm at 40×. Laser power at the sample was 15–25 mW. We var-
ied laser power and determined that this power provided reliable
activation of neurons (Viswanathan et al., 2012). For high mag-
nification maps (40× objective) we stimulated in a 25 × 25 grid
with locations spaced 8 μm apart, enabling us to probe areas of
<200 μm per side For lower magnification maps (10× objective)
we stimulated in a 30 × 30 grid with locations spaced 30 μm apart,
enabling us to probe areas of <800 μm per side. Photostimuli were
applied at 1 Hz.

Analysis and statistics
Calculation of PSC magnitudes based on recorded responses at
different photostimulation locations was performed essentially
as described previously (Shepherd et al., 2003; Zhao et al., 2009;
Viswanathan et al., 2012) with custom software written in MAT-
LAB. To detect monosynaptically evoked post-synaptic currents
(PSCs) we detected peak PSC amplitudes in a ∼100ms time win-
dow after the stimulation. We measured both peak amplitude and
transferred charge. Transferred charge was measured by integrat-
ing the PSC. Traces containing a short-latency (<8 ms) response
were used as direct currents for high magnification maps. The
latency cutoff of 8 ms was utilized because this was a good divider
for separating out the majority of very large amplitude inward
currents, which were direct currents. This latency cutoff also did
not exclude any outward currents that were not extremely small,
except for a very small number of low latency outward currents
(Brill and Huguenard, 2009).

For the population of recorded neurons we aligned maps by
centering them with the recorded soma at the origin. The mapping
coordinates did not need to be rotated in order to be aligned with
the ML and RC directions because the straight cut on the rostral

end of the slice (see above) was always aligned in the same orienta-
tion in the recording chamber. Maps either plotted the probability
of obtaining a PSC (>8 ms latency) at each stimulus location,
which we refer to as the connection probability maps, or the
average transferred charge of the PSCs at each stimulus location,
which we refer to as mean strength maps. We measured connec-
tion probability as the total number of times an event occurred
at a photostimulation location divided by the total number of
times that location was photostimulated over all recorded neu-
rons. We measured mean strength as the mean transferred charge
for events that occurred at a photostimulation location. The mean
transferred charge was first normalized to range between 0 and 1
for each recorded neuron map individually and then normalized
maps were averaged over the population of recorded neurons. We
also calculated connection probability and mean strength aver-
aged across one of the cardinal directions (RC or ML) which we
refer to as marginal profiles, or averaged in radial distance or angle
from the soma (polar coordinates), which we refer to as radial and
angular profiles, respectively.

Statistics were utilized to compute confidence intervals (CIs)
for connection strength maps, mean strength maps, marginal
profiles, radial and angular profiles and spatial frequency maps
(2D Fourier Transforms, see below). CIs were generated using a
bootstrap technique (Efron and Tibshirani, 1994). The bootstrap
was performed by randomly resampling responses at each pho-
tostimulation location. Chosen responses were replaced into the
pool being randomly resampled after each selection so they could
potentially be sampled again on subsequent resamplings (boot-
strapping). The resampling was performed 1000 times and the
2.5 and 97.5 percentiles of the responses (either mean strength,
connection probability or magnitude of spatial frequency) over
the 1000 repeats were used as the top and bottom of the 95%
CI. We measured significance of these responses by compar-
ing them to “shuffled maps.” Shuffled maps were created by
randomly re-assigning each response to a different photostim-
ulation location. This re-assignment was performed without
replacement such that each location re-assignment was a ran-
dom permutation of the original ordering of photostimulation
locations (permutation test). This procedure creates a shuffled
version of the responses but with the same set of photostim-
ulation locations. The resulting maps (or marginal profiles)
typically have a flat spatial structure and thereby give an esti-
mate of what the response map would look like if responses were
uniformly distributed across all photostimulation locations (the
null hypothesis). Shuffled responses were subject to the same
bootstrap test as for the unshuffled responses in order to cal-
culate the 95% CI for the null hypothesis of spatially- uniform
responses.

Spatial frequency maps were calculated with 95% CIs in the
same manner as described for the mean response maps except
that a 2D Fast Fourier Transform (FFT) as implemented in the
Matlab algorithm was calculated on both unshuffled and shuffled
response maps prior to the bootstrap test. The 2D FFT was applied
after detrending and demeaning by removing the best-fit plane
from the response maps.

Photostimulation locations in each response map or marginal
profile were significant (bootstrap test on shuffled and unshuffled
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responses, see above) if the upper confidence interval of the shuf-
fled responses was greater than the lower confidence interval for
the unshuffled responses. This significance level was at p < 0.05
because 95% CIs were compared.

Drugs
We used TTX (1 μM) to block action potentials. All chemicals and
drugs were obtained from Sigma.

RESULTS
To investigate if layer 2/3 microcircuits in A1 have a spatial
anisotropy, we use a tangential slice preparation in which the full
extent of layer 2/3 is kept intact (Figure 1A). Since the vascu-
lature can be preserved in the slice (Dorr et al., 2007), the slice
can be oriented with respect to the in vivo cardinal directions
of RC and ML. The RC direction mostly corresponds to the
tonotopic axis of auditory cortex in the mouse (Stiebler et al.,
1997). We confirm the location of A1 by injecting DiI in the
remaining block of brain (not sliced) that contained layer 4 and
thalamus and then verifying that the MGN is retrogradely labeled
(Figure 1B). We record from layer 2/3 neurons with whole-cell
patch clamp techniques and perform laser-scanning photostimu-
lation (LSPS; Shepherd et al., 2003; Barbour and Callaway, 2008;
Zhao et al., 2009; Viswanathan et al., 2012). To confirm the identity
of recorded neurons we reconstruct cell morphologies by includ-
ing biocytin in the recording pipette. We find that our recordings
are obtained from pyramidal cells, which showed extensive basal
dendritic arbors (Figure 1C).

