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Identifiability of structural 
networks of nonlinear electronic 
oscillators
V. P. Vera‑Ávila1, R. Sevilla‑Escoboza1, J. Goñi2,3,4, R. R. Rivera‑Durón5 & J. M. Buldú5,6,7*

The interplay between structure and function is critical in the understanding of complex systems, 
their dynamics and their behavior. We investigated the interplay between structural and functional 
networks by means of the differential identifiability framework, which here quantifies the ability 
of identifying a particular network structure based on (1) the observation of its functional network 
and (2) the comparison with a prior observation under different initial conditions. We carried out 
an experiment consisting of the construction of M = 20 different structural networks composed of 
N = 28 nonlinear electronic circuits and studied the regions where network structures are identifiable. 
Specifically, we analyzed how differential identifiability is related to the coupling strength between 
dynamical units (modifying the level of synchronization) and what are the consequences of increasing 
the amount of noise existing in the functional networks. We observed that differential identifiability 
reaches its highest value for low to intermediate coupling strengths. Furthermore, it is possible to 
increase the identifiability parameter by including a principal component analysis in the comparison 
of functional networks, being especially beneficial for scenarios where noise reaches intermediate 
levels. Finally, we showed that the regime of the parameter space where differential identifiability is 
the highest is highly overlapped with the region where structural and functional networks correlate 
the most.

In the last decade, Neuroscience is one of the fields that has benefited the most from Network Science1, borrowing 
techniques and methodologies to describe structural and dynamical properties of the brain2,3. However, the other 
way around, consisting of generalizing neuroscience methods and transcend other applications where systems 
are organized in networks, is not so common. More recently, the concept of brain connectivity fingerprints has 
become a key research area4–12;

Here, we propose the generalization of the concept of brain connectivity fingerprints4 and, in particular, 
of differential identifiability12 to networks of dynamical oscillators, with the aim of better understanding the 
boundaries that hinder the identification of an underlying network structure from the observation of the dynam-
ics of its nodes. In computational neuroscience and brain connectomics, the idea of identifiability consists on, 
given the functional connectome of one subject, to identify which functional connectome from a set belongs to 
that same subject. With this aim, a test set of functional connectomes {Atest

i } (with i = 1, 2, . . . ,M ) is obtained 
from a group of M individuals using a brain imaging technique, such as functional magnetic resonance (fMRI), 
magnetoencephalography (MEG) or electroencephalography (EEG). Next, a second set (retest) of functional 
connectomes {Aretest

i } is obtained. Comparison between functional connectomes is usually estimated by the 
Pearson’s correlation coefficient of the entire connectivity profiles. Based on this, two different fingerprinting 
measures have been proposed. Differential identifiability12 quantifies, on average, how much more similar are the 
functional connectomes of the same subjects (when comparing test and retest) with respect to how similar are 
functional connectomes of different subjects in the dataset. The higher the differential identifiability, the more 
identifiable are the subjects in the test–retest dataset, and hence the more fingerprints are present in the data. This 
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fingerprinting score is a more continuous approximation to the concept of brain fingerprints than identification 
rate4. Identification rate quantifies, on average, how often (i.e. success rate) a functional connectome of a subject 
in the test set is the most similar to the functional connectome of the same subject in the retest set and viceversa.

The identifiability framework is based on group-level principal component analysis of functional connec-
tomes that maximizes the abovementioned differential identifiability score. Such framework has been shown 
to uncover functional connectome fingerprints within and across sites, for a variety of fMRI tasks, over a wide 
range of scanning length, and with and without global signal regression12,13. Additionally, it has been shown that 
it provides more robust and reliable associations between connectivity and cognition14 as well as with disease 
progression in neurodegeneration15. Finally, it has been recently assessed the positive effect of such framework 
on uncovering fingerprints on network measurements derived from functional connectomes16.

