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This study aimed to validate the physiological importance of Arabidop-

sis thaliana alternative oxidase 1a (AtAOX1a) in alleviating oxidative stress

using Saccharomyces cerevisiae as a model organism. The AOX1a transfor-

mant (pYES2AtAOX1a) showed cyanide resistant and salicylhydroxamic

acid (SHAM)-sensitive respiration, indicating functional expression of

AtAOX1a in S. cerevisiae. After exposure to oxidative stress, pYES2-

AtAOX1a showed better survival and a decrease in reactive oxygen species

(ROS) when compared to S. cerevisiae with empty vector (pYES2). Fur-

thermore, pYES2AtAOX1a sustained growth by regulating GPX2 and/or

TSA2, and cellular NAD+/NADH ratio. Thus, the expression of

AtAOX1a in S. cerevisiae enhances its respiratory tolerance which, in turn,

maintains cellular redox homeostasis and protects from oxidative damage.

Alternative oxidase (AOX) is a nonproton pumping

ubiquinol oxidase localized in the inner mitochondrial

membrane of higher plants, fungi, some protists and

was recently identified in 28 animal species [1]. In

contrast to cytochrome c oxidase (COX), it is cyanide

resistant and branches from the ‘standard’ mitochon-

drial respiratory chain at the level of ubiquinone

(UQ). It is considered as a sink for excess electrons

as it reduces the molecular oxygen to water, bypass-

ing the oxidative phosphorylation at both complex III

and IV. Thus, AOX plays an important role in

maintaining the cellular energy balance [2–4]. A crys-

tal structure of AOX from Trypanosome brucei

revealed that it is a homodimer, which exists as an

integral interfacial membrane protein with a nonhaem

diiron carboxylate active site buried within a four

helix bundle. The active site is ligated by four gluta-

mate residues and a highly conserved Tyr220, which

mediates its catalytic activity. Furthermore, the two

hydrophobic cavities occur per monomer which bind

to ubiquinol and Tyr220 for catalytic cycle and O2

reduction [5–7].
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AOX was first identified in thermogenic plants to

provide favorable temperature during floral develop-

ment to attract pollinators [8–11]. In nonthermogenic

plants, AOX is known to prevent over-reduction of

UQ and generation of reactive oxygen species (ROS)

while allowing continued operation of the tricarboxylic

acid (TCA) cycle [12–14]. On exposure to abiotic

stress, AOX-deficient plants showed an increase in

intracellular ROS and a decrease in photosynthetic

performance as compared to wild-type plants [15–19].
On the other hand, AOX overexpression lines showed

an enhanced photosynthetic efficiency with lower levels

of cellular ROS when compared with wild-type plants

during abiotic stress conditions [20–22]. In Arabidopsis,

overexpression of AOX1a alleviated the Al-induced

programmed cell death (PCD) by decreasing the ROS

production due to efficient mitochondrial electron flux

and caspase-3-like activation [23]. Also, the role of

AOX has been studied extensively in lower organisms

since last two decades. Kumar and S€oll [24] reported

for the first time heterologous expression of Arabidop-

sis thaliana AOX into hemA-deficient strains of

Escherichia coli, which acquired resistance to cyanide

and exhibited aerobic respiration. Later, several other

studies also demonstrated the expression of AOX in

many yeast, fungal, and bacterial species, which

resulted in the successful operation of cyanide-insensi-

tive respiration [25–30]. Recently, Honda et al. [29]

demonstrated the visual expression of AOX in

Aspergillus niger transformants (harboring fusion gene

aox1-egfp) upon exposure to heat shock, oxidative,

and osmotic stress. Furthermore, expression of AOX

from Hansenula anomala in Saccharomyces cerevisiae

resulted in up-regulation of several proteins related to

major metabolic pathways such as Krebs cycle and

amino acid biosynthesis suggesting the physiological

role of AOX in mitoproteome plasticity [31]. The role

of AOX is also revealed in the survival of pathogenic

fungi such as Aspergillus fumigatus and Histo-

plasma capsulatum inside the host under stress condi-

tions [32,33]. Similar to plants, the AOX mutant of

pathogenic yeast Cryptococcus neoformans showed sus-

ceptibility to oxidative stress [34].