Single-photon LSPS using caged glutamate activates glutamate
receptors on neurons and is typically used to probe for synap-
tic connections (Callaway and Katz, 1993; Shepherd et al., 2003;
Barbour and Callaway, 2008; Zhao et al., 2009; Viswanathan et al.,
2012). Photoactivation of caged glutamate typically evokes two
types of responses in the recorded neuron when it is held at resting
membrane potential (about −70 mV). The first type of response
is characterized by a large inward current with short latency and
is due to direct activation of glutamate receptors on the soma and
proximal dendrites of the neuron under study (direct response,
Figure 2A below dashed line). The second type of response is
characterized by a smaller amplitude inward current with longer
latency. This evoked response, or excitatory post-synaptic current
(EPSC), indicates that a connection is present between a stimulated
neuron and the recorded neuron. Direct currents are separated out
from synaptic currents by using a latency cutoff of 8 ms (Figure 2A,
dashed line), which demonstrates a good delineation between fast,
large amplitude direct currents and synaptic currents when the
population of events is plotted as a two-dimensional histogram of
charge vs. latency (Figure 2A). To test if short latency currents rep-
resent synaptic events or direct currents, we map a 200 × 200 μm
area around soma. Short latency inward currents remain in the
presence of TTX, indicating that they are caused by direct activa-
tion of the soma or proximal dendrites (Figure 2B, top). The total
charge of direct events is calculated at each LSPS location (25 × 25
grid; 8 μm grid spacing) and then is plotted relative to the loca-
tion of the recorded neuron, creating a map of direct currents.
Direct maps recorded before and after application of TTX were
practically identical (Figure 2B, bottom).

In addition to mapping excitatory connections, the LSPS tech-
nique can also be used to map inhibitory connections by holding
the recorded neuron at the glutamate reversal potential of 0 mV.
At this potential direct and excitatory responses are absent, and
only relatively long-latency (>8 ms) and long-lasting outward
currents are observed (Figure 2C, above dashed line). These out-
ward currents could be blocked by application of TTX and thus
are evoked inhibitory post-synaptic currents (IPSCs; Figure 2D,
top). Maps of IPSC charge show only very small spontaneous
currents after application of TTX, indicating that the outward
currents are synaptically evoked (Figure 2D, bottom). Although
IPSCs are observed over much of the map, they are obscured
(presumably by shunting) by direct currents for some neurons at
locations near the soma of the recorded neuron. IPSCs in a single
neuron could be evoked from spatially non-uniform locations in
the mapped area. An overlay of the reconstructed neuronal mor-
phology with the spatial map of IPSCs demonstrates that many
IPSCs are located in the vicinity of dendrites, but do not neces-
sarily directly overlap them (Figure 2E). This suggests that many
inhibitory neurons projecting to pyramidal cells are located close
to the dendrite, while some inhibitory neurons are located further
away.

INTRALAMINAR CONNECTION PROBABILITIES IN LAYER 2/3 OF A1 ARE
ANISOTROPIC AND SHOW ANISOTROPIC PERIODICITIES
In order to investigate connectivity of layer 2/3 neurons in A1 rela-
tive to the tonotopic axis, we perform LSPS on auditory tangential
slices at low magnification (10× objective, allowing a mapped area
of approximately 700 × 700 μm). The high spatial mapping reso-
lution of 30 μm relative to the functional resolution of ∼100 μm
(Viswanathan et al., 2012; see Figure 2) causes activation of a neu-
ron from neighboring spatial locations, and thus represents spatial
oversampling. At these distances both EPSCs (Figure 3A, top) as
well as IPSCs (Figure 3B, top) could be mapped. Maps of sin-
gle neurons at this magnification often show more connectivity
near the soma, and spatially non-uniform regions of distant input
(Figures 3A,B, bottom).

To identify an eventual underlying spatial pattern of connec-
tivity, we first calculate the probability to observe a connection
from a particular relative location in space. For the population
of recorded neurons we align neurons at their soma with respect
to the cardinal axes (ML and RC, see Methods). After alignment,
we plot the probability of obtaining an EPSC or IPSC (>8 ms
latency) at each stimulus location, which we refer to as the con-
nection probability. The connection probability simply represents
the average percent of responses at a particular location relative
to the soma divided by the total number of times this position
is photostimulated (typically once per recorded neuron). Both
mean excitatory (N = 26 cells and N = 7 slices) and inhibitory
(N = 24 cells and N = 7 slices) connection probability maps
show that inputs can be evoked from a large area (Figures 4A,B).
The marginal profiles along the cardinal orientations (ML vs. RC;
Figure 4C) show peaks near the soma with connection probability
decreasing with increasing radial distance from cell-center. The
extent of the excitatory and inhibitory RC marginal is somewhat
broader than that of the ML marginals (Figure 4C, arrow). The
shape resembles that of a 2D Gaussian, as expected from paired
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FIGURE 2 | Bath application ofTTX extinguishes IPSC but not direct

currents recorded near the soma. (A) Two dimensional histogram (log scale
event counts) of latency vs. charge for all inward currents recorded in
response to photostimulation in our dataset (N = 16250 events for 10×,
N = 20625 events for 40×). Dashed line indicates the 8 ms cutoff used to
distinguish direct from synaptic events. Notice the cutoff mostly separates
out the largest and fastest events that are direct currents. The approximate
area of the largest direct currents is circled. (B) Direct currents are
large-amplitude and short-latency inward currents that result from direct
excitation of the recorded neuron by glutamate photorelease near the soma
or proximal dendrites (top left). These currents are resistant to TTX (top right).
Maps (from single neurons shown in top panels) showing total charge of
direct events created before and after bath TTX application are very similar

