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Tumor cells frequently produce soluble factors that favor myelopoiesis and recruitment

of myeloid cells to the tumor microenvironment (TME). Consequently, the TME of many

cancer types is characterized by high infiltration of monocytes, macrophages, dendritic

cells and granulocytes. Experimental and clinical studies show that most myeloid cells

are kept in an immature state in the TME. These studies further show that tumor-derived

factors mold these myeloid cells into cells that support cancer initiation and progression,

amongst others by enabling immune evasion, tumor cell survival, proliferation, migration

and metastasis. The key role of myeloid cells in cancer is further evidenced by the

fact that they negatively impact on virtually all types of cancer therapy. Therefore,

tumor-associatedmyeloid cells have been designated as the culprits in cancer. We review

myeloid cells in the TME with a focus on the mechanisms they exploit to support cancer

cells. In addition, we provide an overview of approaches that are under investigation

to deplete myeloid cells or redirect their function, as these hold promise to overcome

resistance to current cancer therapies.

Keywords: cancer, tumor microenvironment, immature myeloid cell, macrophage, dendritic cell, myeloid-derived

suppressor cell

INTRODUCTION TO THE ROLE OF MYELOID CELLS IN CANCER

Until the beginning of the Twenty-first century, cancer was considered a disease afflicting a
single cell. This oversimplified view has made way for a new perspective. As tumors develop, a
tireless cross-talk takes place between heterogeneousmalignant cells and neighboring parenchymal,
stromal, and recruited immune cells. These cells, along with the extracellular matrix, and soluble
mediators, form the tumor microenvironment (TME). The composition of the immune infiltrate
in the TME largely determines cancer progression and the cancer’s sensitivity to various therapies.
Tumor-infiltrating CD8+ T lymphocytes are key in controlling cancer cells. Consequently,
activating de novo or existing CD8+ T cells using strategies like cancer vaccines and immune
checkpoint therapy has attracted considerable attention (1). The durable responses obtained
with these therapies have prompted the use of cancer immunotherapy in the standard of care
of various cancer types. Despite these vast improvements in cancer treatments, a significant
number of patients does not benefit from current cancer immunotherapy. There is ample evidence
that myeloid cells, present within the TME, are at the basis of this therapy failure. Therefore,
tumor-infiltrating myeloid cells (TIMs) are considered relevant therapeutic targets (2).
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Myeloid cells are a heterogeneous group of immune cells
that belong to the innate immune system. Among the myeloid
cells, monocytes, macrophages, dendritic cells (DCs), and
granulocytes have received much attention. These cells, each
in their own way, play an essential role in tissue homeostasis.
Moreover, monocytes, macrophages and DCs are well known
for their ability to regulate T cell responses, thereby bridging
innate and adaptive immunity. Tumor cells take advantage
of myeloid cells to maintain tissue homeostasis by exploiting
the myeloid cells’ capacity to produce inflammatory mediators
[e.g., interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-
α]], growth factors that affect tumor proliferation and vessel
formation [e.g., transforming growth factor-β [TGF-β] and
vascular endothelial growth factor [VEGF]], and enzymes
that degrade matrix proteins [e.g., matrix metallo-proteinases
[MMPs]] (3, 4). Moreover, tumor cells take advantage of the
myeloid cells’ ability to keep T cell responses in check. Thus
instructed by tumor cells, myeloid cells aid in creating a TME that
is characterized by chronic inflammation, immunosuppression,
and continuously proliferating tumor cells that can disseminate.
These are important hallmarks of cancer (5). Paradoxically,
myeloid cells have also been implicated in the resolution of
cancer (4). Myeloid cells can exert profound antitumor functions
such as direct tumor cell killing next to indirect tumor cell
killing through activation of among others CD8+ T cells. In
the remainder of the introduction, we discuss the pro- and
antitumor properties of different TIM subsets in the context of
the cancer immunoediting paradigm (6). We moreover discuss
TIMs and how they influence various cancer therapies. Finally
we provide an overview of approaches that have been studied to
target TIMs and as such enhance the efficacy of current cancer
therapies.

THE DEVELOPMENT AND PHENOTYPE OF
TUMOR-INFILTRATING MYELOID CELLS
IN A NUTSHELL

Tumor-infiltrating myeloid cells (TIMs) constitute a
heterogeneous population of cells that are characterized by
diversity and plasticity. Many TIMs originate from circulating
monocytes and granulocytes, which in turn stem from bone
marrow-derived hematopoietic stem cells (HSCs; Figure 1).
In the absence of activation signals, persistent stimulation
by tumor-derived factors incites monocyte and granulocyte
progenitors to divert from their intrinsic pathway of terminal
differentiation into mature macrophages, DCs or granulocytes.
Instead differentiation into pathological, alternatively activated
immature myeloid cells is favored. These immature myeloid
cells include tumor-associated DCs (TADCs), tumor-
associated neutrophils (TANs), myeloid-derived suppressor
cells (MDSCs), and tumor-associated macrophages (TAMs).
Alternative to this “emergency myelopoiesis,” TAMs can
originate from tissue-resident macrophages, which in turn
can be of embryonic or monocytic origin (7–9). These
tissue-resident macrophages undergo changes in phenotype
and function during carcinogenesis, and proliferation

seems key to maintain TAMs derived from tissue-resident
macrophages.

Among the TIMs, MDSCs have attracted considerable
attention. This TIM population has been divided in
polymorphonuclear (PMN) and monocytic (M) MDSCs,
which morphologically and phenotypically resemble TANs and
monocytes, respectively (10, 11). The most important criterion
defining MDSCs is their ability to suppress T cells. Since the
tumor is the soil for tumor-promoting myeloid cell types, the
term MDSCs and its narrow division into PMN- and M-MDSCs
is debatable (3). Two observations argue for a more broad term
that gathers immature myeloid cells under the same umbrella.
First, several conditions have been described to promote the
rapid differentiation of M-MDSCs to either PMN-MDSCs,
TAMs or TADCs, highlighting the plasticity of myeloid cells and
their ability to shift shape in function of the encountered signals
(12–14). Second, the hallmark feature, suppressing T cells, is
not unique to MDSCs. Also monocytes, DCs and macrophages
can acquire a T cell suppressive phenotype in the TME (3, 15).
The above findings hamper pigeonholing of the plastic TIM
compartment into discrete subsets but force us to acknowledge
the fact that the tumor reigns its environment according to
its own rules and molds TIMs that functionally engage in
a cross-talk, to serve the tumor. Nonetheless, several TIM
subsets can display functions that oppose tumor progression,
e.g., activation of tumor-rejecting CD8+ T cells. Therefore,
we previously proposed to divide TIMs according to their
function into myeloid stimulatory cells associated with immune
activation, and myeloid regulatory cells associated with immune
suppression and wound healing (3).

The functional polarization of TIMs toward aiding or
opposing tumor growth is often explained using the T helper
(TH) 1/2 paradigm of CD4+ T cells. In particular TAMs and
TANs have been subdivided in so-called type 1 and type 2 TIMs,
as such categorizing them into TIMs that exert anti- or protumor
activities, respectively (16–21). Although the division in type 1
and type 2 is certainly of interest, it should be emphasized that
any form of strict classification does not reflect the complexity of
the in vivo situation. In vivo TIMs are exposed to a multitude of
environmental stimuli, which can give opposing cues, resulting
in mixed profiles, rather than a strict type 1 or type 2 profile. This
has been well documented for TAMs (22–25).

