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Obesity is increasing at unprecedented levels globally, and the overall impact of
obesity on the various organ systems of the body is only beginning to be fully
appreciated. Because of the myriad of direct and indirect effects of obesity causing
dysfunction of multiple tissues and organs, it is likely that there will be heterogeneity
in the presentation of obesity effects in any given population. Taken together, these
realities make it increasingly difficult to understand the complex interplay between
obesity effects on different organs, including the brain. The focus of this review is
to provide a comprehensive view of metabolic disturbances present in obesity, their
direct and indirect effects on the different organ systems of the body, and to discuss
the interaction of these effects in the context of brain aging and the development of
neurodegenerative diseases.
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OBESITY

Obesity is often considered to result from excessive calorie consumption (food intake) and/or
insufficient or inadequate calorie expenditure (metabolic and physical activity) (Figure 1). Obesity
is a complex and chronic non-communicable disease that affects more than a third of the world’s
population (Hruby and Hu, 2015). It has been shown that obesity in middle age is able to shorten
life expectancy by 4–7 years (Peeters et al., 2003). A major problem with obesity is the diverse
set of health associated complications it promotes including hypertension, diabetes, increased
cardiovascular risk, and cancer (Calle et al., 2003). The most commonly utilized tool used for
measuring obesity today is the body mass index (BMI), defined as a person’s weight in kilograms
divided by his or her height in meters squared. By convention, a person with a BMI of less than
25.0 is considered non-obese or “normal,” a person with a BMI between 25.0 and 29.9 is defined as
overweight, and a person with a BMI of 30 or more is considered obese. A BMI of more than 40.0
deserves particular attention since it represents morbid obesity (also known as severe or extreme
obesity). This index provides a reasonable estimate of body fat, and it is more accurate than skinfold
measurements. However, the use of BMI has certain limitations, because it does not distinguish
between lean and fat mass, nor does it indicate anything about fat distribution. In this sense,
computed tomography or magnetic resonance imaging are the most accurate methods to measure
the amount of visceral fat. Unfortunately, these tests are expensive and require sophisticated
equipment. Waist circumference, a more straightforward but more reliable method to measure
abdominal adiposity, has become an increasingly important tool for classifying obesity (Hu, 2007).
Numerous studies have shown that many obesity-related risk factors depend mainly on fat body
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distribution rather than excess weight per se. Hence, it is
important to take into account how body fat is distributed in
an individual, for example, between subcutaneous versus visceral
(or intra-abdominal) fat. It is important to note that visceral
fat, but not subcutaneous fat, is more associated with metabolic
syndrome, which is further discussed below.

Adipose Deposition
Adipose tissue is a complex, specialized, multicellular organ
able to influence the function of almost all other organs. It
is a loose connective tissue composed mostly of adipocytes,
but which also contains the stromal-vascular fraction of cells
(vascular endothelial cells, preadipocytes, and fibroblasts) as
well as macrophages. Adipose tissue is very heterogeneous
and, anatomically, consists of different fat depots with unique
characteristics. This mentioned heterogeneity in adipose tissue
is not only from an anatomical point of view but also from
the characteristics of the tissue expansion, the regulation of
lipid metabolism and also the pattern of secreted factors
(collectively called “adipokines”) in a particular fat depot. All
these characteristics bring with them metabolic consequences
that impact the whole body, including the brain. It is known
that each anatomical fat depot has a particular physiological
role, which implies having specific metabolic and hormonal
characteristics. As aforementioned, there is strong evidence
showing that some fat depots are more robustly associated with
disease development and outcomes.

In mammals, adipose tissue forms in utero just before birth
and throughout life. Moreover, the continuous generation of
new adipocytes has been shown in adult humans (Spalding
et al., 2008). Unfortunately, little is known about adipocyte
development. However, the study of adipose stem cell biology
results extremely important for understanding adipose tissue
development, expansion, migration, and maintenance. Adipose
tissue is classified as white adipose tissue (WAT) and brown
adipose tissue (BAT). These two main classes are molecularly
and functionally different. WAT serves majorly as an energy
store whereas BAT dissipates energy generating heat. WAT is
spread throughout the body as subcutaneous and visceral fat.
Subcutaneous WAT (sWAT) is a fat layer under the skin, with
major depots in the upper and lower body. The upper body
subcutaneous fat consists of superficial and deep abdominal fat,
extremity fat, and, in the case of females, breast fat, whereas
the lower body subcutaneous fat is mainly in the gluteofemoral
region (Jensen, 2008; Kwok et al., 2016). Visceral WAT (vWAT)
is around vital organs within the abdominal cavity and rib
cage. Its major depots are the omental, mesenteric, epicardial,
and mediastinal (Kwok et al., 2016). Numerous differences
between sWAT and vWAT have been reported. For example,
sWAT is heterogeneous and is composed mainly of unilocular
adipocytes together with small multilocular adipocytes whereas
vWAT looks more uniform and is composed mainly of large
unilocular adipocytes (Tchernof et al., 2006; Tchkonia et al.,
2007). It is believed that while increased sWAT deposition
(known as a pear-shaped fat distribution) might protect against
metabolic dysfunction, the increase in vWAT (known as
an apple-shaped fat distribution) might increase the risk of

metabolic disease (Grauer et al., 1984; Snijder et al., 2003a,b).
Indeed, vWAT has been demonstrated to expand majorly by
hypertrophy of preexisting adipocytes while sWAT expands
by hyperplasia, i.e., the increase of the number of progenitor
cells and subsequent differentiation. It is important to highlight
that bigger hypertrophic adipocytes are usually associated with
metabolic dysfunction. In line with this, very important in
terms of metabolic disease is the fact that vWAT adipocytes
are metabolically (i.e., lipolytically) more active than sWAT
adipocytes, thus releasing more free fatty acids to the bloodstream
(Wajchenberg, 2000; Hajer et al., 2008). vWAT is also associated
with the release of pro-inflammatory adipokines (Fontana et al.,
2007) and this would explain, at least partially, why central
obesity is strongly linked with metabolic complications such as
type-2 diabetes mellitus and cardiovascular disease, and many
others caused by elevated free fatty acids (Jensen, 2008). Indeed,
this characteristic of being metabolically less active than vWAT
makes of sWAT a very important source of free fatty acids during
food deprivation. It is important to highlight at this point that
vWAT mass but not sWAT mass correlates with the development
of insulin resistance (Chowdhury et al., 1994; Wajchenberg, 2000;
Hoffstedt et al., 2018). A plethora of studies argue in favor of
women better distributing fat in the periphery (compared to men
having more central obesity) and thus having better metabolic
health (Kwok et al., 2016).

Interesting experiments with transplantation of adipose tissue
have been performed in animals, and they have been very useful
for assessing the different functions and metabolic properties
of the different fat depots. For example, transplantation of
subcutaneous fat from donor mice into visceral fat site of
recipient mice has shown to confer metabolic benefits in the
latter, namely decrease in body weight and total fat, improvement
of insulin sensitivity, and lowering of both insulinemia and
glycemia (Tran et al., 2008). Unexpectedly, intraperitoneal
transplantation of visceral fat from lean mice showed to improve
insulin sensitivity, suggesting that the metabolic performance of
a certain fat depot is more important as a metabolic risk factor
than the anatomical location or the amount of fat itself (Konrad
et al., 2007; Kwok et al., 2016). On the other hand, transplantation
of visceral fat or subcutaneous fat into subcutaneous fat site has
not shown to cause any alterations in body weight or metabolic
profile, so it seems there are both donor and recipient site-
specific factors that intervene in the final outcome (Tran et al.,
2008). Other experiments have shown similar results in both
autologous as well as heterotransplantation of subcutaneous fat
into the intraabdominal cavity of diet-induced obese animals.
In both cases, transplanted adipocytes showed to diminish their
size, and insulin sensitivity, as well as serum lipid profile, showed
to be improved, correcting almost all the metabolic parameters
altered by obesity (Foster et al., 2013; Torres-Villalobos et al.,
2016). Interestingly, transplantation of brown adipose tissue to
the visceral cavity has also demonstrated to prevent weight
gain and improve carbohydrate metabolism in high-fat diet-
induced obese animals (Townsend and Tseng, 2012). All this
evidence strongly suggests that fat cells from different depots
do have different characteristics and thus can play protective or
detrimental roles in metabolism.
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FIGURE 1 | Scheme depicting how the imbalance between the input and the output leads to obesity as a final outcome.