Yeast cells have become one of the most preferred

experimental models to study the PCD and aging

under oxidative stress, owing to special characteristics

such as short life cycle and ease for genetic manipula-

tion along with presence of core cellular processes sim-

ilar to eukaryotes [35]. In most of the aerobic cells,

respiration is the major source for generation of super-

oxide radical (O2
�) as electrons leak out from the

mitochondrial electron transport chain at Complex I

and Complex III. Furthermore, dismutation of O2
� by

superoxide dismutase (SOD) generates H2O2, a quite

stable toxic product which creates oxidative environ-

ment inside the cell [36]. To detoxify the cellular H2O2,

mitochondria have evolved an efficient antioxidant

defense system such as catalase and peroxiredoxins,

which include glutathione peroxidase/glutathione

reductase and thioredoxin peroxidase/thioredoxin

reductase [37]. In spite of the existence of such a

strong antioxidant defense system, several pet mutants

(impaired in mitochondrial electron transport chain) of

S. cerevisiae showed accumulation of H2O2. However,

the addition of exogenous cytochrome c to isolated

mitoplasts significantly decreased the H2O2 levels [38].

In Candida albicans and Aspergillus niger, AOX was

also induced along with cytochrome c under oxidizing

conditions [30,39]. Thus, AOX pathway is known to

play an important role in the alleviation of ROS and

thereby oxidative stress, either independently or in

association with the COX pathway and/or antioxidant

defense system. Furthermore, a direct or an indirect

role of AOX has also been demonstrated in maintain-

ing redox homeostasis in higher plants in response to

several abiotic stresses [18,19,40–42]. However, such

type of significance for AOX is yet to be elucidated in

lower organisms.

In Arabidopsis, AOX1a is known to be induced

under various oxidative stresses (imposed by biotic

and abiotic stresses) and developmental stages

[15,16,18,43–45], which indicate that genetic engineer-

ing of AOX1a might be a promising tool to combat

oxidative stress in AOX deficient strains or organisms.

In the present study, AtAOX1a was heterologously

expressed in S. cerevisiae (an eukaryotic organism

devoid of AOX) to characterize its role in response to

oxidative stress. To create an oxidative environment

inside the cells, S. cerevisiae were incubated with H2O2

and tertiary-butyl hydroperoxide (t-BOOH). The func-

tional expression of AtAOX1a and its characterization

have been studied by monitoring the changes in respi-

ration, growth, viability, ROS, antioxidant system,

and redox state of S. cerevisiae under oxidizing

conditions.

Materials and methods

Strains and culture conditions

Escherichia coli (E. coli) DH5a or BL21(DE3)pLysS (Invit-

rogenTM, Waltham, MA, USA) were grown at 37 °C in

Luria–Bertani medium. Saccharomyces cerevisiae strain

INVSc1 (InvitrogenTM) was grown at 30 °C either in YPD

medium (1% w/v yeast extract, 2% w/v peptone and 2%

w/v dextrose) or SC-URA¯ minimal medium (0.67% w/v
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yeast nitrogen base without amino acids, 2% w/v glucose

as carbon source) and amino acids.

Cloning of AtAOX1a and plasmid construction

Total RNA was isolated from A. thaliana wild-type leaves

using TRI reagent (Sigma-Aldrich, St. Louis, MO, USA).

One microgram of total RNA was used for the first-strand

cDNA synthesis using iScriptTM cDNA synthesis kit

(Bio-Rad, Hercules, CA, USA). AtAOX1a encoding a

mature protein was amplified by Phusion DNA poly-

merase (Clontech, CA, USA) using the following

primers: F-GAGAATTCGCTAGCACGATCACTCTGG

and R-GGCTCGAGTCAATGATACCCAATTGGAG,

and cloned into a pET28a(+)TM expression vector. In con-

trast, AtAOX1a encoding a mature protein along with its

leader sequence was amplified by using the primers: F-GG

GAATTCTGATGATGATAACTCGCGGTGG and R-G

GCTCGAGTCAATGATACCCAATTGGAG, and cloned

into a pYES2/NT expression vector. Clones were confirmed

by DNA sequencing. The recombinant plasmids were trans-

formed into their respective host strains, i.e., BL21(DE3)

pLysS and INVSc1.