Mature TADCs and type 1 TAMs (TAM1) are considered
immunostimulatory TIMs. Both are characterized by high
expression of antigen presenting molecules (e.g., MHC-I & -
II), co-stimulatory molecules (e.g., CD80 and CD86), next to
secretion of high levels of stimulatory cytokines (e.g., IL-6,
IL-12, IL-23, and TNF-α) (24). In contrast, MDSCs, type 2
TAMs (TAM2), and tolerogenic TADCs (tolDCs) are considered
immunoregulatory TIMs. These share many functional features
that enable strong immunosuppression, among which expression
of various enzymes like inducible nitric oxide synthase (iNOS),
arginase-1 (ARG-1), and indoleamine 2,3 deoxygenase (IDO),
secretion of cytokines such as IL-10 and TGF-β, and expression
of co-inhibitory molecules like programmed death ligand 1
(PD-L1; Figure 1) (3). Next to immunosuppression, these
immunoregulatory TIMs are responsible for tissue remodeling,
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FIGURE 1 | Progression from HSC to tumor-promoting TIM. The distinct steps in the progression from HSC to TIM occur at different locations and start with

amplification and differentiation of the HSC and its progenitors, including the common myeloid progenitor (CMP), granulocyte-monocyte progenitor (GMP), myeloblast

(MB), and monocyte-dendritic cell progenitor (MDP) in the bone marrow. New myeloid cells are released into the blood stream ready to migrate to the tumor bed. This

process is regulated by molecular signals produced by cancer cells and is further amplified by molecular signals produced by among others TIMs. These factors

include granulocyte (G) and granulocyte macrophage (GM) colony stimulating factor (CSF), Fms-like tyrosine kinase 3-ligand (Flt3-L), chemokine (C-C motif) ligand 2

(CCL2), VEGF and S100A8/9. The phenotype of TIMs of human and mouse origin, and their functional hallmarks are shown. For TADCs, TANs, and TAMs the figure is

simplified as different subsets with either anti- (stimulatory) or protumor (regulatory) functions are discriminated for these cell types. The figure focuses on the subsets

with protumor activity.

promotion of tumor cell proliferation and angiogenesis, thereby
favoring cancer progression in various ways.

The protumor traits of TIMs are exploited by most tumors
through cultivation of regulatory TIMs till large collections
of TAM2, MDSCs, TAN2, and small amounts of immature
tolDCs are amongst others established. This installs feed forward
loops, as many factors produced by regulatory TIMs enforce
the generation, recruitment, and function of new regulatory
TIMs. These factors include VEGF, TGF-β, S100A8/9 proteins,
et cetera. Because the protumor pathways and mechanisms used
by regulatory TIMs show redundancy, tackling only one subset or
pathway will likely be insufficient to revert cancer progression. In
the following sections we discuss the activities of TIMs in more
detail in function of the immunoediting paradigm (6).

MYELOID CELLS HAVE A CAT AND MOUSE
RELATIONSHIP WITH CANCER CELLS

Immunoediting is a result of a dynamic process of intricate
interactions between immune cells and cancer cells. In this

process nascent transformed cells are initially recognized and
eliminated by various cells of the innate and adaptive immune
system. This continuous immune attack results in selection
of transformed cells with non-immunogenic traits, which
can evade an immune attack. This heralds the equilibrium
phase in which malignant cells co-exist with immune cells.
Some of these exert antitumor activities, while others exert
tumor-promoting activities. Finally, cancer cells are no longer
effectively recognized and killed by the immune system, and
thus escape to progress in a full-blown malignant tumor.
Myeloid cells have been implicated in each phase of this process
(Figures 2, 3).

The Elimination Phase
Our knowledge on the events occurring during the elimination
phase of the immunoediting process is largely inferred from
mouse cancer model studies. These show that an intact
lymphoid immune cell compartment is central to the principle
of cancer cell elimination. The role of myeloid cells in
elimination of nascent transformed cells is less frequently studied
with only a limited number of publications on the subject.
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FIGURE 2 | Myeloid cells and their role in elimination of cancer cells. Myeloid cells in addition to other immune cell types fulfill unique as well as redundant functions to

achieve tumor cell elimination. Nascent cancer cells are detected by NK cells through the expression of specific ligands, e.g., ligands for the receptor NKG2D. This

results in NK cell-mediated killing of the cancer cells, which can be further enhanced through the activation of macrophages and DCs through binding of their receptor

dectin-1 to N-glycan structures expressed on certain tumor cells. Cancer cell fragments as well as cancer cells expressing surface calreticulin can be ingested by

macrophages (provided that SIRPα is not activated) and DCs. As such these antigen-presenting cells acquire TAAs and can activate CD4+ and CD8+ T cells. IFN-γ

produced by these T cells as well as NK cells is one of the mechanisms exploited to kill cancer cells. This cancer cell killing can be further amplified by activation of the

tumoricidal program (NO and TNF-α release) of macrophages via IFN-γ.

FIGURE 3 | Main roles played by the myeloid cells during the escape of cancer cells from immune mediated destruction. Soluble factors secreted by tumor and

immune cells, like CCL2, IL-4, IL-6, IL-8, IL-10, IL-13, GM-CSF, M-CSF, VEGF, and SCF create a TME in which arriving and local myeloid cells are molded into

immunosuppressive TIMs. Of these, TAM2, TAN2, and MDSCs are the most abundant, while tolDCs are less frequent in the TME. Cytokines like IL-10 and TGF-β

extensively contribute in creating the immunosuppressive TME. These TIMs moreover express a multitude of enzymes (e.g., IDO, ARG-1, iNOS) and surface markers

(e.g., CD40, CD80, PD-L1) that support them to dampen antitumor immunity. Moreover, TIMs are not only instructed to suppress antitumor responses under influence

of growth factors and cytokines in the TME, they are further instructed to perform activities that are in tune with the needs of the tumor cells. These activities include

sustaining chronic inflammation, promoting neo-angiogenesis, tumor growth, invasion and metastasis. These activities are mediated by secretion of soluble factors

(e.g., cytokines, growth factors, and proteases). These are not shown in the figure.

Nonetheless, several cutting edge studies show that myeloid
cells contribute significantly to this stage of the immunoediting
process.

Transformed cells can express ligands for the receptor natural
killer (NK) group 2 member D (NKG2D), which in mice is
expressed on NK cells, CD8+ T cells and activated macrophages
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(26, 27), while in humans its expression is limited to NK cells
and CD8+ T cells (28). Binding of NKG2D on NK cells sets
of its cytolytic functions (29). Other receptors expressed on NK
cells that have been implicated in tumor cell recognition and
eradication are NKp30, NKp44, and NKp46 (30), and CD226
(DNAM-1) (31). Also loss of MHC-I, which frequently occurs
on cancers cells (32), triggers the cytolytic properties of NK
cells, as receptors such as Ly49 that provides inhibitory signals
to NK cells, are no longer engaged. Studies show that NK cells
with reduced Ly49 expression are unable to reject transplanted
tumors, suggesting that proper functioning of NK cells is key to
tumor rejection in vivo (33). Macrophages and DCs can enhance
NK cell-mediated cytolytic activity against tumor cells (34, 35).
It was established through co-culture experiments that certain
tumor cells express N-glycan structures, which can bind dectin-
1 on macrophages and DCs, resulting in downstream activation
of interferon regulatory factor 5 (IRF5) (35). The activity of IRF5
was critical to induce expression of INAM, a membrane bound
protein known to activate NK cells via homophilic interaction
(36).

It is further well established that transformed cells express
antigens generated due to mutations, epigenetic alterations or
aberrant processing of proteins. These tumor-associated antigens
(TAAs) are displayed onMHC-Imolecules and can be recognized
by CD8+ T cells (37). These CD8+ T cells can receive co-
stimulation via triggering of their receptor NKG2D by ligands
expressed on the transformed cells (38). It has been further
proposed that tumor-rejecting CD8+ T cells are stimulated
by DCs and macrophages that have taken up fragments of
NK cell targeted cancer cells (39). Moreover, cancer cells can
express surface calreticulin in response to stress (40). The surface
expression of calreticulin serves as an “eat me” signal, allowing
DCs to acquire TAAs, which can be cross-presented to CD8+

T cells. It was shown that endogenous type I IFN is required
to initiate such an antitumor CD8+ T cell response, since mice
of which the CD8α+ DCs lack IFNAR are unable to induce
lymphocyte-mediated tumor rejection (41). This endogenous
type I IFN could be a result of a DNA damage response,
resulting in sensing of cytosolic DNA by the cGAS/STING
pathway (42). Next to DCs, macrophages can acquire TAAs by
ingesting calreticulin positive cells. As such they could further
assist in the activation of CD8+ T cells. However, this function
of macrophages is counteracted by the expression of SIRPα. This
receptor binds to CD47, which is constitutively expressed in
various cancer types and serves as a “don’t eat me” signal (43).