Obesity and Peripheral Health
Obesity is known as a chronic low-grade inflammatory
disorder that results a triggering factor for many other
metabolic and inflammatory disturbances. The obesity-linked
inflammatory response includes many components of the
classical inflammatory response, namely augmented secretion
of circulating inflammatory factors, recruitment of leukocytes
to inflamed tissues and organs, and activation of these
leukocytes. However, the metainflammation observed in obesity
has distinctive characteristics. For example, it is known that the
chronic low-grade inflammation ends affecting the metabolic
homeostasis in the long-term. Also, the multi-organ affection
observed as the result of obesity-associated inflammation results
to be unique (Lumeng and Saltiel, 2011). Adipose tissue, which
was primarily thought to be a mere storage depot for triglycerides,
is now considered an immune organ playing a vital role as a
primary in vivo site of inflammation in obesity. Indeed, adipose
tissue also plays a critical endocrine role due to the ever-
increasing number of adipocyte-derived secretory factors that
have been described.

Obesity, Adipokines, and Peripheral Inflammation
Substantial evidence supports that many of the circulating
adipokines might be responsible for the peripheral inflammation

observed in obese patients, including tumor necrosis factor
α (TNFα), leptin, and various interleukins, among others.
Importantly, the dysregulation of the adipokine secretion pattern
has been linked to obesity and all the obesity-related metabolic
disturbances such as cardiovascular disease, hypertension, type-2
diabetes, etc. Moreover, changes in either the amount or the
quantity of the secreted adipokines are able to affect the various
organ systems of the body vital for energy homeostasis. It is
important to note that the weight loss-associated normalization
of the adipokine secretion pattern is linked to the consequent
normalization of different metabolic parameters, reinforcing
the idea that adipokines are critical for the whole body
metabolic homeostasis.

It is important to highlight that although secreted by adipose
tissue, adipokines (except for leptin) are not solely secreted by
adipocytes. Leukocytes, almost half of the non-adipocytes cell
fraction in adipose tissue, are the source of classic adipokines
such as IL-1, TNFα, visfatin, and resistin. Many other adipokines
are produced and secreted by both adipocytes and leukocytes,
such as adiponectin and IL-6. All fat depots are able to release
adipose hormones, but visceral fat is considered to be the primary
source of them. It has also been demonstrated that each fat
depot has a particular pattern of adipokine expression (Dodson
et al., 2014; Zhang et al., 2014). Interestingly, it has been shown
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that adipokines are also released by some particular places of
the central nervous system where adipokine receptors are also
expressed. Nonetheless, alterations of adipokine release during
obesity and aging are attributed almost exclusively to changes
in the structure and function of the adipose tissue (Kiliaan
et al., 2014). A detailed description of each adipokine is beyond
the scope of this review, but a few generalizations of the most
important ones deserve mention.

Leptin is probably the most studied adipokine. It positively
correlates with BMI (Friedman and Halaas, 1998; Lissner et al.,
1999); however, obesity is considered a state of reduced leptin
function. It is produced peripherally by WAT but exerts the
bulk of its metabolic functions centrally, after crossing the
blood brain barrier (BBB). However, it has been shown to be
produced both in rodent and human brains (Morash et al.,
1999; Wiesner et al., 1999; Brown et al., 2007; Wilkinson
et al., 2007). It is well known that leptin action in the
hypothalamus maintains body weight homeostasis in response
to changes in the nutritional status. Leptin is considered the
principal regulator of the “brain-gut-axis,” which provides a
satiety signal through its action on hypothalamic leptin receptors
(Konturek et al., 2004). Activation of these receptors suppresses
food intake and promotes energy expenditure pathways (Tilg
and Moschen, 2006; Simerly, 2008). It is worth highlighting
that several hypothalamic neuropeptides have been shown
to be produced by leptin-sensitive neurons and to act as
neurotransmitters mediating leptin action (Xu and Tong, 2011).
However, the specific neurotransmitter responsible for midbrain
leptin action on feeding remains elusive. It has also been
shown that leptin is able to regulate numerous inflammatory
and immune processes, including cytokine expression and cell
proliferation and death (O’Rourke, 2010). Very importantly,
experiments of leptin receptor restoration in the brain of mice
which completely lack the receptor function have shown the
normalization of the metabolic parameters (de Luca et al.,
2005). Interestingly, leptin signaling has also been suggested to
be one of the circulating factors connecting obesity and the
consequent reproductive dysfunction, being the reproduction
defects reverted by pharmacological administration of leptin
(Tong and Xu, 2012).

Adiponectin is an adipokine with insulin-sensitizing and anti-
inflammatory effects produced exclusively by adipose tissue and
suggested to be a visceral adiposity marker, due to the fact that
several studies in humans have shown that visceral adipocytes
secret more adiponectin than subcutaneous adipocytes (Lenchik
et al., 2003; Ryan et al., 2003; Matsuzawa, 2007; Drolet et al.,
2009). It exists as trimers, hexamers, and high-molecular-weight
(HMW) multimeric complexes (Rutkowski and Scherer, 2014).
Recent data indicate that the HMW complexes have predominant
action in metabolic tissues (Achari and Jain, 2017). Unlike
the majority of adipokines, adiponectin plasma levels correlate
inversely with obesity, insulin resistance, and type-2 diabetes
mellitus (Hotta et al., 2001; Kondo et al., 2002; Deng and Scherer,
2010). However, the decreased level of adiponectin in obesity is
not clear yet. Physiological functions of adiponectin in the brain
have been related majorly to food intake, energy expenditure,
lipid and glucose metabolism, and body weight control (Kubota

et al., 2007; Wen et al., 2010; Park et al., 2011). Interestingly,
adiponectin physiological levels are generally higher in females
than in males and decrease in both sexes as age increases (Ng and
Chan, 2017). It should be mentioned that several studies have
shown that the pharmacological reconstitution of adiponectin
levels through drugs targeting adiponectin synthesis would help
in the treatment of obesity and the associated diabetes and
cardiovascular disease (Achari and Jain, 2017).

Resistin was first discovered to be secreted by adipocytes in
rodents. However, in humans, it is predominantly expressed and
secreted by macrophages. It is known that increased resistin
levels are linked to the development of insulin resistance, diabetes
mellitus, and cardiovascular disease. Moreover, resistin would
promote endothelial dysfunction, vascular smooth muscle cell
proliferation, arterial inflammation, and the generation of foam
cells, thus contributing to the pathogenesis of atherosclerosis
(Park et al., 2017). Circulating levels of resistin correlate directly
with inflammatory markers such as C-reactive protein, TNFα,
and IL-6 in patients with different metabolic disturbances
(Park and Ahima, 2013).

Visfatin is also known as pre-B cell colony-enhancing factor
(PBEF) or nicotinamide phosphoribosyltransferase (NAMPT),
the latter due to the fact that it is the limiting enzyme in
nicotinamide adenine dinucleotide (NAD) biosynthesis. This
adipokine is expressed by different types of cells, including
adipocytes, hepatocytes, and myocytes. However, in adipose
tissue, it has been shown to be secreted majorly by infiltrating
macrophages (Deng and Scherer, 2010). Visfatin is produced by
visceral adipose tissue, and thus its production is increased in
abdominal obesity. Interestingly, visfatin has been demonstrated
to bind to insulin receptor and mimic insulin hypoglycemic
effects, i.e., decreasing glucose release from the liver and
increasing glucose uptake and utilization by peripheral tissues
(Singla et al., 2010).

Apelin has been relatively recently classified as an adipokine
since although it is produced and secreted by adipocytes, it
is also expressed (together with its receptor) in the central
nervous system and the cardiovascular system. Apelin has been
related to the regulation of blood pressure, food intake, cell
proliferation, and angiogenesis (Castan-Laurell et al., 2011).
In vitro as well as in vivo studies have shown a strong relationship
between apelin and insulin (Boucher et al., 2005). Moreover,
apelin has been suggested to be the last protection before
the appearance of obesity-associated metabolic disorders such
as insulin resistance, type-2 diabetes, or cardiovascular disease
(Castan-Laurell et al., 2005).

IL-6 is a pro-inflammatory cytokine synthesized and secreted
by several cell types, including adipocytes and immune cells. Not
only does IL-6 participate in inflammatory responses but it also
controls feeding behavior at a hypothalamic level (Stenlöf et al.,
2003). IL-6 circulating levels have been systematically reported to
be augmented in obesity, being visceral fat secretion an important
source of IL-6 thus linking the enlarged visceral fat with the
existence of systemic inflammation in obese patients (Fontana
et al., 2007). Importantly, IL-6 levels have been reported to
normalize in morbidly obese patients who underwent bariatric
surgery (Illán-Gómez et al., 2012).
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TNFα is an inflammatory adipokine whose levels are increased
in adipose tissue and plasma of both obese rodents and humans
(O’Rourke, 2010). It was the first inflammatory adipokine
associated with the onset and progression of insulin resistance
(Hotamisligil and Spiegelman, 1994). It was first thought to be
secreted by adipocytes, but today it is accepted that the bulk
of TNFα is secreted by adipose tissue-resident macrophages. It
has been shown that high levels of TNFα and IL-6 suppress the
transcription of adiponectin thus connecting the role of visceral
fat accumulation in adiponectin decreased secretion in obesity
(Suganami et al., 2005).