When applying those concepts to the assessment of structural networks where nodes are nonlinear oscillators, 
it is worth noting that identifiability relies on two key requirements: (1) the dynamics of each structural network 
and, in turn, its corresponding functional networks, need to be similar when the experiment is repeated and, (2) 
each structural network must show different dynamics from the other networks.

Regarding requirement (1), identifiability is strongly connected to the concept of consistency. In the general 
context of nonlinear dynamics, a consistent system17–19 is one that can reproduce the same dynamics when the 
same external input is applied, no matter what the initial conditions of the dynamical system are. Consistency has 
been reported in physical systems, such as lasers20,21 or optoelectronic systems22, but also in biological systems, 
such as neurons23 or brain dynamics19. However, identifiability differs from consistency in the fact that it does 
not require the existence of external input. Furthermore in the context of functional networks, identifiability 
relies on maintaining the same amount of coordination/communication between all dynamical units conform-
ing the whole system, leading to similar functional networks, no matter what the particular dynamics of the 
units are. One of the many issues in determining whether a set of dynamical systems are identifiable is how to 
quantify the level of similarity between the set of original functional networks and the “re-tested” one. As shown 
by Amico et al.12, the use of principal component analysis (PCA) is strongly recommended when dealing with 
experimental signals, where a certain amount of noise is contained in the time series and in the resulting con-
nectivity estimations to be analyzed. A part of enhancing the level of identifiability, PCA allows determining 
what principal components of the functional networks should be filtered, not only for the analysis of the system’s 
identifiability, but also for the evaluation of other properties of the functional networks.

Importantly, the identifiability of subjects on brain connectivity datasets deals with two significant drawbacks, 
i.e., non-stationary levels of synchronization between brain regions and the presence of highly varying (within 
session and across subjects) non-stationary noise. Both limitations can not be tuned or controlled in brain imag-
ing experiments. Hence it is not possible to evaluate and assess how increasing or decreasing the synchronization 
or functional coupling between nodes affects identifiability, or to what extent is noise inducing or compromising 
identifiability. To investigate these questions, in this paper, we analyzed how identifiability is related to the syn-
chronization level of a functional network and the distortion introduced by noise. We carried out experiments 
with networks of nonlinear electronic oscillators, modifying the coupling strength between oscillators and assess-
ing the synchronizability as a function of the level of synchronization. Besides, we evaluated the consequences 
of introducing different levels of noise in the construction of the functional networks and quantified how noise 
affected the estimated identifiability. Finally, we showed the benefits of introducing PCA in the evaluation of the 
correlation between functional networks and, ultimately, in the identifiability of the whole system.

Results
Identifiability of networks of dynamical systems.  The advantage of using electronic circuits to study 
identifiability is that the whole system can be configured in a desired way and all variables can be accessed, two 
facts that are imposible in the context of neuroscience. For this reason, it is important to detail all steps made 
during the construction of the system to be studied and how identifiability was measured. Figure 1 describes 
the procedure we followed to determine whether a network is identifiable given a group of different structures. 
First, the dynamics of a set of M structural networks were recorded ( M = 3 in the example of Fig. 1A). We called 
“test” to the set of first measurements of the time series of all dynamical units of each structural network. Second, 
the (weighted) adjacency matrices of the corresponding functional networks were obtained by quantifying the 
synchronization between oscillators. Third, the dynamics were recorded again and the second step was repeated 
in order to have a set of “re-test” functional networks. Finally, the test and re-test functional networks are com-
pared in order to decide whether a structural network can be recognized from the comparison of its functional 
networks, using the previous observation (i.e., test) as the identification key (Fig. 1B). Two different scenarios 
may arise (see Fig. 1C): (1) functional networks of the same structural network have high similarity between 
them but a low one compared with the rest, which indicates that the system is identifiable (Fig. 1C, first case) or 
(2) functional networks of the same structural network have the same level of similarity as compared to func-
tional networks from other structural networks, which is the signature of an unidentifiable system. Note that in 
the latter case, the reason can be either all functional networks have a very low similarity between them (Fig. 1C, 
second case) or, on the contrary, the similarity is very high in all cases, even when comparing two functional 
networks obtained from different structures (Fig. 1C, third case).