(bottom), typically indicating the extent of the neuron’s basal dendrites in the
tangential slice preparation. (C) Two dimensional histogram (log scale event
counts) of latency vs. charge for all outward currents recorded in response to
photostimulation in our dataset (N = 15000 events for 10×, N = 19375
events for 40×). Notice except for a small number of very small amplitude
events and a small cluster of fast outward currents, all currents are at a
latency of greater than 8 ms indicative of IPSCs. (D) Outward currents when
holding at 0 mV typically occur at a latency of 8 ms or greater and are IPSCs
(top left), as they are blocked by bath application of TTX (top right). Charge
maps created before and after bath TTX application (bottom) show that IPSCs
are mostly absent when spiking is blocked. (E) Spatial map of IPSCs evoked
by photostimulation overlaid with the soma and basal dendritic morphology
reconstructed from biocytin stain.
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patch recordings (Oswald et al., 2009; Levy and Reyes, 2012). Areas
near to the soma show a decrease in connection probability, which
is due to the masking of both response types by direct photo-
stimulation currents (“doughnut-hole” in the center of maps in
Figures 4A,B). Moreover the marginal profiles in the RC and
ML directions demonstrate patchiness with some local peaks,
particularly in the ML direction. To characterize the decrease in
connection probability with distance we plot the connection prob-
ability in polar coordinates. The mean radial profile shows that
there is significantly greater connection probability within 240 μm
from cell-center for both excitatory and inhibitory connections
(Figure 4D, left). The angular profiles showed undulations sug-
gesting spatial periodicities (Figure 4D, right). A comparison on
the marginal profiles of excitation and inhibition revealed a similar
spatial extent with a bias for inhibitory connections to be broader
in the RC direction (Figure 4E, arrow).

The individual maps (Figure 3) and marginal distributions
(Figures 4C,D) show peaks, suggesting spatial periodicities. We
thus investigate whether, on average, neurons demonstrate signifi-
cant spatial periodicity of inputs and also if significant periodicities
show any spatial bias with respect to RC or ML direction. To reveal
spatial periodicities, we perform a two-dimensional (2D) Fourier
Analysis (FFT) of connection probability maps. The 2D FFT con-
verts an image into spatial frequency components that essentially
represent how the original image can be reconstructed as the linear
combination of gratings at different periodicities and in different
directions (Figure 5). Spatial periodicities will be evident in the
FFT maps as significant components in a particular direction (see
Methods). If these periodicities are anisotropic, e.g., present in
only one direction, then significant FFT components will only be

FIGURE 3 | Sample synaptic current traces from area photostimulated

further from the soma show patchy connectivity. (A) Sample inward
currents (>8 ms latency) are EPSCs indicating excitatory synaptic
connectivity (top). Map of inward current charges shown at different
photostimulation locations shows patchiness of excitatory inputs at
locations further away from soma (bottom). (B) Sample outward currents
(>8 ms latency) are IPSCs indicating inhibitory synaptic connectivity (top).
Map of outward current charges shown at different photostimulation
locations show rounder extent of inhibitory inputs but are also patchy at
locations further away from soma (bottom).

present in one direction. One can convert from significant com-
ponents at a particular frequency back to the spacing of the peaks
in the original map in the same manner as the conversion between
time and frequency (for one-dimensional signals). This opera-
tion in effect reduces noise in the connection probability map by
removing frequency components that are not significant. The sig-
nificant components in the 2D FFT define the spatial spacing of
peaks in the original maps. For example, a significant compo-
nent in the 2D FFT at 10 mm−1 represents peaks in the original
image at a spacing of 100 μm while a significant component at
5 mm−1 represents spatial peaks at 200 μm. The spatial peri-
odicity of a grating in a particular direction is simply a single
point (two points because of Fourier component symmetry) in
the direction of the grating relative to the origin (Figures 5A–C).
Thus a grating occurring in one dimension (e.g., along the x-axis)
will be represented by two distinct spatial frequency components
long the x-axis (Figures 5A,B). A diagonal grating in space would
have spatial frequency components in both the x- and y-axes
(Figure 5C). A spatial sinusoid in all directions becomes a cir-
cle in spatial periodicity with the radius of the circle being larger
for higher spatial periodicities (Figure 5D, compare upper and
lower). A 2D Gaussian spatial profile transforms into spatial peri-
odicity components that also appear as a 2D Gaussian in spatial
frequency space (Figure 5E). Importantly, a Gaussian that is wider
in the spatial domain is narrower in spatial frequency domain
and vice versa. Thus, an anisotropic 2D Gaussian in space is also
anisotropic in frequency but with the wider direction in space
being narrower in frequency and vice versa (Figure 5F compare
upper and lower).

2D Fast Fourier Transform analysis of excitatory and inhibitory
inputs reveals significant components at multiple spatial frequen-
cies (Figure 6A). The central significant components (with the
lowest spatial frequency) form a ring, reflecting the central 2D
Gaussian distribution of the connection profile (see Figure 4D).
2D FFT analysis of excitatory inputs reveals multiple significant
components at higher spatial frequencies (∼300 μm), with more
components and “hot spots” in the ML directions (Figure 6A).
Thus, on average excitatory inputs have anisotropic spatial fre-
quency components, with periodic hot spots of connectivity biased
to the ML direction. However, the spatial periodicity of inhibi-
tion does not show this same number of high spatial frequency
components and only a weak anisotropy of spatial periodicity
(Figure 6A). Significant spatial frequency components for inhi-
bition were clustered at low frequencies, indicative of a wide
2D Gaussian, as apparent from the mean connection probabil-
ity map (Figure 4B). However, the significant components of
inhibitory inputs are somewhat more spread in the ML direction
consistent with a somewhat wider profile in the RC direction (see
Figure 4C).