In summary, adipose tissue, as an immune and endocrine
organ, produces a wide variety of soluble factors collectively
called adipokines. These molecules were initially associated
uniquely to metabolic activities, but today it is known that they
regulate numerous physiological and physiopathological events.
Adipokines have pro- and anti-inflammatory properties and
are considered fundamental circulating factors mediating the
cross-talk between different organs and metabolic systems, thus
integrating the systemic metabolism with immunity.

Before leaving the topic of adipokines, it is important to
note that while adipokines have been primarily studied in terms
of their links to adipose tissue, it is well established that non-
adipose tissues produce and release adipokines. For example,
muscle is known to produce and release several cytokines which
are also produced and released by adipose tissue (Trayhurn
et al., 2011; Görgens et al., 2015; Leal et al., 2018). Similarly,
the liver is known to be an organ that is very much involved
in the contribution of overall circulating adipokine levels. For
example, leptin, adiponectin, and resistin have been shown to be
locally produced by the liver (Marra et al., 2005). It is therefore
important to understand that even circulating adipokine levels,
in obese and non-obese individuals, is the result of the shared
contributions of adipokine production from multiple tissues.

Obesity and Peripheral Metabolic Changes
As mentioned, the obesity-associated increase in the adipose
tissue mass is linked to a change in the adipokine secretion
pattern, thus causing what is known as “metainflammation,”
which affects systemic metabolism. A common consequence of
obesity is metabolic syndrome, a condition which is associated
with pro-inflammatory states and which is considered to be
a compilation of risk factors that predispose individuals to
the development of cardiovascular disease and type-2 diabetes.
The diagnosis of metabolic syndrome is made when any 3
of the 5 following risk factors are present: central obesity
(enlarged waist circumference, defined according population-
specific and country-specific criteria), high blood pressure
(defined as systolic blood pressure ≥ 130 mm Hg or diastolic
blood pressure ≥ 85 mm Hg), loss of glycemic control (elevated
fasting glucose, defined as blood glucose > 100 mg/dl), low
serum high-density lipoprotein (HDL) (defined as < 40 mg/dl
in men and <50 mg/dl in women), and high serum triglycerides
(defined as ≥ 150 mg/dl) (Lam and LeRoith, 2000). The
existence of metabolic syndrome is well known to predispose an
individual to diabetes and cardiovascular disease. It is important
to know that metabolic syndrome also predisposes individuals

to a number of other severe conditions including non-alcoholic
fatty liver disease, non-alcoholic steatohepatitis, obstructive sleep
apnea, and cancer, among others. Indeed, hyperleptinemia,
hypoadiponectinemia, and insulin resistance are also widely
linked to features of the metabolic syndrome.

Insulin resistance and type-2 diabetes mellitus are typical
metabolic changes observed in obese patients. Insulin resistance
implies impaired insulin-induced glucose uptake and metabolism
in adipocytes and skeletal muscle, and impaired suppression of
hepatic glucose production (Reaven, 1995). Insulin resistance
is a key etiologic factor of type-2 diabetes but is also associated
with a plethora of other pathophysiologic disorders including
hypertension, hyperlipidemia, and atherosclerosis. Although
several hypotheses about factors influencing insulin resistance
coexist (including inflammation, mitochondrial dysfunction,
hyperinsulinemia, lipotoxicity, oxidative stress, and endoplasmic
reticulum stress), there is no consensus about a unifying
mechanism for insulin resistance etiology (Ye, 2013). It is
generally accepted that insulin resistance occurs first, with
hyperinsulinemia as a pancreatic compensatory response,
and after pancreatic failure to meet metabolic demands,
hyperglycemia with hypoinsulinemia occurs. Importantly,
central obesity precedes the development of insulin resistance,
thus reinforcing the idea of visceral fat and its pro-inflammatory
adipokines playing a key role in the pathophysiology of
insulin resistance.

It is worth mentioning that although obesity is commonly
associated with different metabolic abnormalities, 2–50% of obese
adults are “metabolically healthy or metabolically normal” (the
wide range is due to different criteria in the classification and
also to the population studied) (Tiemann Luecking et al., 2015).
The concept of “metabolically healthy obese” refers to obese
people with normal metabolic risk profile (Karelis et al., 2005;
Stefan et al., 2008). However, studies have previously shown
that “metabolically healthy obese” individuals do have increased
cardiovascular risk (Ärnloöv et al., 2010).

Effect of weight loss on metabolic endpoints of obesity
Reducing the amount of total body fat has been thought
of as a strategy to diminish the impact of obesity and
comorbidities on health. Weight loss interventions such as
low-fat diets have been demonstrated to reduce many of
the risk factors associated with obesity (Lee et al., 2011),
as well as decrease all-cause mortality in obese adults. It is
important to note that each reference to weight loss in this
review is “intentional weight loss” and not involuntary weight
loss. It is important to note that intentional weight reducing
diets are routinely shown to be more effective in reducing
blood pressure and improving dyslipidemia when combined
with exercise (Schwingshackl et al., 2014). Interestingly, low-
carbohydrate diets have been found to be more effective for
reducing body weight than low-fat diets (Tobias et al., 2015).
However, evidence supported by randomized controlled trials
shows that most adults are unable to maintain weight loss
(Wing and Phelan, 2005; Wadden et al., 2011; Ross et al.,
2012). From this perspective, alternative approaches to diet-
induced weight loss are needed, including the establishment of
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healthy eating and physical activity habits that may be more
sustained over time. Bariatric surgery, also known as metabolic
surgery, is associated with sustained weight loss, decreased
cardiovascular risk factors and events, diminution in diabetes-
linked microvascular complications, and improvement of
obesity-associated comorbidities and overall survival (Christou
et al., 2004; Sjöström et al., 2007; Sowemimo et al., 2007;
Buchwald et al., 2009; Cummings and Rubino, 2018). Moreover,
bariatric surgery has been shown to be superior to other
weight loss-associated interventions in normalizing almost
all the metabolic endpoints. However, studies with longer
follow-up time (>5 years) are still needed, including studies
that identify any potential long-term adverse effects following
bariatric surgery (Busetto, 2014; Cummings and Rubino, 2018).
Liposuction, which is mainly thought to remove subcutaneous
fat without affecting visceral abdominal fat depot, is another
common weight loss procedure. However, there is controversy
about the impact of liposuction on obesity endpoints like insulin
sensitivity. This controversy may be due in part to the fact that
lipectomy of sWAT has been linked to the enlargement of vWAT
(Benatti et al., 2012).

The complexity of weight loss in the elderly. As mentioned,
there is a strong obesity-mortality association during adulthood.
However, this association diminishes with age, and weight
loss in older adults is not as beneficial as one might expect.
Surprisingly, unintentional weight loss (more than 5% of body
weight reduction in a year) in older adults is associated with
increased morbidity and mortality (Gaddey and Holder, 2014).
Although cachexia, i.e., the loss of muscle mass with or without
fat loss, is thought to be the main responsible for these negative
effects, the pathophysiology of unintentional weight loss remains
unclear. It is well known that body composition changes with
age, with fat mass gains until 65–70 years old, a characteristic
peak in body weight around 60 years old, and gradual small
decreases thereafter (Wallace and Schwartz, 2002). The ideal
BMI in the elderly is considered (from a mortality point of
view) to be of 25–30. At this point, it is worth to have in
mind that although BMI in younger adults correlates quite
well with total body fat, it does not in older adults and this
might be an appropriate explication for the so-called “obesity
paradox,” according to which obese old individuals have lower
mortality than lean. The main reason is that not only there
is a continuous loss of body muscle with age (without loss
in body fat), but also the height is reduced due to spine-
shortening as a consequence of age-related bone disease. In
this sense, as mentioned before, waist circumference is a better
index of adiposity, mainly because it correlates with abdominal
body fat, which is the main contributor to metabolic disorders.
Moreover, inactivity in older adults is usually accompanied
by a loss in body muscle mass, a condition which may go
unnoticed but which brings several functional consequences in
the long-term period. This condition is known as sarcopenic
obesity, and together with degenerative joint disease, it leads to
the incapability to perform activities of daily living. Thus the
impairment in daily function finally causes the development of
frailty phenotype (which is generally present in the elderly but is

greatly increased with obesity) with disability as a final outcome
(Han et al., 2011).

Many observational studies have linked weight loss with
increased risk of mortality (Yaari and Goldbourt, 1998; Knudtson
et al., 2005; Sørensen et al., 2005; Shea et al., 2011). There
are several causes of unintentional weight loss in the elderly
(Gaddey and Holder, 2014). Only intentional weight loss
in older people seems to lead to some clinical benefits,
mainly due to the fact that unintentional weight loss is
often associated with underlying subclinical illnesses. However,
since intentional weight loss is linked to muscle mass loss
and decreased bone mass (Waters et al., 2013), it appears
that diet-induced weight loss should be accompanied by a
program of physical activity which can potentially inhibit the
muscle and bone loss associated with diet-induced weight loss
(Shea et al., 2011). Lifestyle interventions that include diet
plus exercise components have been shown to lead to a 10%
weight loss with changes in physical function and metabolism
(Waters et al., 2013). However, the clinical significance of these
observations as well as long-term consequences of weight loss
remains unclear.

