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Abstract 

COVID-19 which is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) has posed 
a worldwide pandemic and a major global public health threat. SARS-CoV-2 Nucleocapsid (N) protein 
plays a critical role in multiple steps of the viral life cycle and participates in viral replication, transcription, 
and assembly. The primary roles of N protein are to assemble with genomic RNA into the viral RNA–
protein (vRNP) complex and to localize to the replication transcription complexes (RTCs) to enhance 
viral replication and transcription. N protein can also undergo liquid–liquid phase separation (LLPS) with 
viral genome RNA and inhibit stress granules to facilitate viral replication and assembly. Besides the 
function in viral life cycle, N protein can bind GSDMD to antagonize pyroptosis but promotes cell death 
via the Smad3-dependent G1 cell cycle arrest mechanism. In innate immune system, N protein inhibits 
IFN-β production and RNAi pathway for virus survival. However, it can induce expression of 
proinflammatory cytokines by activating NF-κB signaling and NLRP3 inflammasome, resulting in cytokine 
storms. In this review article, we are focusing on the signaling mechanisms of SARS-CoV-2 N protein in 
viral replication, cell death and inflammation. 

 

1. Life cycle of SARS-CoV-2 
The coronavirus disease 2019 (COVID-19) is 

caused by severe acute respiratory syndrome 
coronavirus (SARS-CoV-2). With causing more than 
518 million confirmed cases and more than 6.25 
million deaths worldwide (World Health 
Organization (WHO)), COVID-19 has resulted in 
public health crises and widespread economic 
disruption. Typical clinical symptoms of COVID-19 
are fever, dry cough, fatigue and shortness of breath, 
while severe patients may progress to acute 
respiratory distress syndrome (ARDS), acute lung 
injury, septic shock, or even death [1-4]. SARS-CoV-2 
with ~30kb viral genome RNA is an enveloped, 
positive-stranded RNA virus which belongs to the 

β-coronaviruses. SARS-CoV-2 genome consists of 14 
functional open reading frames (ORFs), including two 
regions (ORF1a and ORF1b) for 16 non-structural 
proteins (Nsp1-Nsp16), nine regions for nine putative 
accessory proteins, and other regions for four 
structural proteins, spike (S), envelope (E), membrane 
(M), and nucleocapsid (N) proteins [5-7]. Of them, 
SARS-CoV-2 S protein binds to its cellular receptor, 
angiotensin-converting enzyme 2 (ACE2) [8,9], to 
enter the cells. Additionally, the host serine protease 
TMPRSS2 is important for priming of the S protein for 
receptor interactions and entry [9]. Many host 
proteins can also function as cofactors for viral entry, 
such as heparin sulfate proteoglycans, C-type lectins, 
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neuropilin-1 and furin [10-13]. After being entry, the 
viral and host membranes can fuse together and then 
release the positive sense, single-stranded RNA 
genome of SARS-CoV-2 that directly translates into 
the structural and nonstructural proteins [9]. N 
protein can also bind to the viral genome RNA to 
form the ribonucleoprotein (RNP) complex, while the 
M and E proteins can initiate the viral assembly 
[14,15]. The 16 nonstructural proteins (Nsps) can 
facilitate formation of the viral replication- 
transcription complex [16,17] and promote the traffic 
to the ER or Golgi membranes. In addition, they can 
combine with genomic RNA and N proteins to create 
nascent viral particles. Occurring within the 
ER-to-Golgi intermediate compartment (ERGIC), the 
assembly of mature SARS-CoV-2 virions-containing 
vesicles can fuse with the plasma membrane during 
exocytosis and release SARS-CoV-2 into the 
extracellular space [18,19] (Figure 1). 