Experimental setup.  We carried out a series of experiments using nonlinear electronic circuits to test 
how identifiability is related to the level of synchronization of a functional network and its robustness against 
noise. We constructed M = 20 structural networks composed of N = 28 diffusively coupled electronic Rössler 
oscillators24. Equations of the dynamical systems, together with the values of their electronic components 
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(Table 1) and schematic diagrams (Figs. 7, 8) are detailed at “Methods” section. Rössler oscillators were set to 
have chaotic dynamics in order to better observe the transition from unsynchronized to fully synchronized 
dynamics. All structural networks had the same number of nodes and degree distributions. The only difference 
is that we reshuffled the connections between oscillators in order to have the 20 different structures (see “Meth-
ods” for details about the structural networks). Figure 2 has a schematic description of the experiment. We used 
an electronic array (EA), a personal computer (PC), a data acquisition card (DAQ) composed of 28 analog-to-
digital converters (ADCs) and 2 digital-to-analog converters (DACs) to record and control the dynamics of the 
networks. The EA comprised the 28 Rössler electronic oscillators and their corresponding electronic couplers, 
which sent the dynamics of the oscillators to their outgoing neighbors and, at the same time, collected the inputs 
from their incoming neighbors. The 28 analog ports (AI0–AI27) acquired the signal of each oscillator. The cou-
pling strength κ of the whole network was controlled by two digital potentiometers (XDCP), which were tuned 
by the signals coming from digital ports P0.0 and P0.1 (DO). During the experiment, we did not add noise to 
the oscillators, since it will be included directly in the functional networks.

Estimating differential identifiability.  For each of the M = 20 structural networks, we recorded test 
and retest dynamics (two acquisitions) of the N = 28 oscillators for coupling strength configurations ranging 
from a coupling strength κ = 0 to a value of κ = 1 . This guaranteed achieving synchronization of the ensemble 
for all structural networks. For each value of κ , we obtained the corresponding two functional networks (test and 
retest) of a given structural network by computing the phase synchronization between each pair of oscillators. 
For each node j, the instantaneous phase φj(t) was calculated from the Hilbert transform25,26 of the time series of 
its variable v2 (see equations at the “Methods” section for the definition of the Rössler variables). Next, we quanti-
fied the phase synchronization between phases φj(t) and φk(t) each pair of oscillators j and k, obtaining the phase 
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Figure 1.   Schematic representation of the identifiability phenomenon. (A) The dynamics of the nodes of 
three different structural networks (i, ii, and iii) are recorded (“test”). (B) The coordination between all pairs of 
nodes is quantified, and the corresponding functional networks are obtained. In the figure, we plot the matrices 
containing the weights of the links of the functional networks. Next, a second measurement is carried out 
(“re-test”), and the corresponding functional network is compared with the previous ones. (C) All test (rows) 
and re-test (columns) functional networks of each structure (i,ii and iii) are compared by pairs. The elements of 
the matrix contain the correlations (p) between each pair of functional networks. Identifiable systems are those 
whose diagonal has much higher values than the off-diagonal ones (first matrix of the plot). On the contrary, 
when all values are low (second matrix) or high (third matrix), the identification is not possible.
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synchronization between the two oscillators as wj,k = |ei[φj(t)−φk(t)]| , where | · | indicates temporal averaging. 
Finally, the average synchronization of the whole network was obtained as r = 1

N(N−1)

∑

i,j wj,k , where j  = k.
For each coupling strength κ , the values of wj,k were used as the elements of the weighted adjacency matrix 

A(m, κ) associated with each functional network, with m = 1, 2, . . . , 20 being the number of the underlying 
structural network. We repeated the experiment to have a test and re-test set of functional networks, named 
A(m, κ) and A∗(m, κ) , respectively. On the other hand, we also obtained the adjacency matrices of the underlying 
structural networks S(m) , which were independent of the coupling parameter κ.