To visualize the spatial patterns reflected in the significant
components we perform an inverse 2D FFT (I2DFFT) on the sig-
nificant components. This reconstruction thus highlights portions
of the spatial structure that are significant based on the bootstrap
test (p < 0.05). The reconstructed excitatory connection prob-
ability map shows a “doughnut” shape with two areas of high
connection probability ∼200 μm from the soma in the ML direc-
tion (Figure 6B, left, red arrows). The reconstructed inhibitory
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FIGURE 4 | Mean excitatory and inhibitory connection probability maps

from a population of neurons recorded at 10× magnification. Mean
maps from a population of recorded neurons held at resting membrane
potential (A; N = 26) and glutamate reversal potential (B; N = 24) generally
demonstrate the 2D Gaussian connectivity profile. Plots above and to the
right of the mean map indicate the marginal profile along the RC (tonotopic)
and ML (isofrequency) directions, respectively. (C) ML and RC marginal
profiles from (A,B) overlaid for excitatory (left) and inhibitory (right) inputs.
Green dashed lines indicate the 95% confidence interval for the mean of
the shuffled image. The shaded areas for this and subsequent plots

represent the 95% confidence interval for the marginal profiles. Arrows
highlight slightly wider extent in RC direction. (D) Mean map polar
marginals where radial profile (left) is a plot of the average of annuli around
the cell -center against the radial distance from the cell-center, and angular
profile (right) plots the average of cell-centered pie slices against polar
angle. Black and blue dashed lines indicate the 95% confidence intervals of
the shuffled images for excitatory and inhibitory inputs respectively.
(E) Overlay of RC (left) and ML (right) marginals from inhibitory and
excitatory maps demonstrate slightly broader extent of inhibitory inputs in
RC direction (arrow).

probability map shows a 2D Gaussian profile (Figure 6B, right).
To compare more closely the spatial shape of the reconstructed
maps we plot the marginal profiles along the RC and ML direction
(Figure 6C). We find that both excitatory and inhibitory pro-
files are wider (full width at half max excitation: ML 326 μm
vs. RC 505 μm; inhibition: ML 288 μm vs. RC 500 μm) in the
RC direction than the ML direction indicating an anisotropy in
the spatial pattern. This spatial anisotropy is consistent with the
anisotropy of the significant spatial frequency components (see
Figures 6A and 5D). While the inhibitory marginal shows a Gaus-
sian shape, the excitatory marginal shows a widening in the caudal
direction. To investigate this further we separate the central spa-
tial components (<3 mm−1 spatial frequency), which have large
amplitudes and thus dominate the profile. Plotting the connection

probability map for the central components shows the spatial pro-
file of the central (<3 mm−1) 2D Gaussian (Figure 6D). Both the
excitatory and inhibitory profiles are elongated in the RC direc-
tion (red circles), which is also evident from the broader marginal
profiles in the RC direction than the ML direction (Figure 6E; full
width at half max excitation: ML 282 μm vs. RC 516 μm; inhibi-
tion: ML 288 μm vs. RC 510 μm). We then re-plot the connection
probability maps for the higher spatial frequency components. The
excitatory map shows the large peaks in the ML direction visible
before, but also additional smaller amplitude peaks ∼350 μm in
RC from the soma (Figure 6F, arrows). In contrast after removal
of the central components, the inhibitory connection probability
map does not show any additional peaks. The marginal profiles
also show the spatial periodicity with a period of ∼350 μm in
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FIGURE 5 | Example 2D Fourier Analysis (FFT) images demonstrate

conversion from space to spatial periodicity. Analysis applied to
connection probability maps demonstrate significant periodicities.
(A,B) Sample 2D FFTs. Simple oriented gratings result in single points
in spatial periodicity with higher frequency gratings resulting in higher
frequency spatial components. Applying the inverse 2D FFT (IFFT)
recreates the original image with these spatial frequencies.

(C) Changing the orientation of the grating results in spatial frequency
components aligned in the same direction as the grating. (D) Periodicity
in all directions results in a circular profile in spatial periodicity. (E) A
2D Gaussian spatial profile transforms into a 2D Gaussian of spatial
periodicity. (F) Anisotropies in the Gaussian spatial profiles will lead to
anisotropies in the 2D Gaussians periodicity profiles but at orientations
orthogonal to the spatial profile.

RC and ∼300 μm in ML (Figure 6G). Together these analyses
show that the intralaminar connection probability in layer 2/3
of A1 is spatially anisotropic and also shows spatially anisotropic
connectivity peaks visible as periodicities in the 2DFFT. These
periodicities have a spatial frequency of ∼300–350 μm.

INTRALAMINAR CONNECTION STRENGTHS IN LAYER 2/3 OF A1 SHOW
ANISOTROPIC PERIODICITIES
The above analysis focuses on connection probability. How-
ever, inputs originating from certain spatial locations might have
different synaptic strengths. We investigate this hypothesis by
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FIGURE 6 | (A) 2D Fourier transforms of the mean connection probability
maps demonstrate anisotropy of significant spatial frequency components
along the ML (isofrequency) for excitatory inputs but relative symmetry of
significant spatial frequency for inhibitory inputs. Red pixels indicate
significant components (p < 0.05, bootstrap test). (B) Reconstruction of
spatial maps using only the significant frequency components (red pixels in
A). Red arrows show anisotropic patches at different orientations and
distances. (C) Marginals in the RC and ML direction. Note that RC marginal
are wider than ML marginal (arrow). Full width at half max for excitation: ML