2. SARS-CoV-2 Nucleocapsid protein 
The SARS-CoV-2 nucleocapsid (N) protein is 

approximately 90% identical with the SARS-CoV N 
protein [20]. N protein is a key player in viral 
replication, viral genomic RNA (gRNA) packaging 
into new virions and modulation of host-cell response 
to infection. N protein has two conserved and 
independently folded structural domains, called 
N-terminal RNA binding domain (NTD) which is 
responsible for the RNA binding and C-terminal 
dimerization domain (CTD) [21]. N protein exhibits 
three important roles in coronavirus life cycle (Figure 
2). First, the primary role is to assemble with genomic 

RNA into the viral RNA–protein (vRNP) complex 
[22]. Virion formation occurs via the accumulation of 
the SARS-CoV-2 structural proteins [S, E, M and N] 
and gRNA at the ER-Golgi intermediate compartment 
(ERGIC) membrane. The N protein can interact with a 
luminal domain of the M protein through C-terminal 
dimerization domain (CTD) (247-365), which may be 
essential for mediating the recruitment of 
N-containing RNPs to the ERGIC membrane [23]. 
Previous study also suggests that the interaction 
between N protein and the E protein may plays an 
important role in SARS-CoV-2 assembly [24]. 
Together with N protein, a single strand of 
SARS-CoV-2 gRNA forms dense, locally ordered 
ribonucleoprotein (RNP) regions which may be 
further organized into more complex arrangements 
[25-27]. Second, N protein can undergo liquid–liquid 
phase separation (LLPS) with viral genome RNA and 
potentially facilitates the viral assembly. Many 
RNA-binding proteins have been found to undergo 
LLPS with RNA to participate the biological and 
disease processes [28-32]. The LLPS is dependent on 
the length and concentration of ssRNA. What is more, 
N protein forms typical sphere-like droplets with 
short ssRNAs, but not solid-like structures with long 
ssRNAs. The free Zn2+ in cytosol is essential for N 
protein/RNA LLPS [21]. It is also reported that viral 
RNA can induce assembly of the N protein into 
phase-separated condensates in vitro and pinpoints a 
~40 residue region in the central intrinsically 
disordered region (IDR) with a key role in 
RNA-driven phase separation [23]. 

 

 
Figure 1. Life cycle of SARS-CoV-2. During the viral infection, SARS-CoV-2 S protein binds to ACE2 to inject its genome into host cell via endocytosis. The viral genome 
comprises 14 ORFs, encoding 16 Nsps, 9 ORF proteins and 4 structural proteins. Nucleocapsid (N) protein binds to viral genome RNA into ribonucleoprotein (RNP) complex, 
assisting membrane (M) and envelope (E) proteins to initiate viral assembly. The assembly of mature SARS-CoV-2 virions-containing vesicles which occurs within the ERGIC can 
fuse with the plasma membrane during exocytosis and release SARS-CoV-2 into the extracellular space. 
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Figure 2. SARS-CoV-2 Nucleocapsid protein. The nucleocapsid (N) protein plays three important roles in SARS-CoV-2 life cycle. The primary role is to assemble with genomic 
RNA into the viral RNA–protein (vRNP) complex. Second, N protein can undergo liquid–liquid phase separation (LLPS) with viral genome RNA and potentially facilitate viral 
assembly. Third, N protein can localize to replication transcription complexes (RTCs) at the early stage of infection, where it enhances replication and the transcription of viral 
RNA by recruiting virus proteins and host factors. 

 
Third, N protein can localize to replication 

transcription complexes (RTCs) at the early stages of 
infection, where it enhances replication and the 
transcription of viral RNA by recruiting host factors 
[15,33-36]. Previous studies have demonstrated that N 
protein and RNA recruited components of the RNA 
polymerase (RdRp) complex (Nsp7, Nsp8 and Nsp12) 
are responsible for replicating viral gRNA [37,38]. The 
phosphorylation of the SR domain of the N protein 
can decrease the degree of recruitment of RdRp 
components to condensates [37]. The interaction 
between N and Nsp3 is essential for viral replication. 
The N-terminal of N has an RNA-binding domain 
(N-NTD) that can bind the RNA genome, whereas, 
the C-terminal domain (N-CTD) can interact with the 
viral Nsp3 [39]. 