Once the test and re-test functional networks were obtained, we calculated, for each coupling strength k, the 
Pearson correlation coefficient pij between all pairs i and j of the set of M functional networks, where i belongs 
to the “test” functional networks and j to the “re-test” ones. Finally, we constructed the identifiability matrix I  , 
which consists of a M ×M matrix whose elements are directly the values of pij . Note that I  is symmetric since 
pij = pji . Also note that the m element of the matrix diagonal (i.e., i = j = m ) contains the Pearson correlation 
coefficient of the structural network m when the “test” and “re-test” functional networks are compared, quantify-
ing how similar functional networks are for a given structure.

The identifiability matrix I  contains useful information about how reproducible the functional network of 
a given structure is and, at the same time, how different it is from the functional networks supported by other 
structures. Therefore, we calculated the self-identifiability Iself  as the average of the values of diagonal of I  , 
which is an indicator of how similar functional networks of a given structure are when they are re-tested. We 
also obtained Iothers , which is the average of the off-diagonal elements of the identifiability matrix. In this case, 
Iothers measures how similar functional networks obtained from two different structures are (in average). Note 
that the lower Iothers , the more identifiable a structure is within the set of M different structures.

Finally, we obtained the differential identifiability Idiff  by comparing how different is Iself  from Iothers12:

The differential identifiability Idiff  indicates to what extent it is possible to distinguish a given network structure 
from a set of M networks just by analyzing the organization of their corresponding functional networks. From 
now on, the differential identifiability Idiff  will be our indicator of the systems’ identifiability.

Functional vs. structural networks in a noisy scenario.  Previously to the identifiability analysis, we 
investigated the interplay between functional networks and their underlying structures. Figure 3A shows the 
average synchronization parameter r of all structural networks as a function of the coupling parameter κ . We can 
observe a smooth path to synchronization as κ is increased. The shadowed region of Fig. 3 indicates the standard 
deviation of the values of r for all structural networks. As we can see, the largest standard deviation is reported 
when r has a higher increase, i.e., during the transition from the unsynchronized to the synchronized manifold.

Next, we perturbed the elements of all functional networks with a (Gaussian) white noise term of amplitude 
ξ , in order to obtain a set of noisy functional networks Anoise(m, κ , ξ) . In such a way, we are accounting for the 
unavoidable presence of noise that exists in real experiments, which has consequences on the estimation of 
functional networks, as it is the case, for example, of brain27 or molecular28 networks. We have two reasons for 
introducing noise into the elements of the functional network and not directly into the electronic circuits. On the 

(1)Idiff = (Iself − Iothers)× 100

Figure 2.   Experimental setup. Schematic representation of the experimental arrangement of a network 
containing N = 28 electronic Rössler oscillators. The coupling strength between oscillators ( κ ) is adjusted by 
means of digital potentiometers X9C103 (XDCP), whose resistance is controlled through digital pulses sent by a 
DAQ (model NI USB 6363, from National Instruments). Port P0.0 is used to increase or decrease the resistance 
of the digital potentiometer, and port P0.1 sets the initial value (allowing for 100 discretized values of κ).
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one hand, we did not have access to 28 electronic noise generators (one for each oscillator). On the other hand 
the consequences of introducing noise directly into the time series are difficult to be interpreted. The reason is 
that we are concerned about the organization of functional networks and not the dynamics in them. Increasing 
the noise introduced into the oscillators does not linearly change the structure of the functional networks. In 
fact, the effects of noise are highly nonlinear and depend on the kind of dynamical system we are implementing 
and the number of connections of each particular node. For this reason, we preferred to modify directly the ele-
ments of the functional matrix. In this way, we assure that the organization of the functional network is changing 
as the values of the noise amplitude are increased. Furthermore, the effects of noise on functional networks will 
not depend on the kind of metric (phase synchronization) we used to quantify synchronization. In Fig. 3B, we 
plot the results of calculating the correlation Co(Anoise , S) between the matrices of the noisy functional networks 
A
noise(m, κ , ξ) and the underlying structural ones S(m) . We can observe how there exists a region of values of 