Protein expression, purification, and antibody

generation

The expression of AtAOX1a in E. coli BL21(DE3)pLysS

was induced by 0.1 mM isopropyl-b-D-thiogalactopyranoside
(IPTG) at 28 °C for 4 h. The recombinant protein was puri-

fied under denaturing conditions with Ni-NTA agarose col-

umn using standard protocols and the purified protein from

the gel slice was subjected to a matrix-assisted laser desorp-

tion ionization time-of-flight mass spectrometry (MALDI-

TOF/TOF) analysis as described in ref. [46] for confirmation

as AtAOX1a. The purified protein was used to generate a

polyclonal antibody in rabbit using standard protocols (Ani-

mal ethics approval number is UH/IAEC/KPMS/2014-1/24).

AtAOX1a protein expression in

Saccharomyces cerevisiae

For heterologous protein expression, S. cerevisiae with

empty vector (pYES2) or transformed with AtAOX1a

(pYES2AtAOX1a) were grown overnight in SC-URA¯
minimal media containing 2% galactose as a carbon

source. Protein was extracted using trichloroacetic acid

(TCA) method [47] and separated on a 12.5% SDS/PAGE.

For immunodetection, protein gel was electroblotted onto

polyvinylidene difluoride (PVDF) membrane and treated

with a polyclonal AOX1a antibody (generated as men-

tioned in section ‘Protein expression, purification, and anti-

body generation’) at 1 : 1000 dilutions followed by a goat

anti-rabbit IgG-alkaline phosphate conjugate (Sigma, USA)

at 1 : 5000 dilutions. The blot was developed using

5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazo-

lium (BCIP/NBT) system.

Oxidative stress

Oxidative stress analyses were performed as described

earlier [48]. Treatment duration was different for each set

of experiments depending on their feasibility. The duration

of oxidative stress treatment was fixed at 10 min for ROS

estimation, 4 h for survival rate and growth recovery assay,

and 75 min for pyridine nucleotides and transcript level

analyses.

Measurement of O2 uptake and cell survival rate

The respiratory O2 uptake measurements (10 min) were

performed using Clark-type O2 electrode [49,50]. The

viability of cells was examined with fluctuation assay as

reported by Dalal et al. [50].

Measurement of ROS

The intracellular ROS level was measured following Jang

et al. [51]. The cells were incubated with 100 lM 20,70-
dichlorodihydrofluorescein diacetate (H2DCF-DA; Sigma)

for 5 min in the dark at 25 °C, and the change in DCF flu-

orescence was imaged under a laser-scanning confocal fluo-

rescence microscope (LSM 710 NLO ConfoCor 3; Carl

Zeiss, Jena, Germany).

Measurement of pyridine nucleotide content

The extraction and estimation of NAD+ and NADH were

done as per Queval and Noctor [52]. The assay involves

phenazine methosulfate (PMS) catalyzed reduction of

dichlorophenolindophenol (DCPIP) in the presence of alco-

hol dehydrogenase (ADH) and ethanol. The NAD+ and

NADH content were calculated using the relevant standard

(0–40 pmole).

RNA isolation and expression analysis

Total RNA was isolated using the acid-phenol method [53].

First strand cDNA was synthesized with 2 lg of total RNA

using SuperScript� III (Invitrogen) according to manufac-

turer’s instructions. Primers used for real-time PCR analysis

are listed in Table 1 [42]. Comparative CT method was used

to analyze the relative gene expression levels [54].

Statistical analysis

All values are presented as means � standard errors of the

means (SEM). The statistical evaluation of the data was
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performed with one-way analysis of variance (ANOVA),

Tukey test of multiple comparison analysis using SIGMA

PLOT 11.0 software (Systat, San Jose, CA, USA). P values

of < 0.05 were considered as statistically significant.