Another way in which macrophages could contribute to
the elimination of nascent cells is through release of nitric
oxide (NO) and TNF-α, which in experimental settings can be
induced through NK2GD triggering (27). Also other stimuli,
which are more relevant to the human setting, such as IFN-γ,
anti-CD40 and toll-like receptor (TLR) ligands, can induce the
release of NO and TNF-α, thereby stimulating the tumoricidal
activity of macrophages (44). At least for IFN-γ, there are
studies that suggest this might occur during the early stages of
cancer formation. It was shown in a model of MHC-II negative
multiple myeloma that macrophages are rapidly recruited and
present TAAs to CD4+ T cells, which in turn activate the

tumoricidal program in macrophages through secretion of
IFN-γ (45). Also NK cells and CD8+ T cells produce high
levels of IFN-γ, thereby provoking the hypothesis that also
these lymphocytes can stimulate the tumoricidal properties of
macrophages.

The Equilibrium Phase
The coordinated immune attack, executed during the elimination
phase, can annihilate transformed cells. However, continued
pressure of the immune system can result in selection of
cancer cells that can prevail. Cancer cells can avoid immune
recognition in several ways, among which downregulation
of antigen processing machinery, or expression of TAAs or
MHC-I molecules. Consequently, cancer cells with reduced
immunogenicity are selected for. Several preclinical studies
have provided evidence for a role of CD8+ T cells in this
process (46). The clinical relevance hereof was suggested in
several cancer trials, showing selective downregulation of the
targeted TAA or MHC-I in recurring tumors (47–49). Also
myeloid cells were shown to play a role in shaping the
immunogenicity of tumors. By educating CD8+ T cells, they
contribute indirectly to the tumorigenicity. A more direct action
was suggested for TAM1 (50). It was shown that in the in
absence of T cells, NK cells can activate TAM1 through the
production of IFN-γ, and that these TAM1 served as modulators
of the tumor’s immunogenicity. In addition to camouflaging
themselves, cancer cells co-opt regulatory circuits to dampen
immune responses. These include but are not limited to
expression of PD-L1, recruitment of regulatory T cells (Tregs),
and regulatory myeloid cells. The many mechanisms exploited
by regulatory cells to paralyze tumor-specific effector cells and
as such create a tolerant environment for cancer cells has
been reviewed elsewhere (51, 52). Consequently, tumor clones
survive the elimination checkpoint and form a clinically occult
tumor that co-exists with host immune cells. During this
dynamic equilibrium, immune cells with anti- and protumor
activities can be found in the vicinity of the tumor cells
(53).

Cell death coinciding with the presence of surface calreticulin
and alarm signals such as type I IFN is key to antitumor
immune activation by DCs (41). This type of cell death,
when further associated with release of adenosine triphosphate
(ATP), high mobility group box 1 (HMGB1) proteins, and
annexin A1 (ANXA1), has been coined immunogenic cell
death (ICD). While cell death due to ROS in combination
with endoplasmic reticulum (ER) stress leads to ICD in tumor
cells, apoptosis induced by exposure of tumor cells to IFN-
γ and TNF-α is less immunogenic (54). This can induce
quiescence, implicated in tumor dormancy (55, 56). Also,
the pro-inflammatory signals that HMGB1 normally triggers
on myeloid cells are strongly diminished when this protein
gets oxidized (57). Moreover prolonged production of ROS
and RNS by myeloid cells can increase the events of DNA
mutation in tumor cells, and as such be a cause of cancer
progression in itself (58). Several mechanisms are built into
the inflammatory cascade that occurs during the elimination
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phase, to prevent excessive collateral tissue damage and auto-
immunity. For example, debris clearance through phagocytosis
and autophagy results in secretion of TGF-β, which functions
as a strong immunosuppressant and activates type 2 polarized
TIMs, resulting in CXCL5-mediated inflammation and tumor
growth (25, 59). Even TH1-linked cytokines can help in the
accumulation of TIMs with regulatory functions. Both IFN-γ and
IL-1βwere shown to participate in the mobilization, recruitment,
and inhibitory activity of MDSCs (60). Transcription factors
that govern these events shift from pro-inflammatory IRF8
and signal transducer and activator of transcription (STAT) 1,
2, 3, and 6 to CCAAT-enhancer-binding protein β (C/EBPβ)
and PI3Kγ, generating immature TIMs. Moreover glycolysis,
the metabolic pathway preferred by TIMs and tumor cells
during the elimination phase, mediates production of proteins,
nucleic acids, lipids, lactate, adenosine, and consequently
immunosuppressive acidification of the TME. As a result TIMs
undergo peroxisome proliferator-activated receptor gamma
(PPARγ) and STAT-mediated metabolic reprogramming (61).
They switch from glycolysis to oxidative phosphorylation
and lipid catabolism (fatty acid oxidation). Inhibition of
the glycolysis pathway in TAN1, TAM1, and mature DCs
shortcuts their activities, thereby favoring the activity of tumor-
promoting TIMs, eventually leading to the escape phase, where
immunologically sculpted tumors grow progressively, become
clinically apparent and have an established immunosuppressive
TME (62).

The Escape Phase
The early immune response to cancer cells is purposed to
deal with the danger at hand and is characterized by acute
inflammation. However, persistence of cancer cells coinciding
with the co-existence of immune cells with pro- and antitumor
properties results in smoldering inflammation. This chronic
inflammation is mainly sustained by TAM2, TAN2, and
MDSCs, which are the main TIM subsets found within
many established cancers. This is not surprising as tumor
cells produce factors such as G-CSF, GM-CSF, and VEGF to
ensure continuous recruitment of myeloid progenitors into the
circulation. Under physiological conditions, GM-CSF drives
myelopoiesis as well as DC differentiation, while G-CSF and
M-CSF establish the differentiation, proliferation and survival
of granulocytes and macrophages respectively (10). In chronic
inflammation however, GM-CSF downregulates IRF8 in DC
progenitors, and thus results in reduced DC development next
to recruitment of more MDSCs. Furthermore, M-CSF suppresses
the differentiation of DCs while enhancing TAM2 polarization
(63). Therefore, this factor has been attributed as a predictor
of poor prognosis (64). G-CSF can mobilize granulocytic
myeloid cells from the bone marrow to promote angiogenesis.
Moreover, immature TIMs will drive the recruitment of
more regulatory TIMs resulting in a “never-healing-wound.”
Factors that aid in the recruitment of myeloid cells, such as
monocytes, DCs, MDSCs, and TAN2 to the TME, are among
others IL-4, IL-6, IL-8, IL-10, S100A8/A9, VEGF, and TGF-β
(65).

The tumor promoting functions of TIMs are typically
activated by TLR triggering and binding of cytokines and growth
factors such as IFN-γ, IL-4, IL-6, IL-10, IL-13, and TGF-β to their
responding receptor. The signaling cascade following receptor
engagement results in upregulation of various transcription
factors, including STAT1, 3 and 6, mitogen activated protein
kinase-extracellular regulated kinase (MAPK-ERK) and nuclear
factor-κB (NF-κB), with STAT3 being a master regulator in most
myeloid cell subsets (66–68). Once activated, TIMs perform
overlapping functions. TAM2 and MDSCs are well known for
their ability to suppress T cell-mediated tumor killing (Figure 3)
since both can exert direct immunosuppressive effects using cell-
cell contact (e.g., CD80 and PD-L1), secreted factors (e.g., IL-10
and TGF-β) and expression of enzymes (e.g., ARG-1, iNOS, IDO)
(69–75). In addition, TAM2, and MDSCs engage Tregs to aid
them in suppressing antitumor immune responses. To that end,
these TIMs express and produce several factors that stimulate the
differentiation (e.g., IDO, CD40, prostaglandin E2 [PGE2], IL-10,
TGF-β), or recruitment of Tregs (e.g., CCL22) (76–78). TAM2
can further interfere with the activity of TAM1, suppressing
the expression of IFN-γ and IL-12, thereby impacting on direct
tumor cell killing as well as the activation of killer T cells (65).
Although TAN2 are not notorious for their T cell suppressive
activity, it has been shown that eliminating TAN2 results in
increased cytotoxic T cell activity, a phenomenon that was
linked to TGF-β, which favors TAN2 accumulation and induces
ARG-1 expression (16, 79). Although DCs are not abundantly
present in the established TME, it is essential to discuss their
role in facilitating the escape of tumor cells from immune
killing (Figure 3). Conditions in the TME like accumulation of
extracellular adenosine and lactate, VEGF, M-CSF, TGF-β, IL-6,
and hypoxia, act in concert to inhibit antigen presentation by
DCs, therefore inhibit activation of adaptive antitumor immunity
(80–82). Moreover during tumor progression, subsets of DCs
are able to reach tumor-draining lymph nodes and stimulate
proliferation of Tregs in a TGF-β dependent way, turning
immature DCs from a victim to a partner in crime (83). It
has even been described that mature DCs within the TME can
exert protumor properties through expression of IDO, ARG-
1, and iNOS. These mature but tolDCs block the proliferation
of T cells and in the presence of TGF-β further stimulate Treg
differentiation (84–87).