κ where the correlation between functional and structural matrices is maximized. This is the most convenient 
scenario to estimate the network structure based on the observation of its dynamics. Note, that this region 
arises for relatively low values of the coupling strength κ (around κ ∼ 0.075 ). The reason is that high values of 
κ lead to a high synchronization of the majority of oscillators of the network, no matter if they are structurally 
linked or not, introducing spurious functional links in the estimation. As a consequence, the identification of 
structural networks based on the observation of node dynamics relies on the existence of a partially incoherent 
state of the system.

Concerning the effect of the noise amplitude ξ , we can observe an impairment of the correlation in all cases. 
However, it is always around κ ∼ 0.075 where the correlation is higher compared to other coupling strengths.

Identifiability vs. noise and coupling strength.  But, how does the identifiability of the group of net-
works depend both on the coupling strength and the level of noise? To answer this question, we show in Fig. 4A 
the differential identifiability Idiff  of the M networks as a function of the coupling parameter κ and the level of 
noise ξ . We can observe that Idiff  is high for scenarios with low noise amplitudes, and it is completely lost for high 
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differential identifiability Idiff  is plot vs. κ and ξ . In (B), we apply PCA to obtain IPCAdiff  . Finally, in C), we plot the 
improvement of identifiability when PCA is applied, which is measured as IPCAdiff − Idiff .
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noise levels (in this particular case, for ξ > 0.6 ). Concerning the dependence on the coupling parameter, Fig. 4A 
shows that when κ was increased from zero, Idiff  increased monotonically until reaching a maximum around 
∼ 0.15 . If coupling was increased above this value, identifiability decreased again. The reason is that, as we have 
seen in the previous section, high values of coupling led to a scenario close to the complete synchronization of 
the functional network, introducing a high amount of spurious functional links, which, in turn, resulted on very 
homogeneous networks, no matter what the underlying structure is. As a consequence, all functional networks 
looked similar, and it was difficult to distinguish them.

Going back to κ ∼ 0.15 , we can see that, around this value, the network identifiability was especially robust 
against noise. Only when ξ > 0.2 , Idiff  began to decrease, having a reduction around 50% when ξ ∼ 0.4 . If we 
revisit Fig. 3A, we can observe how this particular value of coupling ( κ ∼ 0.15 ) was close to the region where net-
works were beginning to synchronize, having low values of the order parameter r. Therefore, as it happened in the 
case of inferring the network structure from the observation of its dynamics, low values of the coupling parameter 
were the most adequate to promote, in this case, the identifiability of structural networks based on their dynamics.

Identifiability is increased using the differential identifiability framework.  It is worth noting that 
identifiability strongly depends on the way of quantifying the similarity between functional networks. Regarding 
to this point, Amico et al.12 demonstrated that introducing principal component analysis (PCA) before comparing 
functional networks reduced the effect of the intrinsic noise of the system, increasing the level of identifiability. 
Therefore, we followed the same methodology as12 and compared each pair of functional networks using only the 
set of the l principal components that maximized the correlation between functional networks. The procedure was 
as follows: (1) for each coupling strength κ assessed, we carried out a group-level PCA decomposition including 
all test/retest functional networks as obtained from the M = 20 structural networks (hence the dimensional-
ity of the data and the number of principal components being 2M = 40 ), (2) we calculated Idiff (l) between the 
matrices containing only the first l components (in descending order of explained variance), with 1 ≤ l ≤ 2M , 
and (3) we identified the number of principal components lmax that maximized the value of Idiff (l) and hence 
uncover more functional fingerprints of the circuits. In this way, we obtained the optimal differential identifiability 
as IPCAdiff = max(Idiff (l)) , with l = 1, 2, . . . , 2M being the number of principal components. Using this methodol-
ogy, we can asses the levels of differential identifiability achieved as we include more and more components and 
find the optimal number where Idiff  is maximum. This raises the following question: are we effectively improving 
the identifiability of this set of circuit-based structural networks? Results shown in Fig. 4A show Idiff  values on 
the original data (i.e. no PCA decomposition/reconstruction applied) for a wide range of coupling strength κ and 
noise amplitude. Figure 4B shows the analogous assessment when reconstructing the functional networks, at each 
( κ , ξ ) configuration with the number of components that maximized Idiff  (i.e., IPCAdiff  ). It can be observed that the 
qualitative behavior was similar to the results obtained on the original data. However, both the maximum value 
IPCAdiff  and the region where this value was achieved were larger. For couplings close to κ ∼ 0.15 , high values of dif-
ferential identifiability were maintained even for regimes of moderate noise ( ξ ∼ 0.4).