326 μm vs. RC 505 μm; for inhibition: ML 288 μm vs. RC 500 μm.
(D,E) Reconstruction and marginals of only the low spatial frequency
(<3 mm−1) components. Red circle in D is plotted in comparison to highlight
the anisotropy of the spatial pattern between ML and RC directions. The
arrow in E highlights the anisotropy in the RC direction. Full width at half max
for excitation: ML 282 μm vs. RC 516 μm; for inhibition: ML 288 μm vs. RC
510 μm. (F,G) Reconstruction and marginals of only the high spatial frequency
(≥3 mm−1) components. Red arrows highlight the anisotropic patches in the
excitatory map.

calculating the spatial distribution of event amplitudes, measured
as average normalized total charge (normalized per single map),
which we refer to as mean strength maps. Connection probability
is the total number of times an event occurred at a photostimu-
lation location divided by the total number of times that location
was photostimulated over all recorded neurons, whereas mean
strength is the mean transferred charge for events that occurred at a

photostimulation location. These maps (Figures 7A,B) are sparser
(since average amplitudes can only be computed where signifi-
cant connection probability exists) but also patchy, indicating that
connections from certain relative positions are particularly strong
(for example ∼100 μm in RC direction). The marginal distribu-
tions are largely overlapping, indicating little spatial anisotropy
in connection strength (Figure 7C). Excitatory and inhibitory

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 15 | 9

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Watkins et al. Spatial connectivity patterns in auditory cortex

FIGURE 7 | Mean strength maps from the same population of

neurons as in Figure 4 are consistent with connection probability

trends. Excitatory (A) and inhibitory (B) mean strength maps
show increased patchiness relative to mean connection probabilities.
(C) Overlaid ML and RC marginal profiles from (A,B) for excitatory
(left) and inhibitory (right) inputs. Green dashed lines indicate the 95%
confidence interval for the mean of the shuffled image. The shaded

areas for this and subsequent plots represent the 95% confidence
interval for the marginal profiles. (D) Overlaid polar marginal profiles of
the mean strength maps. Black and blue dashed lines indicate the 95%
confidence intervals of the shuffled images for excitatory and inhibitory
inputs respectively. (E) Overlaid ML and RC marginal profiles from C
comparing inhibition and excitation. Note that inhibition shows more
asymmetry in RC and ML direction than excitation.

connection strength decrease as a function of radial distance
(Figures 7C,D). The angular maps show peaks, consistent with the
hot spots in the connection maps (Figures 7A,B). The inhibitory
and excitatory peaks are present at different angles. Together this
suggests that excitatory input strength decreases uniformly with
distance but hot spots occur at some angular orientations. When
compared, inhibition shows more asymmetry in the RC and ML
directions than excitation (Figure 7E).

Spatial periodicity analysis of mean strength maps shows signif-
icant high spatial frequency components for excitatory inputs off-
set in the ML and RC direction, indicating anisotropy (Figure 8A),
consistent with the connection probability maps (Figure 6A). The
reconstructed map of excitatory mean strength (Figure 8B) and
marginal distributions (Figure 8C) shows the overall isotropic

low spatial frequency decrease in strength (Figures 8D,E, red cir-
cles). This is in contrast to the anisotropy observed in spatial
connection probability (Figure 6C). Moreover, the reconstructed
map of excitatory mean strength (Figure 8B) and marginal dis-
tributions (Figure 8C) also shows that the areas of high mean
strength form diagonal lobes. This feature becomes even more
evident when the central components are removed (Figure 8F,
red arrows, 8G). Thus excitatory inputs originating from a band
angled ∼30 degrees in the ML directions are of higher strength.
Inhibitory spatial periodicities show high frequency components,
but without spatial bias (Figures 8A,B,D). While the lack of spa-
tial bias was consistent with the dominant 2D Gaussian pattern
also seen in the connection probability (Figure 6A), the largest
components were not closest to the soma but where of higher
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FIGURE 8 | (A) Spatial frequency anisotropy for mean strength
demonstrates significant patchiness in the ML (isofrequency) direction
for excitatory inputs, but symmetry amongst the significant frequency
components for inhibitory inputs. (B) Reconstruction of spatial maps
using only the significant frequency components (red pixels in A).
(C) Marginals in the RC and ML direction. (D,E) Reconstruction and

marginals of only the low spatial frequency (<3 mm−1) components.
Red circle in D is plotted in comparison to highlight the symmetry of
the spatial pattern between ML and RC directions. (F,G) Reconstruction
and marginals of only the high spatial frequency (≥3 mm−1)
components. Red arrows highlight the anisotropic bands in the
excitatory map.

frequency. This is likely due to the fact that inhibitory inputs close
to the soma are reduced because of shunting due to direct activa-
tion of the neuron. When the central components are subtracted
∼150 μm wide bands of high mean strength become visible in the
RC and ML orientations.

DENDRITIC ORIENTATION IN AUDITORY AND VISUAL CORTICES DOES
NOT SHOW SPATIAL ANISOTROPY
Our results show periodic regions of higher connection probabil-
ity along the isofrequency and tonotopic direction. To investigate

if this anisotropy of spatial periodicity is reflected by the under-
lying dendritic architecture, we investigate if proximal dendritic
trees showed significant spatial or spatial periodicity patterning.
We use the spatial pattern of the direct response recorded while
photostimulating at 40× magnification in order to character-
ize the shape of the proximal dendritic tree. Evoked excitatory
responses close to the soma or proximal dendrites are masked
by the direct response (see Figure 2) allowing us to measure
the spatial extent of the proximal dendritic tree. We create aver-
age maps analogous to connection probability, but instead of
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connection probability these maps indicate the probability of
a direct response at each location relative to the soma. The
resulting maps (Figures 9A,B) and marginal profiles (Figure 9C)
reveal a roughly symmetric pattern, thus indicating that the
basal dendrites of layer 2/3 neurons in A1 (N = 33) show
no spatial anisotropy. The radial profile demonstrates decreased
probability as a function of distance, consistent with decreased
dendritic density and attenuation of the direct dendritic response
(Figure 9D). The angular profile is consistent with the rostral-
lateral bias from the RC and ML profiles (Figure 9D). We also
perform the spatial periodicity analysis with the direct proba-
bility maps. We find that the significant components of the 2D

FFT are also spatially symmetric (Figure 9E). The spatial peri-
odicity shows significant components (p < 0.05, red pixels) in
all directions, also visible in the angular profile (Figure 9D).
Together our data indicate that on average there is no spa-
tial or spatial periodicity anisotropies of dendritic orientation
in A1.