Promoting angiogenesis by secreting VEGF, angiopoietin 1,
and 2 and GM-CSF, and tumor cell dissemination by secreting
MMPs and cathepsins are two other features shared between
TAN2, tolDCs, TAM2, and MDSCs (88). Moreover, it has been
proposed that TIMs like MDSCs and TAN2 are responsible for
creating a pre-metastatic niche (89–93). In these pre-metastatic
niches, factors are produced to attract and later on arrest tumor
cells such as IL-1β, prokineticin 2, and MMPs while neighboring
cells are stimulated to secrete VEGF to facilitate the arrival of
tumor cells.

In conclusion, the TME instructs TIMs to perform
functions in tune with the tumor’s needs. These functions
are related to chronic inflammation, tissue remodeling
and immunosuppression, and promote tumor growth and
metastasis, as these functions enable tumor cells to acquire
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nutrients, proliferate, survive, migrate, and escape immune
elimination.

CANCER THERAPIES AND MYELOID
CELLS: MUTUAL INFLUENCE AND
IMPLICATIONS

Experimental studies have provided ample evidence that myeloid
cells influence virtually every type of cancer therapy, ranging
from chemotherapy (CT), radiotherapy (RT), tumor targeted
therapy to immunotherapy (Figure 4). Therefore, the following
sections will briefly discuss the interplay with various cancer
therapies.

Myeloid Cells and Radiotherapy
Radiotherapy (RT) uses ionizing radiation to kill malignant
cells and can induce full-blown ICD in a dose-dependent
manner (94). ICD allows TADCs to acquire TAAs as well as
stimuli that enforce their maturation, therefore enable them
to activate tumor-specific CD8+ T cells (95, 96). Moreover,
low doses of RT can reprogram TAMs into TAM1, which can
contribute to the recruitment and activation of tumor-specific
T cells (97). However, RT-mediated immunogenic effects can be
masked (98, 99). In an established TME, TIMs are instructed
to counteract antitumor immune responses. Depending on the
dose, its fractionation and also the tumor model, RT can recruit
myeloid cells and even polarize them into tumor-promoting
immunosuppressive cells (100). The latter finding suggests that
depletion of TIMs could be a strategy to enhance the outcome
of RT. It was indeed shown in several experimental studies that
depletion of TAMs,MDSCs and neutrophils enhances the efficacy
of RT (101–103). Caution must however be taken to ensure that
RT-mediated effects on TADCs and TAM1 polarization are not
lost, as both contribute to the abscopal effects of RT.

Myeloid Cells and Chemotherapy
Chemotherapy (CT) comes in many colors and shapes. Similar
to RT certain CT regimens, like use of anthracyclines, can
induce full-blown ICD, thereby acting on TADCs, which in
turn activate tumor-specific CD8+ T cells. The efficacy of
anthracyclines was shown to depend on TADCs (104, 105).
Also TAMs can play an advantageous role during CT treatment.
These cells can act as drug depots when CT compounds
are delivered in nanoparticles, thereby ensuring local and
prolonged delivery of the therapy (106). Moreover, ROS
production by TAMs and TANs is observed upon treatment
with oxaliplatin, and aids in stimulating tumor cell death
(107). Chemotherapies can further act on TIM numbers, either
depleting or amplifying them. Gemcitabine and 5-fluorouracil
are examples of chemotherapies that reduce MDSC numbers. By
relieving MDSC-mediated immunosuppression these treatments
enable CD8+ T cell-dependent anticancer immune responses
(108). Other chemotherapeutics, like paclitaxel show a more
complicated profile. While paclitaxel depletes MDSCs (which
express P450 reductase), it increases TAMs (12, 109). In
case of the latter, inhibiting TAM accumulation enhanced

therapy outcome (110). This study suggests that TAMs can
hamper the efficacy of CT. This is confirmed by several
other studies, and unfortunately is not limited to TAMs.
Also MDSCs have been linked to CT failure. TAMs and
MDSCs can induce drug resistance for instance by producing
cysteine cathepsins that protect tumor cells from being killed
by chemotherapeutic agents like taxol, and even promote
tumor growth by enforcing chronic inflammation (111, 112).
Moreover, TAMs can secrete IL-10 in response to CT and
as such enforce immunosuppression (113). Thus, TIMs are
both friend and foe when treating cancer patients with
chemotherapies (and RT), posing the challenge to identify
and selectively act on the enemy, while leaving friendly TIMs
unharmed.

Myeloid Cells and Tumor Targeting
Small-Molecule Cancer Therapy
Our growing knowledge on driver mutations that provide cancer
cells with a growth and survival advantage has allowed the
development of small-molecule drugs that target the molecular
alterations arising from these mutations. Proteins with kinase
activity such as stem cell factor receptor (c-kit), BRAF, MEK,
and MET are examples of targets for which small-molecule
inhibitors were clinically tested. In clinical trials these small-
molecule inhibitors initially reduce the tumor size (114, 115).
However, they have little effect on the long haul, which might
at least in part be due to activities of myeloid cells. For instance
Imatinib, a tyrosine kinase inhibitor that works via activating
mutations of c-kit, has been evaluated in gastrointestinal cancer.
Imatinib was shown to induce tumor cell apoptosis. While this is
the envisaged outcome, it was further observed that TAM1, which
mainly populated the gastrointestinal stroma were polarized to
TAM2 due to activation of C/EBPβ upon interaction with dying
tumor cells (116). BRAF and MEK are protein kinases of the
MAPK-ERK pathway, which in solid tumors such as melanoma
enable proliferation and cell survival. Consequently, mutations
of BRAF and MEK, which continuously activate MAPK-ERK are
linked to oncogenesis. Small-drug inhibitors were developed to
counteract the uncontrolled growth and survival of cancer cells
through BRAF and MEK mutations (117–120). Development of
resistance to BRAF inhibitors in a mouse melanoma model was
linked to restoration of the MDSC compartment. This depended
on reactivation of the MAPK pathway followed by production
of CCL2, a myeloid cell attractant. Modulating MDSCs using
depleting antibodies (anti-Gr-1) or blocking their recruitment
(CCR2 antagonist) prohibited the outgrowth of these BRAF
resistant melanoma tumors (121). Also TAMs and TAM-derived
TNF-α have been implicated in failure of BRAF inhibitors in
mouse melanoma models (122). Blocking TAM development
(inhibition M-CSFR) improved the efficacy of BRAF inhibitors
(123). On the other hand, MEK, and BRAF inhibitors revert
TADC suppression enforced by mutated melanoma cells in vitro
(124, 125). Finally MET (hepatocyte growth factor receptor) is
considered a molecular target in several cancers, including non-
small cell lung cancer, gastrointestinal cancer, and hepatocellular
carcinoma (114). Inhibition of MET also impacts on neutrophils,
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FIGURE 4 | The dual role of myeloid cells in anticancer therapy responses. (A) RT and CT regimens can induce ICD, thereby alarming antigen-presenting cells (APCs)

of the danger that is posed by cancer cells. This alarm is given through the release of various DAMPs (e.g., HMGB1, ATP, et cetera) and facilitates cross priming of

tumor-specific CD8+ T cells in tumor draining lymph nodes. Activated CD8+ T cells subsequently infiltrate the tumor in search of TAA-expressing cancer cells, and

upon recognition exploit various mechanisms to kill cancer cells. While, TAM1 and TANs can further enhance the efficacy of CT by releasing ROS, thereby enhancing

tumor cell death, other TIMs including MDSCs can counteract the effects or RT and CT not in the least by inhibiting CD8+ T cells. (B) Within the TME, CD8+ T cells

are often rendered tolerant via immunosuppressive factors expressed by tolDCs, TAM2, MDSCs, tumor cells (and Tregs). One strategy is expression of PD-L1 that

binds to PD-1 on activated T cells. Consequently, immune checkpoint inhibition has been studied to alleviate PD-L1:PD-1 mediated immunosuppression. Monoclonal

antibodies are actively used for this purpose, however, were shown to be captured by TAMs using their FcγR and were shown to be counteracted by MDSCs.