Figure 5.   Synchronization vs. identifiability. In (A), we show the correlation between the structural 
and functional networks Co(Aξ , S) (blue line, values on the left vertical axis) and the optimal differential 
identifiability IPCAdiff  (orange line, values on the right vertical axis) as a function of the noise amplitude ξ for a 
fixed coupling parameter κ = 0.075 . In the inset (A), we plot the differences between the normalized values 
Inorm − Conorm . Dashed lines indicate the values of ξ at where Co(Aξ , S) and IPCAdiff  begin to decrease significantly. 
In (B), we plot the same variables as a function of the coupling strength κ . In this case, we set the noise 
amplitude to ξ = 0.18.
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Figure 4C combines both results by calculating the improvement ( IPCAdiff − Idiff  ) achieved when applying PCA. 
Interestingly, the highest improvement corresponded to regions of moderate noise where, at the same time, the 
amount of coupling was low.

Finally, we investigated the interplay between inferring structural networks from the observation of their 
dynamics and the differential identifiability. As we have seen in Fig. 3B, the highest correlation between the 
structural and functional networks Co(Anoise , S) was obtained for a coupling parameter κ ∼ 0.075 . In Fig. 5A we 
chose this particular value of κ and plot (1) the correlation between the structural–functional networks and (2) 
the optimal differential identifiability as a function of the noise amplitude ξ , respectively Co(Aξ , S) and IPCAdiff (ξ) . 
Vertical dashed lines indicate the value of noise amplitude at which both the structural–functional correlation 
and the optimal identifiability began to decrease. Note how the structural–functional correlation is more affected 
by low-to-moderate noise amplitudes, beginning its declining much faster than identifiability, which held its 
initial value up to ξ ∼ 0.4 . We normalized both parameters dividing their values by their means, obtaining the 
normalized identifiability Inorm =

IPCAdiff (ξ)

�IPCAdiff �
 and the normalized structural–functional correlation ( Conorm =

Co(ξ)
�Co(ξ)� ). 

Next, we calculated Inorm − Conorm . The inset of Fig. 5A shows how the maximum difference between both 
normalized parameters corresponded to intermediate noise amplitudes ( ξ ∼ 0.5 ). In other words, for situations 
with intermediate values of noise, the correlation between structural and dynamical networks decreases, however, 
the identifiability parameter better maintains the values reported without noise sources. Figure 5B shows the 
behaviour of the same variables as a function of the coupling strength κ . In this case, we set the noise amplitude 
to ξ = 0.18 and analyze how the correlation Co(Aκ , S) between the structural and functional networks changes 
Co(Aκ , S) , paying attention at the same time to the value of IPCAdiff (κ) . We observe how IPCAdiff (κ) overcomes 
Co(Aκ , S) for a wide range of coupling strengths. Also note that very low and very high values of κ have negative 
consequences on (1) the correlation between the structural and functional networks and (2) identifiability. In 
this way, a maximum appears around κ = 0.05 for both variables. As we can observe in Fig. 5B, both peaks are 
very close to each other. However, the peak of the inedibility is reached first, i.e., lower coupling strengths are 
needed to achieve the highest identifiability. Furthermore, identifiability better resists the inconveniences of 
increasing the coupling strength after the peak. This fact can be better observed at the normalized values 
Conorm = Co(κ)

�Co(κ)� and Inorm =
IPCAdiff (κ)

�IPCAdiff �
 , whose difference is plot in the inset of Fig. 5B. Inorm − Conorm reveals that 

the normalized identifiability is higher than the structural–functional correlation for moderate values of the 
coupling strengths ( 0.1 < κ < 0.56).