Results

Expression of AtAOX1a in Escherichia coli and

mass analysis

The expression of AtAOX1a protein induced in the

presence of 0.1 mM IPTG in E. coli was visualized

on SDS/PAGE as a ~ 36 kDa band as it includes

AtAOX1a sequence encoding a mature protein

(32.34 kDa) and pET28a(+) vector sequence (3.83 kDa)

(Fig. 1A). Four major peptide fragments obtained dur-

ing MALDI-TOF-TOF analysis of a trypsin-digested

protein showed the following sequences in Biotools:

WPTDLFFQR (1209.81 Da), DVNHFASDIHYQGR

(1658.04 Da), GNIENVPAPAIAIDYWR (1898.27 Da),

and ELDKGNIENVPAPAIAIDYWR (2383.58 Da).

As the sequences from these peptides showed 100%

matching with Arabidopsis AOX1a (Fig. 1B, and

Figs S1, S2A–D), the purified protein was injected

into a rabbit and the polyclonal antibody was

obtained.

Table 1. List of primers used in real-time PCR study. ACT1 was used as housekeeping gene.

Gene Accession no. Primer sequence (50 to 30) Amplicon length (bp)

SOD1 YJR104C F-TGGTTGTGTCTCTGCTGGTC
R-TAACGACGCTTCTGCCTACA

191

SOD2 YHR008C F-CAAGCTGGACGTTGTTCAAA
R-AGATCTTGCCAGCATCGAAT

191

GPX2 YBR244W F-TTTGGGGTTCCCATGTAATC
R-ACCTGCTTTTTGGCTTTTCA

172

TSA2 YDR453C F-TTTGTCCCATTGGCTTTTTC
R-ACCGTCTTTTCTGGGAAGGT

159

ACT1 YFL039C F-CGTTCCAATTTACGCTGGTT
R-GAAGTCCAAGGCGACGTAAC

184

Fig. 1. Purification profile and molecular mass analysis of a polyhistidine tagged pET28a-AtAOX1a recombinant protein: (A) 12.5% SDS/

PAGE depicting a ~ 36 kDa AtAOX1a protein in different fractions of the purification protocol. Abbreviations used are as follows: M-marker,

P-pellet (insoluble protein), S-supernatant (soluble protein), FT-flow through (supernatant passed through Ni-NTA column), W-washing

fractions, E-elute (purified protein). (B) The sequences corresponding to peptide fragments with molecular masses of 1209.819, 1659.057,

1899.286, and 2384.592 Da, respectively, obtained from MALDI-TOF-TOF analysis of trypsin digested purified protein showed 100%

matching to internal sequences (indicated in red font) of Arabidopsis thaliana AOX1a (AT3G22370), retrieved from NCBI database.
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Functional characterization of AtAOX1a in

Saccharomyces cerevisiae

The protein expression of AtAOX1a in S. cerevisiae

was confirmed through western blot analysis (Fig. 2A).

To ascertain the function of AtAOX1a, cyanide-sensi-

tive respiration was monitored using 1 mM KCN, an

inhibitor of complex IV in COX pathway, while cya-

nide-insensitive respiration was monitored in the pres-

ence of 2 mM salicylhydroxamic acid (SHAM) or

100 lM propyl gallate (PG), inhibitors of AOX in the

alternative pathway. In the absence of metabolic inhi-

bitors, the respiratory rates of pYES2AtAOX1a

(8.6 � 0.11 nmol O2 s�1) were similar to pYES2

(8.45 � 0.09 nmol O2 s�1). But, in the presence of

KCN, pYES2 showed a pronounced decrease in respi-

ratory rates when compared with pYES2AtAOX1a. In

contrast, addition of SHAM or PG significantly

decreased the respiratory rates of pYES2AtAOX1a

but not of pYES2 (Fig. 2B).