3. Nucleocapsid protein undergoes 
Liquid-Liquid Phase Separation (LLPS) 
and attenuates stress granules.  

LLPS provides a highly cooperative mechanism 
for proteins and nucleic acids condensation into a 
dense phase to resemble the liquid droplets [40]. 
During virus infection, LLPS serves as a scaffold for 
virus replication and promotes the assembly of 
mature virions through proximity-dependent 
interactions [41]. N protein has sequence and 
structure features similar to those of other proteins 
that undergo LLPS with nucleic acids [42]. Thus, N 
protein can undergo LLPS with viral genome RNA to 

potentially facilitate the viral assembly (Figure 3). 
Negative staining electronic microscopy (EM) or 
cryo-EM imaging of N protein/RNA LLPS in the 
presence and absence of Zn2+ reveals similar loose 
filament-like structures as those observed in the RNP 
particles of another β-coronavirus MHV [43]. This 
suggests the potential role for N protein/RNA LLPS 
in viral assembly [21]. A recent study also 
demonstrates that N protein LLPS can promote 
cooperative association of the RdRp complex with 
polyU RNA in vitro [37]. N protein may also use 
LLPS-based mechanisms to enable high initiation and 
elongation rates during viral transcription [37]. 
Phosphorylation of SR-domains of N protein inhibits 
its RNA binding and RNA-induced LLPS [37]. Besides 
the function in viral assembly and transcription, the 
dimerization domain of N protein can also inhibit 
Lys63-linked poly-ubiquitination and aggregation of 
MAVS, thereby suppressing the innate antiviral 
immune response [44]. N protein acetylation at 
Lys375 abrogates its LLPS with RNA and the N 
protein-mediated suppression of MAVS signaling. 
Targeting the dimerization domain of N protein by a 
peptide can disrupt the LLPS and then inhibit 
SARS-CoV-2 replication in vitro and in vivo [44]. 

 N protein can also interact with human 
ribonucleoproteins which are found in several 
LLPS-driven cytosolic protein/RNA granules [45]. 
This suggests that N protein may modulate 
protein/RNA granule formation in order to promote 
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viral replication [46]. Stress granules (SGs) are 
cytoplasmic protein/RNA granules. They are formed 
through LLPS as an antiviral response to inhibit 
protein synthesis and induce innate immune 
signaling [47-49]. Recent studies reported that 
SARS-CoV-2 N protein undergoes LLPS into SGs 
through its N-terminal intrinsically disordered region 
(IDR) with SGs protein G3BP1/2 [23,50,51]. 
Additionally, N protein inhibits the host stress 
response through SGs attenuation by sequestering 
G3BP1/2 through its interaction with these proteins 
and direct interaction with host mRNAs [51]. N 
protein can also specifically interact with G3BP1/2, 
leading to a reduction in the size and/or number of 
stress granules [52-57]. A short sequence (residues 
15-18) in the IDR NTD or three arginine residues (R92, 
R107, and R149) in the NTD may also play an 
important role in its interaction with G3BP1 and 
modulation of stress granules. Thus, targeting the 
N-G3BP1 interaction by competitive peptide can 

reduce viral proliferation, indicating that N-G3BP1 is 
important for viral replication [52,57]. Furthermore, N 
protein is able to impair SGs formation by inhibiting 
PKR autophosphorylation and activation, as well as 
by targeting G3BP1 [55]. 

4. Nucleocapsid protein suppresses host 
pyroptosis but promotes apoptosis. 

Gasdermin D (GSDMD) is cleaved by the 
caspase-1 dimers post-inflammasome activation, 
leading to cell membrane permeability, cell content 
leakage and finally cell death termed pyroptosis 
[58,59]. While SARS-CoV-2 infection promotes 
activation of caspase-1 and NLRP3 inflammasome, 
GSDMD cleavage and pyroptosis are inhibited by N 
protein in infected human monocytes. N protein 
binds GSDMD and hinders GSDMD cleavage by the 
activated caspase-1 dimers to antagonize pyroptosis. 

 
 