In order to test whether the absence of a spatial arrangement
of basal dendritic arbors was specific to auditory cortex or was
a general cortical feature, we also record from layer 2/3 neu-
rons in tangential slices of primary visual cortex (V1). These
slices are created by cutting perpendicularly to the thalamocor-
tical V1 slice preparation (MacLean et al., 2006). Average direct

FIGURE 9 | Mean direct probability maps from a population of neurons

recorded at 40× reveal spatially periodic dendritic structure. Mean maps
from a population of A1 (A; N = 33) and V1 (B; N = 20) recorded neurons
demonstrating relatively symmetric profile of basal dendrites in both A1 and
V1. Plots above and to the right of the mean map indicate the marginal profile
along the ML (isofrequency) and RC (tonotopic) directions, respectively.
(C) Overlaid ML and RC marginals from (A,B) for A1 (left) and V1 (right). Green
dashed line indicates the mean of the shuffled image and the black dashed
line indicates cell-center. The shaded areas for this and subsequent plots

represent the 95% confidence interval for the marginal profiles. (D) Mean
map polar marginals where the radial profile (left) is a plot of the average of
annuli around the cell-center against radial distance from the cell-center, and
the angular profile (right) plots the average of cell-centered pie slices against
the polar angle. Polar marginals from A1 and V1 are overlaid to demonstrate
the wider extent of the average basal dendritic arbor in V1 relative to A1.
(E,F) 2D Fourier transforms of the mean direct probability maps demonstrate
relatively symmetric significant components in A1 (E) and V1 (F). Red pixels
indicate significant components (p < 0.05, bootstrap test).
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response probability maps (N = 20 neurons) demonstrate a sim-
ilar result as those in A1, with a roughly spatially symmetric
pattern (Figures 9B–D). Similar to A1, V1 marginal profiles
show a symmetric periodic structure (Figure 9F). The spatial
frequency components in V1 are smaller than those in A1 with
significant components being 200 μm in V1 and 100–200 μm in
A1, implying a wider spatial extent of the basal dendritic tree in V1
vs. A1.

LOCAL A1 BUT NOT V1 INHIBITION IS PERIODIC IN ML (ISOFREQUENCY)
DIRECTION
We next investigate whether inhibitory maps in A1 and V1
have similar or different spatial anisotropies. While inhibitory
maps recorded near the soma of individual neurons are patchy
(Figures 2B,C), inhibitory connection probability maps (at 40×
magnification, 200 × 200 μm) from A1 (N = 31 cells, N = 14
slices) and V1 (N = 20 cells, N = 14 slices) are roughly spa-
tially symmetric (Figures 10A,B). Marginal profiles of A1 mean
inhibitory connection probability maps demonstrate a slight bias
toward the lateral direction (Figure 10C). This bias is not present
in the RC direction. Outside of the area of direct activation where
inhibitory currents are potentially masked by direct currents, the
radial profile demonstrates a decrease in connection probabil-
ity with distance (Figure 10D), consistent with previous studies
(Oswald et al., 2009). Marginal profiles of V1 inhibitory maps also
demonstrate symmetry in the RC and ML directions (Figure 10C).
We fit the radial profiles (Figure 10D) with a single exponen-
tial decay function after the peak and the decay constant for A1
(λ = 207 μm) is about twice as long as that for V1 (λ = 112 μm).
Thus the radial falloff of connection probability is much wider for
A1 compared to V1, indicating a wider extent of inhibitory inputs
in A1.

We next perform the spatial periodicity analysis to test if, on
average, local inhibitory inputs demonstrated significant repeat-
ing areas of high input probability. The 2D FFT of the A1 mean
inhibitory map shows significant components (p < 0.05) along
the ML (isofrequency) direction (Figure 10E). This suggests that
locally A1 layer 2/3 neurons receive functional inhibitory synaptic
inputs from locations that are spatially non-uniform, with a peri-
odic structure of high inhibitory connection probability in the
isofrequency direction. In contrast to A1 mean maps, V1 mean
maps do not show anisotropy of significant spatial periodicity
(Figure 10F). Together these results show a distinct difference in
the spatial distribution of inhibitory connections in A1 and V1
(Figures 10G,H).

Similar to our analysis of maps obtained under 10× magnifica-
tion, we also calculate inhibitory mean strength maps recorded at
40×. A1 and V1 maps are relatively symmetric in space (Figures
11A,B). V1 maps of connection strength show the same degree
of symmetry as for connection probability in the RC and ML
marginal profiles (Figure 11C). Radial marginal profiles indi-
cate a significant peak at 104 μm from cell-center for A1 but
not for V1 (Figure 11D). Although the peak of inhibitory mean
strength in the radial profile is further out than for connection
probability, the spatial decay from this point out is still steeper
for V1 (λ = 43 μm) than for A1 (λ = 148 μm), consistent
with the radial profiles of connection probability (Figure 10D).