Obesity and Peripheral Lipid Changes
Dyslipidemia is very common in obesity, reaching almost 70%
of obese patients. The lipid abnormalities usually observed in
obese patients are high levels of serum triglycerides, free fatty
acids, very low-density lipoproteins (VLDL), Apo B, and non-
HDL cholesterol (Franssen et al., 2011; Bays et al., 2013).
HDL-cholesterol levels are typically found to be low together
with HDL dysfunction. Regarding LDL-cholesterol, although
in the normal range, the size of LDL particles is unbalanced,
with more small pro-atherogenic LDL particles rather than
large ones. Lipid changes in obesity have been shown to be
strongly dependent on body fat distribution. For example,
visceral adipose tissue and upper body subcutaneous adipose
tissue have been related to high triglyceride and HDL cholesterol
levels and insulin resistance, whereas lower body subcutaneous
adipose tissue has been related to a healthier lipid profile
(Feingold and Grunfeld, 2018).

All these obesity-related lipid abnormalities are frequent
observations in metabolic syndrome and typically associated
with the pro-inflammatory state described before. An important
link between obesity, metabolic syndrome, and dyslipidemia
appears to be insulin resistance in peripheral tissues. It has been
shown that the increase in circulating free fatty acids associated
with obesity contributes to several metabolic disturbances being
insulin resistance probably the most important (Karpe et al.,
2011). It is important to highlight, however, that the increase in
free fatty acids is not only a consequence of insulin resistance
but also contributes to its development (Lam and LeRoith,
2000). There are several reasons for increased free fatty acids in
obesity: (1) enlarged adipose tissue resistant to the antilipolytic
effect of insulin; (2) increased liver fatty acid de novo synthesis
(Jacome-Sosa and Parks, 2014; Björnson et al., 2016; Xiao et al.,
2016); (3) increased uptake of triglyceride-rich lipoproteins by
the liver (Yu and Ginsberg, 2005; Dash et al., 2015; Björnson
et al., 2016; Xiao et al., 2016). This increased free fatty acid
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flux finally exceeds adipose tissue lipid storage capacity, and
free fatty acids begin to accumulate in the liver, pancreas,
skeletal muscle, and heart, a condition known as “ectopic
lipid deposition” which has several pathologic consequences.
Lipids result cytotoxic to cells other than adipocytes. For
example, lipid deposition in the pancreas has been involved
in the development of diabetes whereas lipid deposition in
the skeletal muscle has been associated with insulin resistance.
Moreover, lipid accumulation in the liver defines steatosis.
The hypothesis of adipose tissue protecting against ectopic
accumulation of lipids (working as a metabolic sink) has
been supported by observations in animals and humans with
lipodystrophy, where the absence of adipose tissue is associated
with generalized lipid ectopic deposition and insulin resistance
(O’Rourke, 2010).

Effect of weight loss on peripheral lipids
The effect of weight loss on peripheral lipid profile has been
extensively assessed. Serum fasting and non-fasting triglyceride
levels have been demonstrated to be reduced by weight loss
(Chan et al., 2002; James et al., 2003). On average, a 3-kg
weight loss represents a reduction of 15 mg/dl in triglyceride
levels. Indeed, LDL levels are also usually decreased by weight
loss, and HDL levels are usually increased: a 5- to 8-kg
weight loss is associated with a decrease of 5 mg/dl in
LDL and an increase of 2–3 mg/dl of HDL (Ebbert et al.,
2014). However, considerable variability in the results has
been observed, and the improvement of dyslipidemia is not
always the final outcome. On the other hand, the type of
weight-loss diet followed does impact on lipid profiles. It
is still unclear which factors associated with weight loss are
predictive of the change in lipid profile. Several studies have
shown a poor correlation between lipid profile improvement
and the degree of weight loss, and a threshold effect has
been suggested when the lipid profile resulted improved with
a minimal weight loss but when no further effects were
observed with a larger weight loss (Kelly and Jones, 1986;
Busetto et al., 2000).

Interestingly, metabolic surgery impacts positively on serum
lipid levels as a consequence of weight loss. Normalization of
serum lipid profile is a common observation after gastric bypass
surgery. In a meta-analysis of 11 randomized clinical trials
comparing surgical versus non-surgical treatment of morbid
obesity, bariatric surgery was found to be associated with more
significant weight loss, remission of metabolic syndrome, and
improvement in lipid profiles with the consequent decrease
in medication requirements (Gloy et al., 2013; Koliaki et al.,
2017). A 5-year follow-up study compared patients who received
medical therapy alone with patients who underwent surgical
therapy. Surgical patients were found to achieve the greatest
health benefits, with a more significant reduction in triglyceride
levels and a more considerable increase in HDL with respect to
patients who received medical treatment alone (Schauer et al.,
2017). It is worth mentioning that the beneficial effects of
bariatric surgery have been analyzed in the short-term period
and up to 5 years after the intervention; however, the long-term
effects remain elusive.

EFFECTS OF OBESITY-ASSOCIATED FAT
DEPOSITION AND CIRCULATING
FACTORS ON THE VARIOUS NON-CNS
ORGANS OF THE BODY

Although the cause of obesity is mainly attributed to energy
imbalance, the etiology of obesity is multifactorial, including
genetic, psychological, economic, environmental, social, and
physiological factors, only to cite some (Wright and Aronne,
2012). Whatever etiopathogenesis of obesity is considered,
several organs are damaged as a consequence of the development
of obesity, including the pancreas, liver, muscle, and the
cardiovascular system. A brief outline of how ectopic fat
deposition and the concomitant obesity-related circulating
factors contribute to disease of each organ is provided (Figure 2).

Pancreas
The ectopic fat accumulation in the pancreatic gland is usually
referred to as pancreatic steatosis. Intra- and interlobular
adipocytes, acinar cell fat, as well as islet fat content have been
found to be augmented in obesity (Pinnick et al., 2008; Lee
et al., 2010). A close relationship between insulin resistance
and pancreatic steatosis has been described. As it is known,
pancreatic β-cells usually produce and release insulin to control
glucose homeostasis. Under the condition of insulin resistance,
pancreatic β-cells increase the production and release of insulin
to maintain the normal glycemia. However, patients predisposed
to type-2 diabetes fail to secrete enough insulin to meet the
metabolic demand (due to insulin resistance in several tissues)
and type-2 diabetes occurs (Poitout, 2004). Different stages in
the development of type-2 diabetes have been well characterized.
In the first stage, there is insulin hypersecretion, which allows
for normal glycemic control. In contrast, during the second
stage of type-2 diabetes, there is a failure of β-cells to secrete
sufficient insulin for glycemic control, and thus hyperglycemia is
manifest. However, it is a matter of debate whether dysfunction
precedes or follows the loss of β-cells in obesity-linked diabetes
mellitus (Alarcon et al., 2016). Whatever the origin of obesity-
associated diabetes, there is a failure in insulin production and/or
the secretory capacity of β-cells. Interestingly, in vitro studies
have shown that β-cells have an exceptional capacity to synthesize
significant amounts of insulin even in obesity-like conditions,
and that this insulin is readily available for secretion. It is
believed that fat accumulation in the pancreatic islets would be
responsible for, at least in part, the decreased insulin secretion
of the second stage of type-2 diabetes, since ectopic fat deposits
in the pancreas have been reported to cause β-cell dysfunction,
both directly through lipotoxicity exerted by free fatty acids
and indirectly through activation of inflammatory pathways (Le
et al., 2011; Pezzilli and Calculli, 2014). Moreover, evidence
suggests that lipid toxicity to pancreatic β-cells is a long-term
process and it takes around a decade before diabetes is diagnosed
(Oakes et al., 1997). On the other hand, studies performed in
morbidly obese humans have shown that obesity and peripheral
insulin resistance are also associated with substantial changes
in pancreatic metabolism and pancreatic blood flow, together
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FIGURE 2 | Scheme showing the predicted impact of obesity on organ systems and the direct and indirect effects on health.

with β-cell dysfunction. Interestingly, as a consequence of insulin
resistance in adipose tissue, increased free fatty acids have been
shown to be delivered from the bloodstream in morbidly obese
individuals, and these people clearly show a shift in the preferred
pancreatic energy substrate, with lipid usage being predominant
over glucose usage (Honka et al., 2014). The possibility of these
observations (pancreatic metabolic shift and defect in blood flow)
to be reverted by weight loss is still unclear.