Nonetheless, the success of immune checkpoint inhibition is correlated to the presence of immunostimulatory TIMs and CD8+ T cells within the TME. (C) Small

molecule inhibitors targeting protein kinases implicated in tumor cell progression have been shown to exert effects on TIMs. Some of these effects are beneficial for

therapy outcome. For instance BRAF inhibitors revert the suppression exerted by melanoma cells on TADCs. However the majority of these effects potentiate TIMs to

exert tumor-promoting functions or prevent TIMs from entering the TME to oppose tumor growth. Examples hereof are Imatinib that stimulates TAM1 to TAM2

polarization, BRAF inhibitors that restore the MDSC compartment through induction of CCL2 and MET inhibitors that avoid recruitment of neutrophils with cytotoxic

capactity (iNOS mediated NO release).

which rely onMET activity to home to tumors and exert cytotoxic
responses such as iNOS-mediated release of NO (126). The above

studies show that further studies are required to understand how

inhibiting kinases impact on myeloid cells and how myeloid
cells can be manipulated to allow more durable responses in

patients.

Myeloid Cells and Immune Checkpoint
Therapy
Immune activation and activity are tightly regulated by
several mechanisms to avoid immunopathology (e.g., auto-
immunity). Cancer cells hijack these mechanisms to escape
immunosurveillance. They express ligands, such as PD-L1, which
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triggers PD-1, an inhibitory receptor expressed on tumor-
reactive immune cells, such as CD8+ T cells. Consequently,
the tumor-reactive immune cells become paralyzed. Monoclonal
antibodies (mAbs) that bind PD-1 or PD-L1 and block this
inhibitory immune checkpoint have ushered a new era for
cancer immunotherapy (127–129). To date, five mAbs that target
the PD-1:PD-L1 pathway have been approved for treatment
of patients with solid tumors, including melanoma and non-
small cell lung cancer. These mAbs are pembrolizumab and
nivolumab, which antagonize PD-1, and avelumab, darvulumab
and atezolizumab, which antagonize PD-L1. These mAbs have
signified a turning point in the treatment of a significant number
of patients (130). Regrettably the full potential of these mAbs has
not yet been achieved.

A considerable number of patients and cancers are refractory
at the start of treatment or become resistant during the course
of treatment and therefore fail the therapy. Several hypotheses
exist to explain this therapy failure, one of them being that TIMs
are responsible for the resistance to immune checkpoint blocking
therapy. This hypothesis resulted from the observation that high
infiltration of tumors with immunosuppressive myeloid cells
correlates with poor prognosis and immune checkpoint therapy
resistance (131, 132). Mainly MDSCs and TAMs have been
implicated in resistance to immune checkpoint blocking mAbs.
Therefore, merely blocking PD-1:PD-L1 interactions might be
insufficient to overcome TIM-mediated inhibition of CD8+ T
cells. A line of thought that is reinforced by the observation
that MDSC depletion in experimental models was shown to
enhance antitumor immune responses and overcome resistance
(133). Moreover, functional modulation of MDSCs by epigenetic
drugs, sensitized several experimental cancer models that were
previously resistant to immune checkpoint therapy (134, 135).
Further TAMs have been described to inhibit PD-1:PD-L1
therapy by removal of anti-PD-1 mAbs from PD-1+ CD8+ T
cells using their FcγR (136). Additionally emerging data report
that both metabolic and inflammatory pathways can enhance
the expression of PD-L1 on myeloid cells (71, 137, 138). These
studies provide the first proof that immunosuppessive TIMs
can hamper immune checkpoint therapy via several redundant
strategies. However, there is also proof that immunostimulatory
TIMs are a pre-requisite for immune checkpoint success. It
was shown that binding of monocytes and DCs by anti-PD-L1
mAbs is at least in part responsible for the subsequent control
of tumor growth (139, 140). The need for DCs to guarantee
successful checkpoint therapy has further been evidenced in
experiments, in which delivery of bone marrow-derived DCs
to tumors resulted in T cell recruitment and sensitization to
anti-PD-1 therapy (141). Similar to the conclusion on myeloid
cells in RT, CT and targeted therapies, we can conclude that
immune checkpoint therapy can be supported by TIM allies, i.e.
TIMs that can activate CD8+ T cells, while immunosuppressive
TIMs that exert several means to paralyze CD8+ T cells, can
be regarded as the saboteurs of this therapy. Besides the PD-
1:PD-L1 pathway, other checkpoint inhibiting receptors or their
ligands have been reported to be expressed by one or more TIM
subsets. For instance, the expression of T-cell immunoglobulin
and mucin-domain containing-3 (TIM-3) has been described

in TADCs while ‘V-domain Ig suppressor of T cell activation’
(VISTA) is predominantly expressed on hematopoietic cells, and
in multiple murine cancer models found at particularly high
levels on TIMs. Further the “T cell immunoreceptor with Ig and
ITIM domains” (TIGIT) has been reported to bind CD155 on
DCs and macrophages while the main ligand of “Lymphocyte-
activation gene 3” (LAG-3) is represented by MHC-II, expressed
in various degrees on almost all TIMs. Future investigation is
therefore warranted to find out which role TIMs play in other
checkpoint inhibiting mechanisms.

STRATEGIES DEVELOPED TO TARGET
MYELOID CELLS IN ORDER TO RESOLVE
CANCER

An increasing number of experimental and clinical studies have
been published on targeting of myeloid cells in cancer with close
to 400 studies published in the last 5 years. Overall the approaches
to target myeloid cells with tumor-promoting characteristics
like TAM2, TAN2, and MDSCs can be divided into two main
strategies; reducing their numbers by depleting them or by
blocking their recruitment, and repolarization of their function.
Conversely, attempts have been made to enhance the numbers
and function of myeloid cells with antitumor properties. In
the following sections we highlight several promising strategies
(Figure 5).

Manipulating Myeloid Cell Numbers
Depleting myeloid cells and even specific subsets, as a strategy
to reduce myeloid cell numbers, can be performed using
antibodies that target myeloid cell specific surface makers such
as CD11b, Gr-1 or Ly6G. Furthermore also transgenic mouse
strains can be used with permanent or conditional myeloid cell
ablation. Conditional deletion circumvents embryonic lethality
while precluding analysis of gene function on a well-defined
time point in the adult tissues. The two most commonly used
models are based on the addition of diphtheria toxin and/or
Cre/LoxP recombinase. The former model is based on a knock-
in of the diphtheria toxin receptor behind the promotor of
a cell type characterizing marker such as CD11b or CD11c-
diphteria toxin receptor mice. In contrast, the generation of
conditional Cre/LoxP knockout mice is a multiple-step process,
which involves mating flox mutant with tissue specific Cre-
expressing mouse lines. As such the latter allows conditional
myeloid cell subtype specific ablation in a particular tissue of
interest.

Such experimental approaches have delivered a proof-of-
concept that depletion of myeloid cells with immunosuppressive
functions can delay tumor growth, while depleting stimulatory
myeloid cells has the opposite effect (142, 143). As these
approaches do not limit myeloid cell depletion to the TME,
it is however not certain that the observed effects can in part
be ascribed to depletion of myeloid cells in the periphery.
Moreover, complete depletion strategies are not attractive for
translation to a human setting. Therefore, other pharmacological
and gene-based approaches have been developed to interfere
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FIGURE 5 | Tipping the balance toward myeloid cells with an antitumor phenotype. Several approaches have been studied to increase the ratio of anti- over protumor

TIMs. These include, depleting or repolarizing tumor-promoting TIMs, and attracting and activating antitumor TIMs.

with the accumulation of suppressive myeloid cells. These are
based on our current knowledge on how TAM, MDSC and
TAN myelopoiesis and recruitment are driven. Accumulation
of TAMs in the TME depend strongly on CCL2:CCR2
and M-CSF:M-CSFR signaling, therefore different approaches
using mAbs (144–146), small-molecule inhibitors (145, 147,
148) and RNA interference (149) were devised to block
these pathways. Overall these studies showed reduced TAM
numbers and correlating herewith, delayed tumor outgrowth in
various mouse cancer models. These studies further provided
insight into the effect of CCL2:CCR2 and M-CSF:M-CSFR
blockade, and how treatment regimens might evoke unwanted
effects.