The exponential growth pattern of both pYES2 and

pYES2AtAOX1a were found to be similar

(OD600 = 2.1) up to 6 h. But, treatment with KCN

remarkably decreased the exponential growth in yeast

cells (Fig. 2C). However, the decrease in exponential

growth of pYES2 was more significant when compared

with pYES2AtAOX1a. Furthermore, in the presence

of KCN, growth recovery was found to be higher in

pYES2AtAOX1a than pYES2 (Fig. 2D). Taken

together, these results indicate that AtAOX1a was

successfully expressed and functional in S. cerevisiae.

Changes in cellular ROS during oxidative stress

Under control conditions, the cellular ROS was mini-

mal in both pYES2 and pYES2AtAOX1a as indicated

by DCF fluorescence. However, upon treatment with

KCN, H2O2, or t-BOOH, the fluorescence increased

significantly in pYES2. In contrast, pYES2AtAOX1a

restricted the increase in fluorescence during oxidative

stress indicating the importance of AOX1a in prevent-

ing and/or regulating the ROS generation (Fig. 3).

Changes in cell survival rate and growth recovery

during oxidative stress

Among the two oxidants, H2O2 was found to be more

lethal than t-BOOH. Upon treatment with these oxi-

dants, the survival rate of pYES2 decreased drastically

as compared to pYES2AtAOX1a (Fig. 4A). Also,

recovery assays clearly indicated an enhanced colony

number in pYES2AtAOX1a than in pYES2 under oxi-

dizing conditions with a clear visible difference at

1 9 10�2.5 and 1 9 10�3 dilutions (Fig. 4B). It

appears that AOX1a plays a critical role in decreasing

the rates of cell death and improving their growth

recovery under oxidizing conditions.

Fig. 2. Functional expression of AtAOX1a in Saccharomyces cerevisiae. (A) Western blot showing the AtAOX1a protein (44 kDa) expression

in pYES2AtAOX1a (right side) but not in PYES2 (left side); (B) Rates of oxygen uptake by pYES2 and pYES2AtAOX1a in the absence or

presence of KCN (1 mM), SHAM (2 mM), and PG (100 lM); (C) Time-dependent growth curve of pYES2 and pYES2AtAOX1a in the absence

or presence of KCN (1 mM) and (D) Growth recovery in pYES2 and pYES2AtAOX1a after KCN (1 mM) treatment for 4 h. Different lowercase

alphabetical letters indicate statistically significant difference (P < 0.05).
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Differential antioxidant gene expression profile

during oxidative stress

The ROS scavenging efficiency of pYES2 and pYE-

S2AtAOX1a was measured by monitoring the changes

in transcript levels of antioxidant genes viz., Superox-

ide dismutase 1 (SOD1), Superoxide dismutase 2

(SOD2), Glutathione peroxidase 2 (GPX2), and Thiore-

doxin peroxidase 2 (TSA2) during oxidative stress

(Fig. 5A–D). Under control conditions, the expression

of these antioxidant genes was approximately similar

in both pYES2 and pYES2AtAOX1a. Upon treatment

with H2O2 or t-BOOH, the expression of SOD1 (> 8-

fold), SOD2 (> 6-fold), GPX2 (> 52-fold), and TSA2

(> 157-fold) increased significantly by several fold in

both pYES2 and pYES2AtAOX1a (Fig. 5A–D). But,

the expression of GPX2 was down-regulated significantly

Fig. 3. Effect of H2O2 (2 mM) or t-BOOH (0.25 mM) on the intracellular ROS generation. ROS were monitored in pYES2 and pYES2AtAOX1a

at 488 nm (excitation) and 525 nm (emission) wavelengths under a confocal fluorescence microscope as DCF fluorescence produced by the

action of esterases on H2DCFDA. Sample treated with KCN (1 mM) was used as a positive control.