In addition, the changes in circulating adipokines constitute
an important link between the excessive adiposity in obesity,
insulin resistance, and β-cell failure, mainly due to the fact
that several adipokines have demonstrated to affect both the
function and survival of β-cells thus deteriorating the function of
the pancreas and contributing to acute and chronic pancreatitis
as well as pancreatic cancer (Zhao et al., 2006; Gumbs,
2008). Leptin, adiponectin, resistin, and visfatin are the most
important adipokines that would participate in the pathogenesis
of pancreatic diseases (Biernacka and Małecka-Panas, 2015).
Beyond the previously mentioned physiological roles of leptin,
this adipokine has also been shown to reduce insulin secretion.
It has also been demonstrated to regulate the inflammatory
response, thus protecting the pancreas from some kinds of

damage by reducing TNFα and increasing IL-4 production
(Jaworek et al., 2002). Indeed, adiponectin has been shown to play
anti-diabetic and anti-inflammatory roles. Regarding the role of
adipokines and pancreatic disease, it is thought that the higher
risk of acute pancreatitis in obese people would come from the
increased adipokine-producer visceral fat in the surroundings
of the pancreas (Biernacka and Małecka-Panas, 2015). However,
the precise role of adipokines in acute and chronic pancreatitis,
as well as in pancreatic cancer, is unclear yet and needs to be
further investigated. Controversial results regarding the functions
of leptin, visfatin, adiponectin, and resistin have been found.

In summary, obesity-linked type-2 diabetes is characterized
by the decreased number and function of pancreatic β-cells.
The impairment in β-cell function, as well as the number of
β-cells, has been related to lipotoxicity (with the concomitant
increased oxidative and endoplasmic reticulum stress) and the
adipokine-induced inflammation processes (Halban et al., 2014).

Liver
Obesity has been involved as a risk factor at different stages of
liver disease (Manne and Saab, 2014), not only causing non-
alcoholic fatty liver disease (NAFLD) but also impairing the
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general state of patients with other preexisting conditions such
as viral hepatitis. NAFLD is an important metabolic risk factor
defined as a higher than 5% intracytoplasmic fat deposition in
the hepatocyte in the absence of alcohol consumption, toxin
exposure or viral disease (Tiniakos et al., 2010; Calvo et al., 2015).
However, fat deposition is not the only observation of NAFLD,
an inflammatory process coexists, with hepatocellular ballooning
injury that can lead to fibrosis and cirrhosis (Brunt et al., 1999).
Since triglycerides have been shown to accumulate in the liver
through different manners, there is not a unique mechanism
by which obesity could lead to NAFLD. Moreover, beyond the
role of triglycerides, insulin resistance does have an important
role in the development of fatty liver (Marchesini et al., 1999;
Sanyal et al., 2001; Willner et al., 2001; Pagano et al., 2002). Free
fatty acid uptake by the liver not only leads to hepatic steatosis
but also produces hepatic toxicity by oxidative stress-dependent
mechanisms (Manne and Saab, 2014). In this connection, it is
thought that hepatic accumulation of triglycerides occurs first
(hepatic steatosis or fatty liver) and then, since fatty liver is
more prone to suffer oxidative injury, it evolves to steatohepatitis
(Qureshi and Abrams, 2007).

The link between obesity and NAFLD has been explained
by different hypotheses which take into consideration the
portal hypothesis, the endocrine role of adipokines, and many
observations from lipodystrophic states. It has been mentioned
that visceral adipocytes constitute an important source of fatty
acids and other factors entering the portal circulation (Qureshi
and Abrams, 2007). The portal hypothesis supports the idea
that the increased hepatic uptake of fatty acids coming from an
enlarged visceral adipose tissue leads to decreased hepatic insulin
clearance and thus increased circulating insulin. Indeed, fatty
acids stimulate hepatic gluconeogenesis, triglyceride synthesis,
and hepatic glucose output (by altering insulin signaling) (Kahn
and Flier, 2000). On the other hand, adipokines are also
involved in the development of NAFLD during obesity. For
example, in addition to all the general effects of leptin, this
adipokine has been shown to better liver enzymes and hepatic
fat content, thus attenuating different manifestations of fatty
liver in patients with lipoatrophy and metabolic syndrome (Lee
et al., 2006). In obese NAFLD patients, leptin levels correlate
with the severity of fatty liver, thus suggesting the presence of
leptin resistance, probably due to a failure in leptin signaling.
Low levels of adiponectin have been found in NAFLD patients,
probably due to the concomitant high levels of IL-6 and TNFα

found, both of which inhibit adiponectin expression. Therapy
with adiponectin administration has shown to improve insulin
resistance in animal models of obesity; however, in lipodystrophic
animal cases, the complete reversal of insulin resistance requires
the co-administration of leptin. Adipose tissue-derived TNFα

and IL-6 cause the activation of Kupffer cells which leads
to hepatic fibrogenesis. Moreover, TNFα has been shown to
be also produced by the Kupffer cells, playing a key role
in the pathogenesis of NAFLD (Qureshi and Abrams, 2007).
Additionally, fatty liver, accompanied by insulin resistance and
diabetes, is usually observed in lipodystrophic patients, where
the fatty liver usually progresses to cirrhosis. Among different
explanations proposed, reduced adiponectin and leptin levels

are thought to be responsible for the presence of NAFLD in
lipodystrophic individuals.

Not only has obesity been related to the development and
progression of NAFLD, but also with the impairment of other
hepatic conditions, being obesity considered as a strong risk
factor for different liver cancers. Very interestingly, the mere
losing weight of obese patients has been shown to be sufficient not
only to improve the results of several hepatic treatments (Nobili
et al., 2011) but also to increase insulin sensitivity and decrease
hepatic triglyceride and free fatty acid uptake by liver (Viljanen
et al., 2009; Manne and Saab, 2014).

Muscle
As a general picture, obesity is linked to functional limitations
in muscle performance and increased probability of developing
a functional disability related to strength, mobility, postural,
and dynamic balance restrictions. It is known that obese
people, regardless of age, have greater absolute maximum
muscle strength in anti-gravity muscles compared to non-
obese counterparts (this is valid only for lower limbs, since
upper limb strength reveals no statistical difference between
obese and normal-weight people) (Maffiuletti et al., 2007, 2008;
Delmonico et al., 2009; Abdelmoula et al., 2012; Tomlinson
et al., 2016). This observation has been interpreted as adiposity
being a chronic overload stimulus for muscles, thus making
muscles stronger and bigger. However, it is noteworthy that
when muscular strength is normalized to total body mass,
the obese people seem to be overall weaker than their lean
control individuals. Notwithstanding, the existing literature
shows considerable controversy on this matter (Tomlinson et al.,
2016). For this reason, the real effect of obesity on skeletal
muscle size, structure, and function remains elusive. Although
there is no consensus regarding accurate measures of obesity-
associated muscle damage or quality, it is worth mentioning that
obesity does have been shown to generate a negative impact
on skeletal musculature through adolescence to young and old
adulthood (Blimkie et al., 1990; Rolland et al., 2004; Zoico et al.,
2004; Maffiuletti et al., 2007, 2008). Obviously, the relevance
for reduced muscle performance is higher for older people, as
they are generally affected by reduced functional capacity. This
includes impairments in walking, impaired ability to go up and
downstairs, and difficulty with rising from chair or bed. Similarly,
there is an augmented risk to suffer joint pathologies, such as knee
osteoarthritis, due to joint overload and reduced muscle strength
(Cooper et al., 1998; Rolland et al., 2009; LaRoche et al., 2011;
Maden-Wilkinson et al., 2015). All these conditions represent
a clear sign of poor quality of life for older people, which is
worsened by obesity. Further work is needed to systematically
investigate whether body fat percentage per se may be related
to agonist muscle activation and antagonist co-activation and/or
morphological and architectural muscle characteristics.

In connection to ectopic fat deposition, the accumulation
of triglycerides intra-myocellularly and inter-myocellularly is
known to cause lipotoxicity, insulin resistance, and impaired
glucose metabolism. The increased flux of fatty acids to the
myocyte appears to be the link between muscle fat infiltration
and insulin resistance and altered glucose metabolism. It has been
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shown that when mitochondrial β-oxidation is overwhelmed due
to an excess of free fatty acids entering the myocyte, metabolic
intermediaries of fatty acids accumulate and finally impair insulin
signaling (Moro et al., 2008; Ghosh, 2014). It has been shown that
skeletal muscle fat infiltration, together with sarcopenia, is able to
have not only metabolic consequences but also to impair the daily
living, by diminishing mobility (Katsanos and Mandarino, 2011).

The effect of adipokines on the skeletal muscle has emerged as
an important area of research. It has been shown that adipokines
including leptin, adiponectin, visfatin, and resistin are able to
affect muscle insulin sensitivity (Nicholson et al., 2018). There
are several in vitro studies about the role of adipokines in the
skeletal muscle metabolism and insulin sensitivity. However,
those studies have been carried out mainly using rodent skeletal
muscle cells that are known to have different fiber composition
and different metabolic characteristics than human skeletal
muscle cells. This may be the reason why reports about the
role of adipokines in muscle function and insulin resistance
result controversial.