When blockade of the CCL2:CCR2 axis was halted in mice, a
sudden burst of monocytes released from the bone marrow was
observed, and an increased frequency of metastasis and linked
herewith decreased survival of animals was the consequence
(110). Use of CCL2 versus CCR2 knockout mice further revealed
that deficiency in CCL2 resulted in delayed outgrowth of
mammary carcinoma, while deficiency in CCR2 enhanced tumor
outgrowth (150). Differences in transcriptional programs in
monocytes deficient in CCR2 vs. CCL2 might explain these
disparate effects of CCR2 vs. CCL2 disruption on progression of
mammary carcinoma. While this study did not show differences
in monocyte or TAM infiltration, it is conceivable that other
TIM subsets might play a role. For instance, also MDSCs can
act on CCL2 through their expression of CXCR2 (151). Similar
to interfering with the CCL2:CCR2 axis and TAM accumulation,
interfering with both the CCR2+ TAMs and CXCR2+ TANs has
profound effects at least when used in combination with CT
(152, 153). It is therefore of utmost importance to identify all
relevant players when blocking a certain molecule in order to

fully understand the potential strengths and weaknesses of the
depletion approach.

Targeting the M-CSF:M-CSFR pathway is also interfere with
TAM accumulation. This approach delays tumor growth in
all experimental models tested, either when used as a stand-
alone therapy (146, 147), or when used in combination with
other therapies (101, 102, 109, 113). Certain studies in which
the M-CSF:M-CSFR pathway was targeted reported on tumor
regression, which was not linked to numerical changes in
TAMs in the TME. However, changes in the TAM phenotype,
particularly downregulation of TAM2 associated features, were
reported in these studies (145, 149). Because interrupting
CCL2:CCR2 and M-CSF:M-CSFR signaling has been beneficial
in many experimental models, these pathway are being evaluated
in patients both as mono- (146) and combination therapies (CT
and immune checkpoint blocking therapy) (154).

Another strategy that is explored in the context of reducing
tumor-promotingmyeloid cell numbers in the TME is interfering
with VEGF:VEGFR signaling. VEGFR is highly expressed by
TIMs and interaction with VEGF contributes to their migration
and differentiation into immunosuppressive cells (155). Thus,
interfering with VEGF:VEGFR signaling might have a dual
role on TIMs, reducing their numbers and repolarizing their
function (in addition to affecting angiogenesis). In view of
attracting TIMs, VEGF:VEGFR signaling was shown to attract
macrophages (156) and monocytes in a CCR2-dependent way
(157). It was further shown that also recruitment of MDSCs
to the TME of non-small cell lung carcinoma is reduced upon
blockade of VEGF:VEGFR signaling. However, recruitment of
monocytes increased upon treatment with anti-VEGF antibodies
in this study (158). Several anti-VEGF-based drugs, including
bevacizumab, avastin and axitinib, targeting VEGFR are used
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for treatment of various human cancers (159–161). While the
anti-VEGFR targeting drugs used in these studies are mainly
studied in view of angiogenesis, it was shown at least for the
drug axitinib that it impacts on myeloid cells. A dose-dependent
reduced activation of STAT3 was observed in axitinib-exposed
DCs. Despite this favorable change, these DCs were impaired in
their T cell stimulatory activity (162). In contrast, it was shown
in a model of melanoma brain metastasis that axitinib increases
the number of M-MDSCs, and reverts their function from T cell
suppressive to stimulating cells with a subsequent delay in disease
progression (163). Therefore, this study suggests that enriching
myeloid cells with antitumor properties might be an attractive
approach to treat cancer. This idea is supported by experimental
and clinical studies in which ex vivo DCs (often engineered to
secrete stimulatory cytokines), delivered to the tumor, mediate
disease control (164, 165).

The use of Flt3-L to enhanceDC numbers has been extensively
studied, since Flt3:Flt3-L mediated signaling is involved in the
generation of various DC subsets from bone marrow progenitor
cells (166, 167). In experimental models, delivery of Flt3-L (alone
or in combination with CT) increased DC numbers and resulted
in delayed tumor outgrowth (168–171). Evidence supporting
the use of Flt3-L in a clinical setting came from a study in
which recombinant human Flt3-L was administered to expand
DCs in vivo. These DCs were collected by leukapheresis, pulsed
with tumor antigen-derived peptides and used for vaccination,
eliciting tumor regression in 2 out of 12 patients (172).

Also GM-CSF has been studied as a means to enhance DC
numbers in vivo. This might seem controversial given the role of
GM-CSF in myelopoiesis. It is certainly a strategy that has to be
approached with caution, as blocking GM-CSF has been shown
to reduce accumulation of monocytes and myeloid precursor
cells, and was shown to delay tumor progression, while delivering
GM-CSF to tumors, for instance using the oncolytic virus T-
VEC, was shown to induce tumor-specific T cells, most likely as
a consequence of DC activation. In this clinical study, delivery
of GM-CSF by T-VEC also resulted in a reduced number of
MDSCs (173, 174). The latter is surprising as engineering of
tumors to express high levels of GM-CSF has been linked to
MDSC accumulation in various experimental models (175, 176).

Overall these studies support the idea that decreasing
the number of TIMs with tumor-promoting activities, while
increasing TIMs with antitumor activities, is a valuable approach
in the fight against cancer. These studies however also point out
that tipping the balance toward increased numbers of antitumor
TIMs by acting on pathways involved in myelopoiesis is a
challenging endeavor.

Manipulating the Function of Myeloid Cells
Myeloid cells are characterized by high plasticity. Their ability
to shift shape according to the cues they receive, has instigated
research into strategies that promote their anti- and/or inhibit
their protumor activities.

Manipulating Genetic Programs in Myeloid Cells
Genetic programs, controlled by transcriptional networks, and
epigenetic mechanisms, dictate the phenotype, and function of

myeloid cells. Therefore, reprogramming them has been a focus
of interest. Triggering TLRs on TIMs, in particular TLR3 and
TLR9, has been extensively studied in this context, as these
jumpstart transcriptional networks. It was shown that the T
cell suppressive activity of MDSCs is reduced when exposed to
agonists of TLR3 or TLR9 (177–180). Exposing MDSCs to the
TLR9 ligand CpG stimulated them to produce TH1 activating
cytokines and even differentiate into TAM1, a switch that was
driven by IFN-α, produced by plasmacytoid DCs after CpG
stimulation (178, 181). Besides its effect on MDSCs, TLR3
triggering also converts TAM2 to TAM1 and facilitates cross-
priming of antigen-specific CD8+ T cells by TADCs, thereby
promoting tumor regression (182, 183).

The use of TLR4 to functionally reprogram DCs was achieved
by a DC unique genetic approach, which is likely explanatory
for its success, as it was previously shown that inflammation
primedMDSCs are activated by lipopolysaccharide (LPS), a well-
known TLR4 ligand, to produce increased levels of IL-10 and to
downregulate production of IL-12 by macrophages (184).

The CD40:CD40 ligand (CD40L) interaction may
represent another interesting target to dampen the protumor
transcriptional program of MDSCs, while stimulating the
antitumor transcriptional program of TAMs and TADCs.
Agonistic CD40 mAbs were shown to abrogate MDSC:Treg
communication and to mature MDSCs (185, 186). Macrophages
are activated upon treatment with these CD40 mAbs, enabling
them to infiltrate tumors and exert tumoricidal activities (187).
The observation that anti-CD40 mAbs enable CD8+ T cell
independent tumor cell killing, prompted the use of a fully
humanized CD40 agonist mAb (CP-870.893) in a phase I clinical
trial, showing that its combination with gemcitabine activates
antitumor immune responses (188). Activation of DCs by
CD40 licenses them to perform their CD8+ T cell stimulatory
function (189). Combining CD40 and TLR3 ligands was shown
to endow human and mouse tolDCs with stimulatory properties
(190). Also TLR4 in addition to CD70 delivery was studied
in combination with CD40 activation of TADCs (191). It was
shown that TADCs modified with CD70 and simultaneously
activated via CD40 and TLR4, were able to migrate to tumor
draining lymph nodes and stimulate tumor-specific CD8+ T
cells.