 
Figure 3. Nucleocapsid protein undergoes Liquid-Liquid Phase Separation (LLPS) and attenuates stress granules. First, N protein can undergo LLPS with viral genome RNA and 
potentially facilitate viral assembly. Second, N protein LLPS promotes cooperative association of the RdRp complex with polyU RNA to enable high initiation and elongation rates 
during viral transcription. Third, N protein undergoes LLPS into SGs through its N-terminal intrinsically disordered region (IDR) with SG protein G3BP1/2 to promote viral 
replication. Fourth, N protein which is required for LLPS with RNA inhibits MAVS and thereby suppresses the innate antiviral immune response to promote viral infection. 
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Apoptosis is a major type of programmed cell 
death. It is triggered by mitochondrion or cell-surface 
death receptor mediated the cleavage of downstream 
caspases [60-62]. Previous studies indicated that 
SARS-CoV N protein can induce apoptosis in HPF 
cells and COS-1 cells by activating the mitochondrial 
pathway [63-65]. Recently study also demonstrated 
that SARS-CoV-2 N protein can specifically enhance 
the M protein-induced apoptosis by strengthening M 
protein-mediated attenuation of PDK1-PKB/Akt 
interaction [66]. Our recent study also reveals that 
SARS-COV-2 N protein not only promotes renal cell 
death in ischemic-induced AKI but inhibits renal 
tubular cell proliferation via Smad3-p21 dependent 
G1 cell cycle arrest [67]. We further uncover that 
genetic deletion of Smad3 or pharmacological 
inhibition of Smad3 can protect kidneys from 
SARS-CoV-2 N protein-induced renal cell death. In 
addition, SARS-COV-2 N can interact with 
α-synuclein to disturb the α-synuclein proteostasis 
and increase cell death in S-SY5Y [68]. This may 
provide molecular basis for the correlation between 
SARS-COV-2 infections and Parkinsonism. 

5. Regulation of host inflammation by 
Nucleocapsid protein 

Host immune response including innate and 
adaptive immunity against SARS-CoV-2 seems crucial 
to control and resolve the viral infection [69-71]. The 
innate immune system detects viral infections 
through the recognition of molecular patterns. It is a 
primary host defense strategy to suppress viral 
infections, coordinate and accelerate the development 
of adaptive immunity [72]. Pattern recognition 
receptors (PRRs) respond to pathogen-associated 
molecular patterns (PAMPs) can trigger the activation 
of inflammatory responses and the release of 
inflammatory cytokines to limit viral infection [73]. 
Several families of PRRs have been described: the 
Toll-like receptor (TLR) [74], the RIG-I-like receptor 
(RLR) [75], the NOD-like receptor (NLR), and the 
C-type lectin receptor (CLR) [76]. Single-stranded 
RNA derived from genomic, subgenomic or 
replicative intermediates of SARS-CoV-2 can be 
sensed by RLRs, which include MAD5, RIG-I and 
LGP2 [77-80]. RIG-I and MDA5 are the most 
well-studied RLRs and critically regulate IFN 
pathways. After virus infection, RIG-I and MDA5 
sense the RNA and then translocate to the 
mitochondria, where they interact with the adaptor 
protein mitochondrial antiviral signaling (MAVS) to 
form a MAVS signalosome. This complex formation 
activates downstream proteins to induce 
phosphorylation of IRF3, therefore facilitating its 
nuclear translocation and the transcription of genes 

encoding type I and III IFNs [81,82]. Production and 
subsequent release of IFNs can stimulate the 
downstream signals to produce hundreds of 
IFN-stimulated genes (ISGs) with various antiviral 
functions [83,84]. Previous studies demonstrated that 
coronaviruses (CoVs) have evolved evasion strategies 
to limit host control. Otherwise, they enhance 
replication and transmission in response to innate 
immune-dependent viral clearance mechanisms 
[69,85-87]. In SARS-COV-2 infection, a low production 
of type I interferons was detected in the peripheral 
blood or lungs of COVID-19 patients with a severe 
clinical picture [69,88,89]. In a recent study, 
SARS-COV-2 N protein can interact with TRIM25 
functional domain SPRY to block the ubiquitinating 
activity of TRIM25 on RIG-I and then inhibit IFN-β 
production [90]. SARS-COV-2 N protein can also 
interact with G3BP1 to prevent the antiviral stress 
granule formation and impair the recognition of 
dsRNA by RIG-I [91]. It is also reported that 
SARS-COV-2 N protein is able to interact with RIG-I 
through the DExD/H domain of RIG-I and then to 
repress RIG-I-mediated IRF3 phosphorylation and 
nuclear translocation. N protein suppresses IFN-β 
production upon the infection of SeV or by the 
stimulation of poly(I:C) [92]. In addition, N protein is 
found to inhibit Lys63-linked poly-ubiquitination and 
aggregation of MAVS, thereby suppressing the innate 
antiviral immune response [44]. All these results 
indicate that SARS-COV-2 N protein can inhibit IFN-β 
production by targeting the RIG-I signaling pathway 
(Figure 4). 