Beyond the effect of inflammation-associated adipokines on
skeletal muscle, it is worth mentioning that under obesity
conditions, the muscle becomes an inflammatory organ itself,
able to secrete several circulating factors (known as myokines)
that can act in either autocrine, paracrine or endocrine manner,
thus affecting the metabolism of both muscle and other organs.
The muscle is able to secrete several hundred of factors in
response to contraction, which became a whole new paradigm
for understanding the communication between muscles and the
various organ systems, including adipose tissue, liver, pancreas,
and brain. It is worth to mention that some myokines exert their
functions in the muscle itself and have been suggested to regulate
skeletal muscle growth, repair, maintenance, and regeneration, in
addition to mediating the health benefits of exercise (for review
see Pedersen, 2013).

Cardiovascular System
Obesity, at the population level, has been considered as a
risk factor for the development of cardiovascular diseases
such as coronary heart disease and heart failure. Obesity-
associated transition from asymptomatic subclinical left ventricle
changes to overt dilated cardiomyopathy, irrespective of the
coexistence of hypertension or diabetes mellitus, has been
shown (Wong and Marwick, 2007). Importantly, body fat
distribution has been found to be more important than total
fat composition on left ventricle adaptations to obesity, with
excessive visceral fat causing adverse hemodynamics, concentric
left ventricle remodeling, lower cardiac output, and higher
systemic vascular resistance. Lower-body subcutaneous fat has
been found to cause eccentric left ventricle remodeling, higher
cardiac output, and lower systemic vascular resistance, thus
suggesting a protective role for subcutaneous adipose tissue,
highlighting the importance of adipose tissue quality and
function more than just the amount of body fat per se
(Kim et al., 2016). In this regard, one hypothesis holds that
the presence of insulin-sensitive subcutaneous adipose tissue
protects the individual from ectopic accumulation of lipids and
the development of metabolic syndrome (Kim et al., 2016).

Cardiomyocyte hypertrophy and myocardial fat infiltration
have also been demonstrated in obesity (Ommen and Lopez-
Jimenez, 2013; Samanta et al., 2015). In this sense, obesity-
triggered ectopic fat deposition is considered as a predictive
risk factor for cardiovascular disease. The above mentioned
ectopic fat accumulation in the liver and muscle (together
with the associated inflammation) in particular constitutes a
cardiovascular risk due to the associated insulin resistance and
altered lipid and glucose metabolism. Fat surrounding the heart
and blood vessels and within the renal sinus has been linked
to local toxic effects by several lines of evidence. The damaging
effect of ectopic fat in the cardiovascular system has been
attributed to two main mechanisms: (1) fat deposition around
the heart (pericardial or epicardial fat) and coronary arteries,
(2) lipid accumulation within the cardiomyocyte. Pericardial,
perivascular, pericoronary, and myocardial fat accumulation may
lead to injury in blood vessels and heart directly by lipotoxicity
and indirectly by cytokine secretion (Lim and Meigs, 2014).
Fat in the neck is the only fat depot in the upper-body that is
considered as an additional cardiovascular risk, and it has been
found to positively correlate with insulin resistance, visceral fat
content, and metabolic syndrome (Ben-Noun and Laor, 2003;
Preis et al., 2010). Interestingly, pericardial fat has been proposed
to play roles in support and mechanical purpose (for example,
attenuation of vascular tension and torsion). However, this fat
depot, when gets considerably enlarged in obesity conditions,
represents a mechanical hindrance for the beating heart, thus
altering cardiac size and performance (Iacobellis, 2009). In
this connection, according to the Framingham Heart Study,
pericardial fat is associated with coronary artery calcification
and impaired cardiac function and conduction (Rosito et al.,
2008). Accumulated fat around the coronary arteries and the
heart appears to promote the atherosclerosis process, being
associated with oxidative stress-related mechanisms. Myocardial
fat accumulation has been associated with increased left ventricle
mass, myocardiopathy and heart failure, mainly due to lipid-
caused apoptosis of cardiomyocytes and the consequent cardiac
dysfunction (Szczepaniak et al., 2003; Lim and Meigs, 2014).

A vast body of experimental, epidemiological, and clinical
evidence supports the idea that obesity results harmful for both
cardiovascular structure and function, mainly due to increased
inflammation caused by deregulated adipokine production by a
dysfunctional adipose tissue. In line with this, active endocrine
and paracrine activity of cardiac ectopic fat depots within the
cardiovascular system may be greatly responsible for insulin
resistance and the atherosclerosis process. Moreover, leptin,
adiponectin, resistin, visfatin, omentin, IL-1, IL-6, plasminogen
activator inhibitor-1, and TNFα, among several other circulating
factors, have been reported to signal to the myocardium
through either paracrine or autocrine pathways (Iacobellis, 2015).
Also, some anti-inflammatory factors secreted from perivascular
fat (adiponectin, adrenomedullin, and omentin) have been
demonstrated to play a key protective role in the regulation of the
arterial vascular tone (vasodilation), decreasing oxidative stress,
improving endothelial function, and increasing insulin sensitivity
(Sacks and Fain, 2007; Piché and Poirier, 2018). It is important
to highlight that secretion of pro-inflammatory adipokines is not
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only due to adipocyte secretion but also to secretion coming from
adipose tissue-infiltrated macrophages (Chatterjee et al., 2009).

In summary, beyond the contribution of visceral fat-secreted
adipokines to cardiovascular disease, the presence of cardiac
ectopic fat does also contribute: firstly, due to mechanical
functions, and secondly, due to cardiac ectopic fat-released
adipokines which would link the ectopic cardiac fat depot, the
vasculature, and the myocardium, thus playing key roles in the
pathogenesis of cardiovascular disease.

THE “OBESE” BRAIN

This section of the review is dedicated exclusively to the brain
in the context of obesity. We will approach this topic from a
variety of perspectives, including the anatomical and functional
changes observed in the brain of obese individuals, the effects of
obesity-associated circulating factors on the brain, the effects of
obesity-associated morbidities on the brain and, last but not least,
the effects of obesity-associated inflammation on the brain.

Anatomical Aspects
Differences in both gray and white matter have been reported in
obese individuals compared to their normal-weight counterparts.
Regarding the gray matter, it has been shown that it is reduced
in brain regions such as the hippocampus, prefrontal cortex,
and other subcortical regions in the context of obesity (Stillman
et al., 2017). Interestingly, these differences have been attributed
exclusively to excessive adiposity, since they have been shown
to be still present even after controlling obesity-associated
conditions, including diabetes (Raji et al., 2009). Hippocampal
atrophy is of particular importance since it has been related
to Alzheimer’s disease (AD) (Elias et al., 2000). Reduction in
the volume of gray matter has been quite well established in
several other brain regions of obese individuals using a variety of
methodologies (Pannacciulli et al., 2006; Raji et al., 2009; Medic
et al., 2016). There are studies reporting both obesity-associated
reductions, as well as increases, in white matter in the context of
obesity (Pannacciulli et al., 2006; Raji et al., 2009; Debette et al.,
2010; Driscoll et al., 2012; van Bloemendaal et al., 2016).

Cognitive Function
Obesity and metabolic syndrome have undoubtedly been linked
to deterioration in cognitive function. Moreover, clinical data
have shown that obesity and diabetes mellitus are linked not only
to cognitive decline but also to other brain disorders such as
dementia, anxiety, and depression (Simon et al., 2006; Riederer
et al., 2017; Sanderlin et al., 2017). Due to the difficulty to
dissect the impact of each component of the obesity-associated
altered metabolism on neuronal performance, it is assumed that
brain structural changes, as well as the consequent cognitive
impairment, are the result of the synergistic interplay between
the different obesity-induced risk factors (Yaffe, 2007; Yates
et al., 2012). Several models have been proposed that include
the involvement of oxidative stress, inflammation, and abnormal
brain lipid metabolism (Yates et al., 2012). Peripheral insulin
resistance has been shown to be accompanied with cognitive

decline, mainly in memory and executive performance (Heni
et al., 2015; Mainardi et al., 2015; Cheke et al., 2017).

Several studies have reported that obesity in midlife is
associated with increased risk of mild cognitive impairment,
altered executive functioning and short-term memory, and
dementia (Kivipelto et al., 2005; Cournot et al., 2006; Whitmer
et al., 2008; Sabia et al., 2009; Nguyen et al., 2014). Similar results
have been shown in studies carried out in animal models of high-
fat diet-induced obesity (Murray et al., 2009; McNeilly et al.,
2011; Nguyen et al., 2014). In contrast, the association between
obesity late in life and cognitive function is less clear. A recent and
important study of more than 10000 men and women, followed
for up to 28 years, has examined the link between obesity and
cognitive change. In this study, participants were assessed for
BMI, waist circumference, signs of dementia, as well as cognitive
decline (Singh-Manoux et al., 2018). This study identified that
obesity (BMI > 30) at age 50 years is a risk factor for dementia,
whereas obesity was not a dementia risk factor at ages 60 and
70 years. This difference may be due to the fact that BMI starts
to decline several years before the diagnosis of dementia (Singh-
Manoux et al., 2018). These findings could explain, at least in part,
the situation known as “obesity paradox” in which underweight
older people consistently show an increased risk of dementia
while people having normal BMI or even being overweight in
the elderly do not.