Cytokines represent another means of functionally
reprogramming myeloid cells. In this context, IL-12 and
type I IFNs have been shown to stimulate antitumor properties,
while IL-10 and TGF-β have been linked to tumor-promoting
properties. Consequently, exposing TIMs to IL-12, IFN-α or IFN-
β, and/or shielding them from IL-10 and TGF-β has been studied.
Delivery of IL-12 to the TME was shown to have substantial
antitumor effects, which were correlated to reprogramming
of MDSCs, TADCs and TAMs into antigen presenting cells
with CD8+ T cell activating capacity (175, 192–196). The
antitumor stimulating properties of IL-12 were confirmed by the
clinical responses observed in patients with renal cell carcinoma,
melanoma and peritoneal metastasis from ovarian cancer upon
IL-12 treatment (197–202). Type I IFNs, in particular IFN-α
and IFN-β, have long been shown to exert tumoricidal effects
and act as strong inducers of myeloid cell polarization, mainly
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for MDSCs and TADCs (203, 204). Although IFN-α has shown
promising clinical results in hematopoietic cancers, little success
was achieved in solid tumors (205). This might be related to
its systemic administration or its use as a single agent in these
trials. It was shown in preclinical studies that combining IFN-β
stimulation of myeloid cells with simultaneous blockade of
TGF-β signaling, is a viable strategy to reprogram MDSCs and
DCs, thereby facilitating CD8+ T cell responses (206). Also
IL-10 switches on immunosuppressive transcriptional programs
in myeloid cells. IL-10 receptor blocking antibodies, used alone
or in combination with CpG, restored IL-12 expression through
activation of DCs, and stimulated antitumor responses (113).
However, in some studies ablating IL-10 was associated with
an increased level of MDSCs and Tregs in TME and in the
tumor-draining lymph nodes (207).

Strategies to manipulate the transcriptional programs in
myeloid cells more directly have been developed as well,
including approaches to down- or upregulate transcription
factors like STAT3 and NF-κB (208, 209). Transcription factor
STAT3 has been designated the master regulator of the
immunosuppressive activity of myeloid cells (66, 67). Studies
with small-molecule inhibitors, acting on JAK2:STAT3 signaling,
showed delayed tumor growth, which in some cases coincided
with a TAM2 to TAM1 switch, an increase of MDSCs or
was independent of TIM modulation (210, 211). In clinical
trials, small molecular inhibitors showed limited efficacy and
substantial side effects, prompting the development of more
targeted and more specific strategies based on RNA interference
and decoy oligonucleotides. Some of these entered clinical testing
(212–214). More selective delivery of STAT3 inhibiting small
interfering RNA (siRNA) was achieved by coupling them to CpG.
Therefore, this strategy takes advantage of the positive effects of
CpG on TLR9 positivemyeloid cells as well as the potential effects
of STAT3 inhibition. Upon treatment, TLR9 expressing myeloid
cells like PMN-MDSCs, showed reduced immunosuppressive
capacity. Also TLR9 expressing tumor cells lost the resistance
to apoptosis by interfering with STAT3 signaling (212, 213, 215,
216). The less activated status of TADCs and their overall reduced
ability to respond to TLR stimulation has been related with
STAT3 hyperactivity (215). Therefore, STAT3 inhibition has been
studied in the context of TADC modulation. Herein, advantage
was taken of the TADCs’ ability to take up nanoparticles to deliver
STAT3 siRNA and polyinosinic:polycytidylic acid (polyI:C), a
well-known agonist of TLR3. This strategy enabled TADCs to
upregulate the expression of co-stimulatory molecules and IL-
12, and to induce potent antitumor immune responses (215).
Next to STAT3, NF-κB is known to regulate the expression of
many tumor-promoting genes, including VEGF, IL-6, TNF-α,
and cyclooxygenase 2 (COX2), which support its crucial role in
the activation of TAM2 in the TME (217, 218). Inhibition of NF-
κB allows TAMs to acquire a tumoricidal phenotype, resulting
in vivo in regression of advanced tumors (219). In TADCs, NF-
κB activity is inhibited by FOXO3, which has been related to the
TADCs’ immunosuppressive activity (220). Activation of NF-κB
in DCs has been extensively studied albeit mainly in the context
of cancer vaccination. Overall these studies showed that selective
activation of NF-κB in DCs of human or mouse origin enhances

their ability to activate CD8+ T cells (209, 221). Another
transcription factor that recently gained attention is PI3Kγ, as
this transcription factor was shown to govern expression of ARG-
1 and TGF-β in TAMs, therefore represents another important
regulator of the immune suppressive phenotype of TAMs (222).
Furthermore, PI3Kγ in myeloid cells has been directly linked
to the success of immune checkpoint therapy, pinpointing
PI3Kγ as an attractive target in cancer immunotherapy
(222, 223).

The genetic programs active in myeloid cells are also regulated
at the epigenetic level (138). Alternatively activated bone
marrow-derived macrophages have enhanced levels of acetylated
histones. This was linked to expression of TAM2 genes (224).
Bromodomain and extra-terminalmotif proteins (225) or histone
deacetylase inhibitors (HDACi) (226–228), which interfere with
chromatin remodeling, skew toward a TAM1 phenotype and
were shown to mediate tumor regression in response to immune
checkpoint therapy in a model in which monotherapy with
anti-PD1 antibodies failed (228). Also MDSCs were shown to
be numerically and functionally affected by HDACi (134, 135).
Inhibition of HDAC reduced the number of MDSCs as well as
the expression of hallmark enzymes, including ARG-1 and iNOS,
making several experimental cancer models sensitive to immune
checkpoint therapy (134, 135). HDACi are currently studied in
combination with checkpoint blockers in patients withmetastatic
and unresectable HER2/neu negative breast cancer (138).

Manipulating the Metabolism of Myeloid Cells
Because the metabolism of TIMs is linked to their function,
changing metabolic pathways has been studied as a strategy
to target myeloid cells (229). MDSCs have an enhanced
expression of CD36, a fatty acid translocase that enables uptake
and oxidation of fatty acids, and as such an increase in
their immunosuppressive capacity (230). Inhibiting fatty acid
oxidation decreases the immunosuppressive capacity of MDSCs,
andmoreover mediates antitumor effects in experimental models
when combined with low-dose CT and adoptive cell therapy
(231). Metabolic pathways were also studied in TADCs. Fatty
acid metabolism in DCs has been linked to their ability to
cross-present antigens, a critical process to stimulate tumor-
specific CD8+ T cells (232). Nonetheless, enhanced levels of
lipids as observed in several preclinical mouse cancer models
and cancer patients has a negative impact on DC cross-
presentation. Normalization of lipid levels in these cancer models
restored the functional activity of lipid rich DCs and enabled
them to become more potent when used in a cancer vaccine
(233). It was further shown that anaerobic glycolysis after
TLR stimulation is essential to upregulate among others co-
stimulatory molecules and IL-12 (234, 235). Also the metabolic
signature of TAMs is correlated to their function (236, 237).
The direct link between TAM metabolism, tumor vasculature
and metastasis, was recently shown using a genetic approach.
Herein genetic deletion of regulated in development and
DNA damage responses 1 (REDD1), an inhibitor of mTOR,
which is highly expressed by TAM2 was shown to increase
glucose uptake and direct TAM2 toward glycolysis (238), a
hallmark of TAM1 (239). Consequently, TAMs competed with
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tumor endothelial cells for glucose consumption, which resulted
in stabilization of the tumor vasculature, thereby preventing
metastasis (238).