In most cases, innate immune responses limit 
viral entry, translation, replication, and assembly. 
However, in some individuals, the disease severity or 
mortality of the COVID-19 might be associated with 
the excessive production of proinflammatory 
cytokines, resulting in “cytokine storm” and acute 
respiratory distress syndrome [93]. Nuclear factor κB 
(NF-κB) is a key transcription factor of proinflam-
matory cytokines in immune cells [94]. Upon sensing 
different ligands, their receptors then recruit the 
adaptor proteins to promote the activation of tumor 
necrosis factor receptor (TNF-R)-associated factor 
(TRAF) signaling molecules, thus recruiting 
TGF-beta-activated kinase 1 (TAK1) and IκB kinase 
(IKK) complex [95]. Activated IKK complex can 
phosphorylate IκB proteins to induce ubiquitin- 
proteasome degradation. Degradation of IκB allows 
NF-κB translocation to the nucleus to initiate the 
transcription of downstream proinflammatory cyto-
kines [96]. SARS-CoV-2 N protein is reported to 
promote activation of NF-κB signaling by enhancing 
the association between TAK1 and IKK complex [95]. 
With viral RNA, N protein undergoes LLPS to recruit 
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TAK1 and IKK complex, and then to promote NF-κB 
activation. The CTD domain of SARS-CoV-2 N 
protein is critical for its LLPS and NF-κB activation. 
1,6-hexanediol which is the inhibitor of LLPS can 
inhibit the phase separation of N protein and then 
suppress the activation of NF-κB. All these results 
indicate that LLPS of N protein provides a platform to 
induce NF-κB activation after virus infection. 
SARS-CoV-2 N can also function as a PAMP to 
directly bind to TLR2 to activate NF-κB and MAPK 
signaling in endothelial cells [97]. Treatment with 
recombinant SARS-CoV-2 N protein can induce acute 
lung injury via M1 macrophage polarization and 
NF-κB activation, which can be inhibited by N-protein 
denaturation, neutralizing antibody to N-protein, and 
NF-κB inhibitor [98]. NLRs are also reported to 
respond to SARS-CoV-2 infection and induce pro-
duction of pro-inflammatory cytokines [99]. NLRP3, 
one of the best characterized inflammasome sensors, 
is triggered in response to virus infection and thus 
activates Caspase-1 with an adaptor protein ASC 
[100]. Active caspase-1 is formed by autocatalytic 
cleavage, which then catalyzes proteolytic processing 
of pro-interleukin (IL)-1β and pro-interleukin (IL)-18 
into mature IL-1β and IL-18 [101]. IL-1β plays crucial 
roles in inflammatory responses and instructs 
adaptive immune responses by inducing expression 
of immunity associated genes [102]. SARS-CoV-2 N 

protein is reported to induce proinflammatory 
cytokines through promoting the assembly and 
activation of the NLRP3 inflammasome [100]. Indeed, 
N protein interacts directly with NLRP3, promotes the 
binding of NLRP3 with ASC, and facilitates NLRP3 
inflammasome assembly. More importantly, N 
protein aggravates lung injury and accelerates death 
in acute inflammation mouse models, which can be 
blocked by NLRP3 inhibitor MCC950 and Caspase-1 
inhibitor Ac-YVAD-cmk. Taken together, SARS- 
CoV-2 N protein induces proinflammatory cytokines 
through promoting the activation of NF-κB signaling 
and NLRP3 inflammasome (Figure 4). 

RNAi, a post-transcriptional gene silencing 
mechanism, has been recognized as an antiviral 
immune defense after virus infection [103]. After virus 
infection and replication, virus-derived dsRNA is 
generated and can be recognized and cleaved by the 
host endoribonuclease Dicer. As a countermeasure, 
viruses such as Influenza A virus NS1 and Dengue 
virus 2 NS2A can encode viral protein to inhibit the 
RNAi pathway [103,104]. Recently study also 
reported that SARS-CoV-2 N protein can suppress 
RNAi pathway [105]. Indeed, N protein can interact 
with dsRNA and then sequestrates dsRNA to 
suppress RNAi, thereby functioning as a key immune 
evasion factor of SARS-CoV-2. 