Discussion
We quantified the identifiability of a set of structural networks based on the observation of the dynamics of their 
nodes. First, we have seen how different network structures led to a different set of functional networks when 
the coupling parameter between the nodes of the network was increased. Importantly, when networks were 
completely unsynchronized, the resulting functional networks had a low number of links, whose weights were, 
in turn, low. As a consequence, the correlation with the underlying structural network was low. On the other 
hand, when the coupling parameter was high, it was possible to reach the synchronized state, leading to fully 
connected functional networks and, as a consequence, to a low correlation between structural and functional 
networks. We have seen that it was for low coupling strengths when the highest correlation between a network 
structure and its corresponding functional network was the highest. Next, we studied how the presence of noise 
in the construction of functional networks deteriorates the correlation between structure and function.

Fortunately, it is in scenarios with intermediate values of noise where we have seen that the identifiability 
parameter is more robust. This parameter indicates if it is possible to distinguish between different network 
structures just by looking at their dynamics. Suppose we had a given set of network structures and a sample of 
their corresponding functional networks. Now, someone provided us with a new mysterious functional network 
without indicating what its underlying structure was. If a system were identifiable, we would be able to infer 
what network structure corresponded to the new functional network just by comparing it to the complete set of 
the previous functional networks. However, as in the case of inferring structural links from node dynamics, we 
observed that identifiability is highly dependent on the coupling parameter. Very high coupling strengths led to 
fully connected functional networks hindering to find differences between functional networks obtained with 
different structures. It is at low coupling parameters (i.e., for regions of low synchronization) where identifiability 
is the highest since functional networks are more heterogeneous and, at the same time, more correlated with 
the underlying structures. In the absence of noise, identifiability was maintained for a wide range of couplings. 
Interestingly, we observed how, in the presence of noise, identifiability was quite robust, especially when PCA 
was introduced to quantify the similarity between functional networks.

It is worth mentioning the limitations of the identifiability parameter. First, we need to have previous knowl-
edge of how many different systems (i.e., structural networks) we are dealing with. Second, we need previous 
recordings of the dynamics of each structural network to quantify the matching between each structural and 
functional network. These two requirements seem to be too strong in certain real systems, but not all of them. 
For example, the identifiability parameter is being used to analyze brain imaging datasets. In this application, 
the brain activity of a group of individuals is recorded using a different brain imaging technique, such as fMRI, 
EEG, or MEG. Next, functional networks are constructed from the activity of each brain region. Note that, in 
this case, the underlying structure of the brain networks is not known, since it is not possible to have a complete 
reconstruction of the anatomical network of each individual. However, it has been demonstrated that individuals 
can still be identified thanks to the methodology we have followed in the current work, which opens the door 
to a diversity of future applications.
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Finally, two key points must be stressed concerning the applicability of the identifiability parameter. First, 
identifiability depends on the specific set of structural networks that we want to distinguish. Therefore, a given 
structure can be identifiable when compared within a group of networks with entirely different structures, but 
the same structure could be unidentifiable when the rest of the members of the group are similar. Further studies 
should clarify the minimal structural differences between networks to make them identifiable. Second, our results 
are highly dependent on the dynamical system placed on the nodes of the networks, and it should be investigated 
whether the results obtained here can be extended to other kinds of dynamics systems.

Given all, we believe that identifiability can be a useful indicator to distinguish between systems whose 
dynamics are strongly dependent on its structure and those that are not. The dynamics of the former would be 
adequate candidates to infer the underlying structural properties of the system, in case we do not have access 
to its wiring connections. On the contrary, inferring the structural networks of systems with low identifiability 
could be a much harder task.