Manipulating Distinct Tumor Promoting Functions
Several enzymes expressed by TIMs have been inextricably
connected to their immunosuppressive function, among which
IDO, ARG-1, iNOS, and COX2, and have therefore been a
focus of research. IDO is a tryptophan degrading enzyme
that can be induced in MDSCs, TADCs, TAMs, and to some
extent TANs in response to stimuli such as pro-inflammatory
cytokines, TLR ligands, hormones, PGE2, and contact dependent
stimuli such as B7:cytotoxic T lymphocyte antigen 4 (CTLA-
4) interactions (10, 240–242). The net effect of IDO mediated
conversion of tryptophan to kynurenine is induction of T
cell anergy, apoptosis, and commitment of CD4+ T cells
toward immunosuppressive Tregs (243). These Tregs can further
amplify the immunosuppressive TME by endowing TADCs
with tolerogenic properties (e.g., upregulation of IDO), and
by recruiting and activating MDSCs, which exploit expression
of IDO, ARG-1, and iNOS in addition to immunosuppressive
cytokines and co-inhibitory molecules to suppress T cells (244).
The tryptophan catabolism is therefore an important mechanism
of cancer immune escape. Expression of IDO has been linked
to poor clinical prognosis in several cancers, as it correlates
with decreased survival as well as increased risk of metastasis
(245). Therefore, strategies to disrupt IDO’s enzymatic activity
or expression have been studied extensively. In animal studies,
genetic inhibition of IDO expression resulted in infiltration, and
activation of granulocytes that established a TME favoring tumor
growth (246). The tyrosine kinase inhibitor imatinib, which
inhibits COX2 activity, therefore blocks PGE2 production a
potent stimulus for IDO upregulation, has been successfully used
in the context of IDO inhibition (247, 248). Also small-molecule
inhibitors of IDO exhibit anticancer activity and cooperate
with immunotherapy, RT or CT to trigger rapid regression
of aggressive tumors otherwise resistant to treatment (249).
Several IDO inhibitors are under clinical evaluation either as
a mono- or combination therapy (e.g., checkpoint blockade
and CT) (250). The IDO inhibitors most intensively studied
in clinical trials are epacadostat and indoximod. In a phase
I trial, epacadostat showed to normalize kynurenine levels in
patients with advanced solid malignancies (251). In phase I-
III trials, epacadostat showed promising results in combination
with various checkpoint inhibitors, including durvalumab (anti-
PD-L1), pembrolizumab (anti-PD-1), and ipilimumab (anti-
CTLA-4), in different cancer types (252). Indoximod was shown
to counteract the immunosuppressive effects of kynurenine,
to activate multiple immune cells and to stimulate Treg
to TH1 conversion (253–255). Ongoing phase II-III clinical
studies investigate the effect of indoximod in combination with
the checkpoint inhibitor nivolumab (anti-PD-1) in patients
with metastatic melanoma. Further development resulted in
a compound, NLG802, the prodrug of indoximod, which in
animal studies induced antitumor responses at lower doses than
indoximod. Recently, NLG802 entered phase I clinical testing
(256).

ARG-1 is another amino acid degrading enzyme. It converts
L-arginine into L-ornithine and urea, and can be upregulated in
MDSCs, TAM2 and tolDCs by multiple factors, including PGE2
(produced by COX2), GM-CSF, TGF-β, IL-6, and IL-10, where
the latter two both act via STAT3 (257–260). Also hypoxia has
been linked to ARG-1 expression (261). Expression of ARG-
1 by myeloid cells has been unambiguously linked to tumor
promoting activities, and L-ornithine was shown to further
stimulate alternative activation of myeloid cells (262–264). iNOS
is also an L-arginine converting enzyme, which produces NO
and citrulline as a result. Expression of iNOS has been shown
in TAM1, inflammatory DCs and MDSCs in response to IL-1β,
IL-6, IFN-γ, TNF-α, and TLR4 agonists, and has been linked
to both anti- and protumor activities (265, 266). This dual role
of iNOS and NO is likely depending on the levels, source and
timing of NO production, and is further influenced by the TME.
In early events of tumor development some myeloid cells like
macrophages can generate high concentrations of NO, thereby
inducing tumor cell apoptosis. However, in an established TME,
myeloid cells are reprogrammed to support tumor progression.
At that time low amounts of NO act pro-angiogenic and
enhance tumor growth andmetastasis by inducing growth factors
such as VEGF and MMPs. Moreover, a temporal relationship
between the expression of ARG-1 and iNOS in TIMs such as
macrophages has been linked to immunosuppression. It was
proposed that ARG-1 occurs prior to iNOS expression to stop
T cell proliferation and that subsequent iNOS expression and
as such NO release, stimulates T cell apoptosis, thereby ending
the anticancer immune responses (267). Therefore, strategies
to block ARG-1 and iNOS have been developed. Inhibitors
like nor-N-hydroxy-L-arginine and aminoguanidin (or 1400W)
downregulate ARG-1 and iNOS activity in MDSCs, restore T
cell antitumor immunity and reduce tumor progression (176,
268). Moreover, recent studies showed that combining ARG-1
inhibition with immune checkpoint therapy or RT is a promising
strategy (244, 269). Several reports recommend targeting both
ARG-1 and iNOS to augment the therapeutic effect (270).
Phosphodiesterase-5 (PDE5) inhibitors, like sildenafil, tadalafil,
and vardenafil, were shown to decrease ARG-1 and iNOS
expression. Consequently the suppressive activity of MDSCs was
blocked which ultimately boosted tumor-specific T cell responses
(271–273). Similarly, NO-releasing aspirin was shown to reduce
ARG-1 and iNOS, and enhance the number and function of
tumor-specific T cells (274). The prior use of PDE5 inhibitors
and NO-releasing aspirin in other indications prompted their
use in clinical trials, often in combination with other cancer
therapies including RT, CT, and immunotherapy (vaccination,
immunomodulatory drugs and immune checkpoint blockade)
(275). While many trials are ongoing, pilot trials in metastatic
melanoma patients report on its safety and further show a
decreased frequency and function of MDSCs, correlating with an
increased T cell reactivity and improved clinical outcome (276–
278).While these studies mainly focused on the role of MDSCs, it
is conceivable that these agents could also modulate other ARG-1
and iNOS expressing myeloid cells like TAMs and TADCs.

COX2 is the enzyme responsible for the metabolic conversion
of arachidonic acid into various prostaglandins including PGE2,
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which has an immunosuppressive function as evidenced by
its ability to induce IDO and ARG-1 expression in various
TIMs. Another link to immunosuppressive amino acid degrading
enzymes and COX2 in myeloid cells is the observation that NO
is involved in regulating COX2 expression (279). Inhibition of
COX2 in mouse and human myeloid cell progenitors was shown
to inhibit MDSC and TAM2 generation, and favor differentiation
toward mature APCs (280–283). Genetic deletion of COX2
in myeloid cells in vivo was shown to reduce macrophage
infiltration, increase T cell numbers in the tumor and linked
herewith reduce tumor progression (284). Pharmacological
inhibition of COX2 was also shown to delay tumor growth
in various studies and even synergize with immunotherapy. In
these studies, COX2 inhibition was linked to reduced MDSC
accumulation, and reduced IDO or ARG-1 expression (248, 285–
288).

Overall, inhibition of key immunosuppressive enzymes was
shown to (partially) revert the immunosuppressive TME and
as such facilitate cancer specific immunity. Future preclinical
and clinical studies will have to substantiate if targeting one or
more of the suppressive mechanisms exerted by TIMs suffices to
control cancer progression.

CONCLUSION

In this review we emphasize the multifaceted functions that
TIMs possess to support cancer manifestation, progression,
and metastasis next to the roadblocks they form to successful
therapeutic interventions. This is evidenced by the abundance
of publications on the subject of TAMs, TADCs, TANs, MDSCs,
and the commonalities they share such as plasticity and
immunosuppressive functions. So far, vast efforts has been
invested in the development of pharmacological compounds
targeting TIMs to alter their cell number or repolarize their
functions. These strategies resulted in significant therapeutic
benefits in several preclinical models and are currently clinically
evaluated as additional modalities in cancer treatment.

Nonetheless, caution is warranted when neutralizing immune
factors that are not unique to the tumor and its TME (e.g.,
PGE2, ROS, iNOS, or TGF-β), since they are indispensable in
maintaining homeostasis. Therefore, TIM depleting or function
altering therapies targeting one of these factors, must be
transient or local in nature. For future therapies, it will be
essential to expand our knowledge on mechanisms that drive the

immunosuppressive barricades herded by TIMs. Also, the type of
cancer should be considered since some myeloid compositions
can be beneficial in one type while unfavorable in another.
Since migration patterns and metabolic aberrations occur during
the several stages of tumor progression, it is important to
push current methodology toward a combination of functional
imaging and advanced in silico analysis. This will be essential to
understand and predict the dynamics of the TME as well as why
some predicted therapies underperform in vivo.

Conventional therapies are often focused on eliminating
a particular subset among the abundance of myeloid cells
neglecting those that are desirable. Tumor lyses, clearance and
antigen presentation are essential modalities that are especially
designated to myeloid cells, however they are still undervalued.
Instead of eradicating a complete TIM population we rather
suggest to mold the myeloid cell composition and polarization
state, by combining several myeloidal immunotherapies, based
on the redundancy and commonalities in TIM phenotype and
function. In conclusion, we believe that reorganizing the myeloid
landscape can clear away the roadblock to a successful cancer
therapy.
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