Effects of Obesity-Associated
Circulating Factors on the Brain
Vast epidemiological evidence supports a link between diabetes
mellitus and cognitive dysfunction (Gudala et al., 2013; Koekkoek
et al., 2015; Zhao et al., 2018). However, it should be mentioned
that this association, as well as the severity of cognitive decline,
may vary according to the type of diabetes and the age
diabetes starts. Loss in glycemic control, evidenced by increased
circulating HbA1c levels, has been found to be a risk factor
for cognitive dysfunction, with behavioral and psychological
manifestations (Sakurai et al., 2014). However, the Leiden 85-
plus Study, which prospectively evaluated 599 individuals of
∼85 years of age, reported that HbA1c concentrations were
not associated with cognitive dysfunction (van den Berg et al.,
2006). Clinical evidence has suggested that the duration of
diabetes alone may not influence cognitive performance if
glycemia is properly controlled over time (West et al., 2014).
Interestingly, beyond the chronically high glucose levels, blood
glucose peaks have been related to both cognitive impairment
and increased risk of dementia (Geijselaers et al., 2015;
Rawlings et al., 2017). Additionally, observational studies have
shown beneficial effects of some glucose-lowering treatments
on cognitive performance. For example, metformin has been
shown to improve cognitive performance in US diabetic veterans
(Orkaby et al., 2017).

Leptin deficiency has been linked to alterations in brain
volume and structure, and these alterations have been shown to
be reversed by external leptin administration (Matochik et al.,
2005; London et al., 2011). Leptin has been shown to have a
direct impact on the hypothalamic nuclei which are responsible
for the production of both orexigenic and anorexigenic peptides
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(Qi et al., 2004; Kishi and Elmquist, 2005). Indeed, leptin has
been demonstrated to exert neurotrophic actions during the
development of the hypothalamus, stimulating the growth of
axons from the arcuate nucleus to other regions that control
energy homeostasis, thus participating in the development of
feeding circuits. Interestingly, this developmental activity of
leptin has been shown to depend on timing and duration
of leptin exposure (Bouret et al., 2004, 2012; Bouyer and
Simerly, 2013; Kamitakahara et al., 2018). Leptin has also been
related to presynaptic neurotransmitter release and postsynaptic
neurotransmitter sensitivity, and to the processes of memory and
cognition, especially to hypothalamic and hippocampal functions
(Fewlass et al., 2004; Davidson et al., 2005; Harvey et al., 2005;
Oomura et al., 2010). Alterations in hippocampal structure
and function have been reported in animals with congenital
leptin deficit, supporting a role for leptin in hippocampal
development and function (Li et al., 2002; Dhar et al., 2014).
Neurodegeneration, neurogenesis, synaptic plasticity as well as
memory consolidation have been shown to be influenced by
leptin action on the hippocampus (Doherty, 2011). Also, leptin
has been shown to enhance cognition through the regulation
of hippocampal function. Both in vivo and in vitro studies (the
latter in hippocampal slices) have shown that exogenous leptin
is able to induce long-term potentiation (Shanley et al., 2001;
Wayner et al., 2004; Luo et al., 2015). Other in vitro studies have
shown that leptin is able to induce synapse formation in cultured
hippocampal neurons, thus providing a possible explanation for
the long-term potentiation observed after leptin administration.
Studies in humans have shown that high leptin levels are
negatively correlated with late-in-life dementia risk (Harvey et al.,
2005; Lieb et al., 2009). Moreover, leptin has been shown to
reduce extracellular levels of amyloid beta peptide (Aβ; whose
deposition is pathognomonic of AD) both in vivo and in vitro
(Fewlass et al., 2004). For these reasons, the elevation of leptin
has been suggested as a therapeutic alternative for dementia
(Fewlass et al., 2004; Harvey et al., 2005; Irving and Harvey,
2013; McGregor and Harvey, 2018). Although animal studies are
promising, further research is needed to assess whether these
findings apply to human beings.

Due to undetectable levels of adiponectin in the cerebrospinal
fluid (CSF), it was first thought that this hormone was not
able to cross the BBB (Pan et al., 2006; Spranger et al., 2006).
However, several studies have shown that intravenous injection of
adiponectin leads to detectable levels of the hormone in the CSF
of patients with unspecified neurological disorders (Kos et al.,
2007; Kusminski et al., 2007; Neumeier et al., 2007). Indeed, as
no HMW adiponectin has been detected in the CSF, it is now
believed that only smaller forms of the adiponectin hormone
can cross the BBB (Kusminski et al., 2007; Schulz et al., 2011).
Thus, the origin of brain associated adiponectin is still a matter
of debate. Adiponectin plasma levels correlate inversely with
obesity, insulin resistance and type-2 diabetes mellitus (Hotta
et al., 2001; Kondo et al., 2002), with adiponectin levels in the
CSF being 1000-fold lower than the plasma levels (Kos et al., 2007;
Kusminski et al., 2007). Adiponectin has been shown to regulate
proliferation, neurogenesis, and branching of hippocampal
neural stem cells (Zhang et al., 2011, 2016; Yau et al., 2014). Also,

it has been shown to exert a neuroprotective role against
Aβ-induced oxidative stress in vitro (Ng and Chan, 2017).
Adiponectin deficiency in mice has shown to cause memory
and spatial learning impairment, anxiety, and impaired fear
conditioning, symptoms that are probably associated to the
decreased synaptic protein levels, increased neuronal apoptosis
and impaired insulin signaling found in those animals (Ng et al.,
2016). Also, adiponectin-deficient mice have shown to suffer
larger brain infarctions after ischemia and reperfusion compared
with control animals, and adiponectin administration has shown
to reduce the infarction size. Thus neuroprotective effects have
been attributed to this adipokine (Nishimura et al., 2008).
Adiponectin physiological levels are generally higher in females
than in males and decrease in both sexes as age increases (Ng and
Chan, 2017). However, among women, those with higher plasma
levels of adiponectin have shown to exhibit poorer performance
in language and global cognition and to coincide with greater
mild cognitive impairment diagnosis (Wennberg et al., 2016).
Nevertheless, more studies are necessary to conclusively affirm
that higher adiponectin plasma level is a trustable predictor
of cognitive decline. Patients with AD have been observed to
have decreased levels of adiponectin in CSF, compared to those
found in healthy controls or even to patients with mild cognitive
impairment. However, adiponectin levels have been found to be
increased in plasma of patients with mild cognitive impairment
and AD, compared to that in controls. Thus, a loss of function
of adiponectin signaling has been suggested to occur in the
pathogenesis of AD (Waragai et al., 2017).

As mentioned before, the increased circulating levels of pro-
inflammatory cytokines participate in obesity-induced systemic
inflammation. This systemic inflammation may participate in the
development of cognitive decline and dementia. For example,
IL-1β and IL-6 have been shown to disrupt cognition- and
memory-related neuronal circuits (Gemma and Bickford, 2007).
Increased plasma levels of C-reactive protein and IL-6 have been
identified in a meta-analysis performed by Koyama et al. (2013).
Peripheral cytokines have been shown to induce local production
of cytokines in the brain (Dantzer et al., 2008).

Effects of Obesity-Associated
Morbidities on the Brain
It is important to highlight that all the obesity-associated
morbidities mentioned before (cardiovascular disease, diabetes,
atherosclerosis, etc.) do impact on brain health. Obesity-derived
vascular problems, such as atherosclerosis and arteriosclerosis,
which are systemic diseases, are known to affect the steady
blood flow of vessels that feed the brain, thus contributing to
cognitive impairment or even stroke, where large areas of the
brain die due to the stop in the blood flow of a major brain artery
caused by a blood clot. Vascular dementia has been shown to be
caused by cerebrovascular disease, and compelling evidence has
shown that cerebrovascular disease may be initiated by obesity
(Gorelick et al., 2011; Zlokovic, 2011). However, many aspects of
the association between obesity and cerebrovascular disease are
still poorly defined. Also, epidemiological studies have shown that
cardiovascular risk factors such as obesity, hypertension, diabetes,
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and low physical activity negatively affect brain performance
(Wolf, 2012; Yano et al., 2014). A longitudinal study from
Gustafson and coworkers has shown lower BBB integrity in
overweight or obese individuals, compared to normal-weight
controls (Gustafson et al., 2007). Similar evidence has been
presented from rodent studies (Kanoski et al., 2010; Davidson
et al., 2012). Indeed, irregular heartbeat conditions such as
arrhythmia or atrial fibrillation, as well as obstructive sleep apnea
(both highly prevalent in obese individuals), have been linked
to increased risk of ischemic stroke and dementia development
(Zhang et al., 2015). Interestingly, several studies have reported
that obese people who survive to a first stroke event usually have
improved subsequent cerebrovascular disease and mortality, as
part of the previously mentioned “obesity paradox.” This could
come in line with the fact that obese people tend to suffer more
lacunar-type of stroke, which is generally of faster recovery and
better prognosis (Letra and Seiça, 2017).