Methods
Network dynamics: the Rössler oscillator.  Equations describing the dynamics of the electronic Rössler 
oscillators are24,29,30:

where v1i , v2i and v3i are the three voltages that describe the dynamical state of oscillator i, R and C are resist-
ances and capacitors, κ is the coupling strength (controlled by a digital potentiometer) and ai,j are the elements 
of the adjacency matrix A, with aij = 1 if the output of oscillator i is used as the input of oscillator j and zero if 
both circuits are not connected in the direction i → j . Finally, G(v1i) is a piecewise nonlinear function given by:

Structural networks.  We constructed M = 20 different structural networks, all of them composed of 
N = 28 nodes (see Fig. 6A for an illustrative example). We used the same degree distribution for all networks, 
trying to have a certain amount of heterogeneity in the nodes’ degree (i.e., number of neighbors). Figure 6B 
shows the precise number of neighbors each node has, with a hub (node # 1) having 7 neighbors and, on the 
opposite side of the distribution, 7 nodes with degree 1. To obtain the set of M different networks, we randomly 
reshuffled the links of each node, with the only conditions of maintaining the total number of neighbors and 
avoiding self-loops. Furthermore, we kept the node number along with the structural networks and, therefore, 
node i (with i = 1, 2, . . . ,N ) always had the same number of links in all the different structures. We calculated 
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Figure 6.   Structural networks. (A) Example of one network structure. (B) Node number vs. its degree of all 
structural networks.
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the shortest path length d and the clustering coefficient C of the structural networks, obtaining an average of 
�d� = 2.92 and �C� = 0.08 and a standard deviation within the group of dstd = 0.10 and Cstd = 0.04 , respectively.

Table 1.   Parameters of the Rössler electronic oscillator in the chaotic regime.

C1 = 1nF C2 = 1nF C3 = 1nF κ = [0, 1]

R1 = 2M� R2 = 200 k� R3 = 10 k� R4 = 100 k�

R5 = 50 k� R6 = 5M� R7 = 100 k� R8 = 10 k�

R9 = 10 k� R10 = 100 k� R11 = 100 k� R12 = 150 k�

R13 = 68 k� R14 = 10 k� R15 = 500 k� Rc = 58 k�

Vd = 0.7 Vee = 9

Figure 7.   Electronic representation of the Rössler oscillator.

Figure 8.   Electronic representation of coupler circuits. This circuit works as a diffusive coupling between an 
electronic oscillator and its neighbors. Each differential Op-Amp receives the output of oscillator j, which is used 
as the input of oscillator i. Another Op-Amp (the one on the right) adds the inputs of all the incoming signals of 
oscillator i that are received from its j neighbours. All resistances of the coupler circuit have a value of Ri = 1 k�.
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Parameters of the electronic components.  We set the parameters of Eqs. (2)–(4) in order to have cha-
otic dynamics at the Rössler oscillators. The main advantage of being in such a regime is that the order parameter 
r is a good indicator of the global synchronization of the network, which allows relating the reported values of 
the identifiability parameter with the level of synchronization of the whole network. The specific values of the 
electronic components are summarized in Table 1.

Circuit diagrams.  The Rössler oscilator.  We use the Rössler system described in Ref.30, which is composed 
of a combination of resistances, capacitors, diodes and operational amplifiers (Op-Amp). All parameters are 
fixed and equal to all oscillators. Figure 7 contains the circuit diagram.

The coupler circuit.  Each node of the network (i.e., Rössler oscillator) is connected to its neighbours accord-
ing to the adjacency matrix A . As shown in Eq. (3), the coupling between a node i and its neighbor j is diffusive 
( v2j − v2i ). Next, all inputs of node i are added using an Op-Amp in the voltage adder configuration. See Fig. 8 
for details about the circuit diagram.
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