We also calculate 2D FFT of the mean connection strength
maps. Increased patchiness of the mean strength relative to
connection probabilities for A1 is reflected in significant com-
ponents in the RC direction (Figure 11E). Mean strength maps
for V1 are symmetric in spatial frequency (Figure 11F). Thus
overall A1 is patchier than V1 in connection probability and
in connection strength (Figures 10G,H and 11G,H). Yet the
anisotropy of connectivity in A1 is more ML for mean con-
nection probability and more RC for mean strength. Part of
this may have been due to a larger masking effect on inhibitory
inputs by direct responses (compare sizes of “doughnut hole”
in Figures 10A and 11A), making the connection probabil-
ity a more reliable metric of overall anisotropy than mean
strength.

DISCUSSION
We show that a patchy, anisotropic, and periodic connectivity
pattern for inhibitory and excitatory inputs exists in layers 2/3
of auditory cortex. While excitatory and inhibitory connection
probabilities are broader in the tonotopic axis (Figures 6C,E),
their significant components of spatial periodicity are aligned
perpendicular to the tonotopic axis (isofrequency direction). Sim-
ilar experiments in visual cortex did not reveal a spatial bias of
periodicity for inhibitory inputs at smaller spatial scales. Exci-
tatory connection strength is relatively spatially uniform, but
demonstrates a spatial periodicity with patchiness diagonally but
primarily in the direction of the isofrequency axis. Results are
summarized in Figure 12 with a schematic representation of the
connectivity to an “average” A1 layer 2/3 neuron based on the
low magnification findings. The summary figure was created by
taking on the significant components from the spatial periodicity
analysis (Figures 6 and 8; red pixels), recreating the connection
probability and mean strength images with only these compo-
nents, and overlaying excitatory and inhibitory maps (Figure
12, right columns). The low-frequency periodicities comprise
the central “bump” (Figures 12A,B, middle row). By omit-
ting low frequencies, these plots highlight the significant higher
frequency components (Figures 12A,B, bottom row), showing
connectivity “hot-spots” further away from the soma. The recon-
structions demonstrate the relative symmetry of periodicity for
inhibitory inputs, but spatial periodicity being predominantly in
the ML direction for excitatory inputs (lower left panels of Figures
12A,B).

Since prior in vitro studies of A1 have found tonotopically
aligned asymmetries and unique connectivity of inter-laminar
connections in A1 (Barbour and Callaway, 2008; Oviedo et al.,
2010), similar spatial biases might also exist in intra-laminar con-
nections or in intra-laminar connection within deeper layers, for
example layers 5/6 of A1. Because we have found spatial and
spatial-frequency anisotropies that appear to be unique to A1 (or
at least not found in V1 inhibitory connections), our results show
that A1 contains unique circuits that shape its responses and that
the cerebral cortex is not a uniform processor, but that different
regions contain microcircuits that are specialized to a particular
processing task and with the different spatial layout of the sensory
end organs, such as a 1-dimensional cochlea vs. a 2-dimensional
retina.

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 15 | 13

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Watkins et al. Spatial connectivity patterns in auditory cortex

FIGURE 10 | Mean inhibitory connection probability maps from a

population of neurons recorded at 40 × show spatial symmetry and

anisotropic spatial periodicity in ML (isofrequency) direction. Mean
maps from a population of A1 (A; N = 31) and V1 (B; N = 20) recorded
neurons demonstrating relatively symmetric profile of inhibitory inputs in
both A1 and V1. Plots above and to the right of the mean map indicate the
marginal profile along the ML (isofrequency) and RC (tonotopic) directions,
respectively. (C) ML and RC marginals from (A,B) overlaid for A1 (left) and
V1 (right). (D) Mean map polar marginals where the radial profile (left) is a
plot of the average of annuli around the cell-center against radial distance
from the cell-center, and the angular profile (right) plots the average of

cell-centered pie slices against the polar angle. Overlaid polar marginals
from A1 and V1 show the steeper radial decay of connection probability in
V1 vs. A1 (spatial exponential decay constants of λ = 112 μm and
λ = 207 μm, respectively). Single exponential decay fits are shown as
orange lines. (E,F) 2D Fourier transforms of the mean inhibitory connection
probability maps demonstrate spatial frequency anisotropy is present in A1
(E) in the ML (isofrequency) direction, but absent in V1 (F). Red pixels
indicate significant components (p < 0.05, bootstrap test). (G,H) show the
reconstructions of the inhibitory connection probability maps from the
significant frequency components. Note diagonally oriented hot spots in A1
while hot spots are isotropically arranged in V1.
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FIGURE 11 | Mean inhibitory IPSC strength maps from the same

population of neurons as in Figure 10 show consistent trend with

connection probability. Mean maps from the population of A1 (A) and V1 (B)

recorded neurons demonstrating profile of strength of inhibitory inputs in both
A1 and V1. Plots above and to the right of the mean map indicate the marginal
profile along the ML (isofrequency) and RC (tonotopic) directions respectively.
(C) ML and RC marginals from (A,B) overlaid for A1 (left) and V1 (right). Radial
dropoff of mean strength (D) shows the same trend as mean connection
probability – a steeper decay in V1 relative to A1 (spatial exponential decay
constants of λ = 43 μm and λ = 138 μm, respectively), although the peak for

inhibition is further from the cell-center for V1. Single exponential decay fits
are shown as orange lines. Black and blue dashed lines indicate the mean of
the shuffled images for A1 and V1 inhibitory inputs, respectively. (E) Spatial
frequency anisotropy in A1 for mean strength demonstrates significant
patchiness in the RC (tonotopic) direction, the opposite direction as the
anisotropy in A1 connection probability maps. Significant components shown
in red (p < 0.05, bootstrap test). (F) Spatial frequency for V1 is relatively
symmetric. (G,H) show the reconstructions of the mean IPSC strength maps
from the significant frequency components. Note anisotropic hot spots in A1
while hot spots are isotropically arranged in V1.
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FIGURE 12 | Summary of connection probability (A) and mean

strength (B) results demonstrating “average” A1 layer 2/3 neuron (top

rows). Inhibitory inputs are in red (left columns), excitatory inputs are in
blue (center columns) and both are shown overlaid (right columns).
Images were created with inverse 2D FFT of only the significant
components for the corresponding maps (pixels in red in connection

probability 2D FFT images) meaning they only reflect significant spatial
structure from the original maps. Periodicities that comprise the central
“bump” only (middle rows) are highlighted by reconstructing with only the
significant low frequency components, while those beyond the central
“bump” (bottom rows) are highlighted by reconstructing without the
lowest frequency components.