Fig. 4. Effect of H2O2 (2 mM) or t-BOOH (0.25 mM) on (A) the cell survival rate and (B) return to growth assay in pYES2 and

pYES2AtAOX1a. Different lowercase alphabetical letters indicate statistically significant difference (P < 0.05).
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in pYES2AtAOX1a when compared with pYES2 in

the presence of both H2O2 and t-BOOH (Fig. 5C). In

contrast, the expression of TSA2 was down-regulated

significantly in pYES2AtAOX1a when treated with t-

BOOH, while remained unchanged in the presence of

H2O2 (Fig. 5D).

Changes in cellular redox during oxidative stress

The role of AtAOX1a in maintaining the cellular

redox balance during oxidative stress was revealed by

monitoring the changes in pyridine nucleotide (NAD+

and NADH) redox couple. In control, the cellular

levels of NAD+, NADH, and the redox ratio of

NAD+/NADH were similar in both pYES2 and pYE-

S2AtAOX1a. Upon treatment with H2O2, the cellular

NAD+ levels decreased significantly in both pYES2

and pYES2AtAOX1a (Fig. 6A). In contrast, the

decrease in cellular NADH levels was significant in

pYES2AtAOX1a alone (Fig. 6B). Consequently, the

cellular redox ratio of NAD+/NADH was maintained

at much higher levels in pYES2AtAOX1a when com-

pared with pYES2 in the presence of H2O2 (Fig. 6C).

The responses of NAD+, NADH, and consequently

NAD+/NADH were quite different in t-BOOH-trea-

ted samples as compared to H2O2 treatment. In the

presence of t-BOOH, both NAD+ and NADH levels

increased significantly, while the redox ratio of

NAD+/NADH decreased drastically in pYES2A-

tAOX1a when compared with pYES2 (Fig. 6A–C).

Discussion

In higher plants, AOX is known to perform several

mitochondrial and extramitochondrial functions, viz:

(a) alleviation of reactive oxygen and nitrogen species,

and cell death [16,55–57], (b) preventing over-reduction

of chloroplastic/mitochondrial electron transport carri-

ers, particularly plastoquinone or UQ [13], (c) mainte-

nance of cellular redox and carbon balance [18,19,58],

(d) modulation of cellular energy level [59], and (e)

optimization of photosynthesis during a wide range of

biotic and abiotic stresses [18,19,60,61]. The role of

AOX in alleviating ROS levels and oxidative stress is

not only confined to plants but was also revealed in

several nonphotosynthetic organisms including fungi,

protists, bacteria, and human cells [29,39,62,63]. These

observations suggest that engineering of AOX into

such species which are deficient in AOX may help them

to cope up against various biotic and abiotic stresses.

Saccharomyces cerevisiae lacks an AOX homolog

[64]. Therefore, AtAOX1a was expressed in S. cere-

visiae to validate its physiological function during

oxidative stress (Fig. 2A). It is well known that any

restriction of electron flow through the COX pathway

or exposure to oxidative stress leads to an induction of

AOX in plants and fungi [21,27,60,65]. Corroborating

with these studies, restriction of electron transport

through the COX pathway by KCN caused a signifi-

cant reduction in the total respiratory rates of pYES2

and pYES2AtAOX1a. However, due to an AOX cat-

alyzed respiration, pYES2AtAOX1a showed higher

respiratory rates compared to pYES2. While the

SHAM-insensitive respiration in pYES2 indicates the

absence of AOX-catalyzed respiration, SHAM or PG-

sensitive respiration in pYES2AtAOX1a confirms the

functional expression of AtAOX1a in yeast (Fig. 2B)

[29,39]. Any increase in the respiratory activity is

known to increase the chronological and replicative

lifespan of yeast [66]. Also, the recovery in the growth

curve assays and a rise in the total respiratory rates of

pYES2AtAOX1a in the presence of KCN reveal the

significance of AOX-catalyzed respiration in the main-

tenance of yeast cell growth (Fig. 2B–D).