 
 

 
Figure 4. Regulation of host inflammation by Nucleocapsid protein. First, SARS-COV-2 N protein can inhibit IFN-β production by targeting each step of the RIG-I signaling 
pathway. Second, with viral RNA, N protein undergoes LLPS to recruit TAK1 and IKK complex, and then promotes NF-κB activation. Third, N protein interacts directly with 
NLRP3 protein to promote the assembly and activation of the NLRP3 inflammasome. 
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Based on the function of SARS-CoV-2 N protein, 
we proposed a working model for SARS-CoV-2 
induced inhibition of host innate immunity. In the 
early stage of infection, N protein can interact with 
TRIM25 or G3BP1 to influence RIG-I activation. N 
protein can also interact with DExD/H domain of 
RIG-I directly and inhibit RIG-I activation. What is 
more, N protein is capable of interacting with an 
adaptor protein MAVS to inhibit the ubiquitination of 
MAVS. Taken together, N protein represses 
RIG-I-mediated phosphorylation of TBK1 and IRF3 to 
suppress their nuclear translocation and IFN-β 
expression. At the same time, N protein can also 
suppress RNAi to evade the innate immune system. 
However, at the later stage of infection, the viral 
replication, transcription, and assembly are actively 
processed with the involvement of various viral 
proteins and inflammatory pathways, which may 
trigger the overactivation of innate immunity, 
resulting in cytokine storm syndrome and disease 
progression. 

6. Conclusions and perspectives 
Here, we summarize the signaling mechanisms 

of SARS-CoV-2 N protein in viral replication, cell 
death, and inflammation. N protein as a structure 
protein plays a critical role in multiple steps of the 
viral life cycle. N protein assembles with genomic 
RNA into the viral RNA–protein (vRNP) complex to 
facilitate viral assembly. Moreover, it contributes to 
forming helical ribonucleoprotein during the 
packaging of the RNA genome and regulating the 
viral RNA synthesis during replication and 
transcription. Importantly, N protein has multiple 
functions in cell death and inflammation. N protein 
can inhibit pyroptosis but promotes apoptosis to 
induce cell death. N protein can inhibit RIG-I and 
RNAi signaling but promotes NF-κB signaling and 
NLRP3 inflammasome in the innate immune system 
to trigger the “cytokine storm”.  

Recent phosphoproteomic analyses revealed that 
SARS-CoV-2 N protein is highly phosphorylated 
within the RS domain [106-109]. It is known that 
phosphorylation regulates the states and functions of 
the N protein. Phosphorylation of N protein by 
glycogen synthase kinase 3(GSK-3) is required for 
viral transcription and replication [110]. GSK-3 is 
essential for SARS-CoV-2 N phosphorylation as 
blockade of GSK-3 with inhibitors can block N 
phosphorylation and virus replication in SARS-CoV-2 
infected lung epithelial cells [111]. Thus, research into 
a better understanding of the phosphorylation of 
SARS-CoV-2 N protein in viral transcription and 
replication is needed. 

Based on the high homology (90%) of the amino 
acid sequences and fewer mutations over time among 
coronavirus N proteins [112], SARS-CoV-2 N protein 
may function similarly to SARS-CoV N or MERS-CoV 
N protein. The SARS-CoV N protein has been 
reported to interact with numerous host cell proteins, 
such as TRIM25 [113], Smad3 [114], the chemokine 
Cxcl16 [115], translation elongation factor-1 alpha 
[116], pyruvate kinase [117], and 14-3-3 [118]. 
Although SARS-CoV-2 N can also interact with 
TRIM25 [90], Smad3 [67,119], 14-3-3 [120], and others 
[121], further research into the interaction between 
SARS-CoV 2 N and host cell proteins under disease 
conditions may provide valuable information for 
potential druggable targets. Thus, understanding of 
the roles and mechanisms of N protein in the 
pathogenesis of diseases may be the first step towards 
the development of anti-SARS–CoV-2 drugs and 
vaccines to prevent and control the SARS-CoV-2 
pandemics. 
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