In particular we find that despite on average what is likely a
larger extent of proximal dendrites in V1 relative to A1 (Figure
10), the radial decay of inhibitory connection probability and
inhibitory mean strength is steeper in V1 than in A1 (Figures 11
and 12). This indicates a more important role of inhibition and the
radius of strong inhibitory inputs in A1. This could likely be the
substrate for either co-tuned response shaping, i.e., for sound level
response shaping or temporal response modulation (Wehr and
Zador, 2003; Wu et al., 2006; Tan et al., 2007), or reflect inhibitory
inputs’ role in lateral inhibition (Wang et al., 2002; Wu et al., 2008).
It has been suggested that thalamic inputs could potentially recruit
different areas of inhibition (de la Rocha et al., 2008; Levy and
Reyes, 2011) in a manner that can potentially generate the variety
of level and frequency tuning properties that are often reported in
A1 neurons.

Our findings here are likely understated in terms of the degree
of anisotropy in A1 vs. V1 for several reasons. (1) The orienta-
tion of the tonotopic maps relative to anatomical landmarks in
mice is known to be highly variable (Stiebler et al., 1997), because
our slices were always aligned using anatomical landmarks, if con-
nectivity patterns of neurons are indeed aligned to the tonotopic
or other physiological topographies, then variability between ani-
mals can easily lead to a blurring of this observed connectivity
structure. (2) It is difficult for us to record true EPSCs or IPSCs
near to the soma due to direct photoactivation of the neuron
(see Figure 2). This may obscure any trends that could be seen
within approximately 100 μm of the soma. (3) Our tangential
slice preparation removes the apical dendrite and any dendritic or
axonal branching patterns and connectivity within layer 1. Thus,
our findings here primarily represent basal dendrite connectivity
of layer 2/3 cells in A1. (4) Because of the larger point-spread
function, single-photon LSPS is quite likely to be activating more

than one neuron (but likely fewer than 50 neurons Shepherd et al.,
2005). This means any underlying fine spatial patterns could be
obfuscated by multiple neuron connectivity patterns being mea-
sured simultaneously at one photostimulation location. (5) Due
to our tangential slice technique, it is difficult for us to know where
a recorded neuron is located within layer 2/3, meaning some neu-
rons could be layer 3 neurons and others mostly layer 2 neurons.
If any difference in connectivity patterns exists between these lay-
ers, we would not be able to tease these apart with our current
dataset.

Some previous studies of connectivity in auditory cortex have
employed paired recordings. This allows the experimenter to know
the cell identity of both neurons based on physiological response
properties and post hoc histology. Although LSPS allows identifica-
tion of the patched (postsynaptic) cell, with the LSPS technique it
is difficult to know which presynaptic neuron or neurons are being
photoactiviated. However, the LSPS technique allows a much
larger number of presynaptic areas to be sampled, so is able to
cover a much larger radial distance from each postsynaptic neuron
from which PSCs are being recorded. Moreover by using FFT anal-
ysis we are able to detect spatial connectivity patterns that would
not be detectable using sparse sampling via paired recordings

The periodicity of excitatory and inhibitory inputs in the isofre-
quency direction suggests that activity in local circuits that may
have similar spectral properties could inhibit each other. This
could serve as a mechanism for a circuit to inhibit potentially
competing circuits that have similar superthreshold frequency
responses but that specialize in processing features that are not
behaviorally relevant to the current environment. For example, if
the current task is discriminating narrowband sounds, two cir-
cuits that are contained in a specific isofrequency band, one that
integrates over a large bandwidth and another that only responds
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to narrowband sounds, periodic inhibitory connections might
allow the narrowband circuit to inhibit the broadband circuit
because of its greater behavioral relevance (Read et al., 2001). The
observed periodicity along the tonotopic axis at ∼300 μm could
allow neurons to selectively integrate distinct frequency bands and
lead to multipeaked tuning curves (Winkowski and Kanold, 2013).
Given that in mouse best frequency varies at ∼3 oct/mm (Bandy-
opadhyay et al., 2010), such connection width could indicate an
underlying octave spacing of intralaminar connections in layer
2/3. Moreover, the wide area of inputs across the tonotopic axis
(∼600 μm) indicates that layer 2/3 neurons can sample a large fre-
quency space consistent with recent spine imaging studies (Chen
et al., 2011). On a larger spatial scale, functional roles for peri-
odicity of connections along and across isofrequency bands have
previously been suggested. These include connections amongst
binaural regions (Reale et al., 1983), regions of equal or greater CF
(Matsubara and Phillips, 1988), regions of differing CF for spectral
integration (Ojima and Takayanagi, 2004), clustered regions along
isofrequency bands (Ojima et al., 2005) and regions with similar
spectral bandwidth (Read et al., 2001).

Together our results show the existence of a specific microstruc-
ture of connections within auditory cortex and suggest that the
heterogeneous organization of auditory cortex might be assembled
using spatially precise interleaved microcircuits.
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