ROS production is a common phenomenon in cells,

which occurs during aerobic respiration or in response

to several biotic or abiotic stresses. But, excessive ROS

production leads to oxidative stress [67–69]. Yeast cells

show a range of responses depending on the concen-

tration of cellular ROS. At very low levels of ROS,

the cells try to adapt themselves, while at higher levels

of ROS, the cells activate their antioxidant defense sys-

tem mediated by Yap1p and Msn2,4p transcription

factors [70]. Beyond this, ROS might arrest the cell

cycle leading to apoptosis [71,72]. In the present study,

the higher levels of cellular ROS induced by KCN,

H2O2, or t-BOOH in pYES2 were positively correlated

with cell death and negatively correlated with growth

recovery. In contrast, the lower levels of ROS, better

survival rate, and growth recovery recorded under oxi-

dizing environment in pYES2AtAOX1a indicate the

importance of AOX catalyzed respiration in mitigating

the cellular ROS production (Figs 3 and 4A,B).

Redox homeostasis is a basic requirement to main-

tain the cellular metabolism and ROS, particularly

during aging [72,73]. Accumulation of NADH

decreases the Sir2 activity, which is essential for chro-

matin silencing and extension of life span. Thus, any

increase in the redox ratio of NAD+/NADH extended

the chronological as well as replicating life span of

yeast cells [74,75]. The pYES2AtAOX1a showed an

increase in the NAD+/NADH ratio when compared

with pYES2 upon treatment with H2O2. In contrast,

pYES2AtAOX1a maintained the cellular redox home-

ostasis by minimizing the redox ratio of NAD+/

NADH raised by t-BOOH. These results elucidate the
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importance of AtAOX1a in the maintenance of cellu-

lar redox homeostasis to increase the life span as evi-

dent by cell survival rate of yeast (Figs 4A,B and 6C).

Furthermore, the sulphydryl (‒SH) group plays a

critical role in proper functioning of several of the

enzymes, transcription factors, and membrane proteins,

which in turn play a significant role in maintaining the

cellular redox homeostasis [73]. During oxidative stress,

cysteine sulfhydryl residues are oxidized to disulfide

bonds, thereby leading to a loss in protein activity.

Small heat-stable oxidoreductases, glutaredoxins, and

thioredoxins catalyze the reduction of disulfides to thi-

ols using thiolated cysteine residues present in the

active sites [73,76,77]. A few studies reported the

role of glutaredoxins and thioredoxins in supplying

reducing equivalents to the regulatory sulfhydryl/disul-

fide system of AOX to activate it, which in turn play a

role in preventing the over-reduction of mitochondrial

electron transport carriers and thereby ROS generation

[78–80]. In the present study, a several fold increase in

the transcript levels of GPX2 and TSA2 in pYES2 and

their down-regulation in pYES2AtAOX1a in the pres-

ence of t-BOOH and/or H2O2 suggests the role of

AOX1a in regulating the expression of these antioxi-

dant enzymes, which play an important role in the

detoxification of ROS and the maintenance of cellular

redox balance (Figs 3, 5C,D and 6C).

Fig. 5. Relative mRNA profile of the antioxidant genes (A) SOD1,

(B) SOD2, (C) GPX2, and (D) TSA2 in pYES2 and pYES2AtAOX1a

after exposure to H2O2 (2 mM) or t-BOOH (0.25 mM). ACT1 was

used as housekeeping gene. Different lowercase alphabetical

letters indicate statistically significant difference (P < 0.05).

Fig. 6. Changes in the total cellular pyridine nucleotides (A) NAD+;

(B) NADH; and (C) ratio of NAD+ to NADH in pYES2 and

pYES2AtAOX1a upon treatment with H2O2 (2 mM) or t-BOOH

(0.25 mM). Different lowercase alphabetical letters indicate

statistically significant difference (P < 0.05).
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The results from the present study suggest that

transformation of AtAOX1a introduced AOX-

catalyzed respiration in S. cerevisiae, which in turn

mitigated ROS generation by regulating GPX2 and

TSA2 to maintain cellular redox homeostasis and

better cell survival rate during oxidative stress.
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Fig. S2 Lift spectrum and Biotools display of four

major peaks from trypsin digested AtAOX1a protein:

(A) m/z 1209.819, (B) 1659.057, (C) 1899.286, and (D)
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