Epidemiological studies have linked type-2 diabetes mellitus
with cognitive impairment and dementia, with insulin resistance
and hyperglycemia as the probable mechanistic links (Ott et al.,
1996; Peila et al., 2002). Similarly, several cross-sectional studies
have confirmed the association between insulin resistance and
cognitive decline (van den Berg et al., 2006; Young et al., 2006;
Ekblad et al., 2017). Hyperglycemia has been associated with
poor cognitive outcomes both in cross-sectional studies (Yaffe
et al., 2012) as well as in prospective studies (Prickett et al.,
2015). A very recent 6-year follow-up study from Hong and
coworkers has found that insulin resistance is associated with
diminished cognitive performance in older individuals (Kong
et al., 2018). Also, data from prospective studies have shown that
individuals with type-2 diabetes exhibit poorer performance in
information-processing speed, memory, attention, and executive
function compared to controls (Hassing et al., 2004; van den Berg
et al., 2010; Moheet et al., 2015). Longitudinal and cross-sectional
studies have undoubtedly demonstrated a relationship between
diabetes and mild/moderate cognitive dysfunction in type-2
diabetes, but less is known about the strength of association
between diabetes and dementia. Systematic review and meta-
analysis performed by Biessels and coworkers have shown
an increase of 50–100% in the risk of dementia in people
with type-2 diabetes, compared with people without diabetes
(Biessels et al., 2006). However, the evidence is controversial,
and further interventional studies are needed to evaluate
the effect of controlling insulin resistance and diabetes on
cognitive dysfunction.

Interestingly, obesity comorbidities have been shown to
participate in the onset and progression of neurodegenerative
diseases such as AD. The complete mechanisms by which obesity
influences the risk of AD is not entirely clear yet. However,
epidemiological studies have demonstrated that type-2 diabetes
increases the risk of AD (Profenno et al., 2010). It is assumed
that insulin resistance is a key causative factor for diabetes and
it has been demonstrated that individuals with peripheral insulin
resistance are more prone to develop AD and related pathologies
(Sims-Robinson et al., 2010; Rasgon et al., 2011). Moreover,
at the cellular and molecular level, insulin signaling has been
demonstrated to interfere with Aβ degradation and deposition

(Carro et al., 2002; Farris et al., 2003). Further, insulin deficiency
has also been shown to promote tau phosphorylation, leading
to the accumulation of neurofibrillary tangles (Schubert et al.,
2003). Accumulating evidence has shown that the brain itself
develops insulin resistance due to the impairment in the insulin
pathway (Moloney et al., 2010; Talbot and Wang, 2014; Su et al.,
2017). In line with this, in vivo experimental data have shown
that insulin resistance modifies cognitive performance even in the
absence of diabetes (Su et al., 2017). Moreover, insulin signaling
impairment has been found in brains from AD patients (Talbot
et al., 2012). Increased levels of amyloid proteins have been found
in the plasma of obese individuals (Lee et al., 2009; Jahangiri et al.,
2013). Also, higher expression levels of beta-amyloid precursor
protein and tau, two pathognomonic features of AD, have been
found in the hippocampus of morbidly obese patients, compared
to non-obese controls (Mrak, 2009; Nguyen et al., 2014). On
the other hand, numerous studies have demonstrated that high-
fat diets contribute to the higher expression of AD markers in
rodents (Studzinski et al., 2009; Puig et al., 2012; Koga et al.,
2014). Indeed, uncontrolled diabetes has also been linked to the
risk of developing AD (Xu et al., 2009).

Effects of Obesity-Associated
Inflammation Within the Brain
Several aspects of brain function result affected by obesity-
triggered inflammation. Periodic neuroinflammation
is a necessary defense for the brain. However, when
neuroinflammation becomes prolonged or uncontrolled (chronic
neuroinflammation), it disrupts the normal protective barriers
and leads to maladaptive synaptic plasticity and the development
of different neurodegenerative disorders (Purkayastha and Cai,
2013). It has long been accepted that the BBB keeps blood
inflammatory cells (monocytes and neutrophils) from getting
into the brain. Therefore, microglia would be the only cells that
mediate brain inflammation. However, it has become known that
neutrophils and monocytes are able to infiltrate the injured brain
and contribute to inflammation (Jeong et al., 2013). Astrocytes
are known to produce anti-inflammatory factors that recruit
monocytes, and neurons are able to both positively or negatively
modulate anti-inflammatory response (Kim et al., 2010; Jeong
et al., 2013). Thus, brain inflammation involves the coordinated
efforts of several types of cells including microglia neutrophils,
monocytes, astrocytes, and neurons.

Chronic neuroinflammation has been shown to impair
adult hippocampal neurogenesis, and the blockade of
neuroinflammation has demonstrated to restore it (Ekdahl
et al., 2003; Monje et al., 2003). Also, impaired neurogenesis has
been found in the hypothalamus of high-fat diet-fed rodents,
probably due to the chronic neuroinflammatory response (Li
et al., 2012). The complete mechanism is not fully understood,
but stimulation of immune cells with the concomitant activation
of the NF-kB pathway, and the release of interleukins and nitric
oxide are thought to be involved (Purkayastha and Cai, 2013).

On the other hand, brain inflammation, mediated by
inflammatory cells such as microglia and astrocytes, plays
pivotal roles in regulating synaptic structure and function
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(Mottahedin et al., 2017). Synaptic disorganization is an integral
part of several neurological disorders (Ebrahimi-Fakhari and
Sahin, 2015). Glial cells are thought to play a vital role in
synaptic architecture and hence neuronal connectivity. For this
reason, factors that affect glial cells during development may
also have long-term consequences on the synapse performance.
Accordingly, an interaction between synaptic disorganization
and immune function has been linked with cognitive weakness
(Delpech et al., 2015). The BBB is known to actively participate
in the inflammatory events and, conversely, the obesity-
associated chronic inflammation also influences the BBB. It
has been suggested that the BBB disruption occurs well before
the infiltration of immune cells to the site of inflammation.
Once within the brain, these effector cells and their secreted
factors act upon microglia, astrocytes, and pericytes, which
are important components of the BBB, and collaborate to
a further BBB disruption thus leading to neuronal damage
(Sonar and Lal, 2018).

Chronic brain inflammation also has been linked to
neurodegenerative disorders such as AD. Aβ peptide
accumulation in the brain parenchyma and blood vessels has
been shown to promote both acute and chronic inflammatory
responses which are mediated by astrocytes and microglia and
which may finally cause neurodegeneration. However, the role
of inflammation in AD is controversial, because inflammation
has been found to have a beneficial role in the early stages
of the disease. Nevertheless, the chronic activation of the
microglia has been linked to the increased generation of Aβ

and also with tau phosphorylation (Meraz-Ríos et al., 2013).
Overall, the inflammatory process in AD is characterized by
changes in microglial morphology together with astrogliosis
(increased number, size, and motility of astrocytes). Studies in
rodent models have shown that neuroinflammation is linked
to early stages in tauopathies, even preceding tangle formation

(Yoshiyama et al., 2007). Although the neuronal death associated
with inflammation makes it a potential risk factor in the
pathogenesis of AD, whether brain inflammation is the cause
of or a secondary phenomenon to this disorder is unclear yet.
Obesity may serve as an amplifier or initiator of the chronic
inflammation observed in AD patients, although further research
is needed to clarify the specific contribution of obesity to
the chronic brain inflammation observed at the onset and
progression of AD.

CONCLUDING REMARKS

The causes and impact of obesity on overall health are far
from linear and point to a complex set of interactions. The
ultimate impact of obesity on an individual appears to be the
summation of the effects of adipose-derived factors (adipokines,
triglycerides, etc.) and indirect obesity effects (hypertension,
glycemic dysregulation, etc.) and the physiology of the various
organ systems of the body. Environmental factors and aging can
accelerate or inhibit the effects of obesity on the various organ
systems and tissues of the body, and this is an area of research
that is rapidly expanding and identifying exciting results. Given
the rapid increase in both obesity and aging in the populations
of most Western societies, it will be critical to move obesity
research into the realm of translational interventions, whereby
the negative impacts of obesity on health are delayed or prevented
in an increasingly elderly population.
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