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Abstract
Background: For large-scale biological networks represented as signed graphs, the index of frustration measures how 
far a network is from a monotone system, i.e., how incoherently the system responds to perturbations.

Results: In this paper we find that the frustration is systematically lower in transcriptional networks (modeled at 
functional level) than in signaling and metabolic networks (modeled at stoichiometric level). A possible interpretation 
of this result is in terms of energetic cost of an interaction: an erroneous or contradictory transcriptional action costs 
much more than a signaling/metabolic error, and therefore must be avoided as much as possible. Averaging over all 
possible perturbations, however, we also find that unlike for transcriptional networks, in the signaling/metabolic 
networks the probability of finding the system in its least frustrated configuration tends to be high also in 
correspondence of a moderate energetic regime, meaning that, in spite of the higher frustration, these networks can 
achieve a globally ordered response to perturbations even for moderate values of the strength of the interactions. 
Furthermore, an analysis of the energy landscape shows that signaling and metabolic networks lack energetic barriers 
around their global optima, a property also favouring global order.

Conclusion: In conclusion, transcriptional and signaling/metabolic networks appear to have systematic differences in 
both the index of frustration and the transition to global order. These differences are interpretable in terms of the 
different functions of the various classes of networks.

Background
For complex systems such as biological networks, rather
than a precise description of the dynamics, which
requires a quantity of kinetic details rarely accessible in
large scale systems, it is often more reasonable to use a
minimal representation, such as a graph of interactions
between the molecular variables of interest [1-4] and per-
haps a sign describing the mode of the pairwise interac-
tion. Such graphical approaches have been extensively
used in recent years to model transcriptional [5,6] and
signaling networks [7-10]. Apart from biological systems,
signed adjacency graphs have been investigated in several
different contexts, such as economics [11,12], social bal-
ance [13], and in the theory of frustrated spin systems
[14,15], see [16] for a survey. In spite of the minimal

amount of information it contains, a signed graph can
already be used to study dynamical systems properties.
Among the various approaches that have been used for
this scope, we recall for example the characterizations of
multistationarity of [17], stability [18], and the boolean
network analysis of e.g. [10,19,20]. In particular, in [21]
signed graphs are linked to the theory of monotone
dynamical systems [22] and the latter is used as a para-
digm to explain the highly predictable and ordered
response of biological systems to perturbations. In a bio-
logical network, a response to a perturbation propagating
incoherently through the network may result in an unpre-
dictable or contradictory behavior of the system, see
example in Fig. 1. When its dynamics are always free
from such contradictory responses then the system is said
monotone [21,22], see Methods for a more rigorous defi-
nition. In dynamical systems language, a monotone sys-
tem exhibits an ordered response because it lacks
sustained oscillations and chaotic behavior, thereby ren-
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Figure 1 Yeast cell cycle signed network of [19]. The undirected graph shown is a symmetrization of the one in [19], in which we also dropped the 
self-loops. In (a) the application of a gauge transformation to the three nodes in black reduces the number of negative edges (in red) and sσ= 1 be-
comes a ground state. In (b) a typical response to a perturbation is shown for the yeast cell cycle network and for a monotone network on the same 
graph: in the second system the order is always maintained in the response (blue trajectories are monotone states). In (c) the probability of being in 
the ground state p(sground) (upper plot) and the internal energy (h) (lower plot) are shown for the yeast cell cycle network (red) and for the monotone 
network (blue) as a function of β. As the dimension of the system is small, no mean field approximation is necessary in these calculation. The monotone 
network achieves order (here p(sground) > 0.8) earlier with growing β and the energy minimum reached is lower. The color bands are meant to highlight 
the values of β for which this happens
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dering the behavior of the system particularly simple.
Hence the investigation of how close a biological system
is to being monotone has been the subject of intense
research in recent years [21,23-26].

From a statistical physics perspective, the problem of
determining monotonicity (or near monotonicity) is
equivalent to checking when an Ising model with signed
interactions has no (or little) frustration [21,23]. In terms
of the signed graph, frustration corresponds to undi-
rected cycles having an odd number of negative edges
[21]. See also [27] for another recent use of Ising models
in the context of complex networks. In this work we are
interested in computing the frustration of biological net-
works of various types: transcriptional, signaling and
metabolic. When modeling these different classes of net-
works as signed graphs, we have to use different levels of
resolution: for signaling and metabolic networks we start
from a set of stoichiometric reactions and obtain the
signed graph by taking the signature of the Jacobian of the
corresponding reaction kinetics, hence an edge repre-
sents the contribution of a molecular specie to a kinetic
reaction, see [8,23,26] and the Methods Section. For tran-
scriptional networks, on the contrary, we model interac-
tions at functional level, i.e., we take an edge to represent
the entire action of activation/inhibition of a transcrip-
tion factor on a target gene, and in doing so we lump
together many important molecular steps, from the bind-
ing of the transcription factor to the promoter region of a
target gene to the final release of the newly synthetized
mRNA molecule. Energetically, such complex process is
various (or many) times more relevant than a signaling
event or a metabolic reaction. Also the corresponding
time scales differ by several orders of magnitude [4,28].
Of course, we are forced to use this coarser level of reso-
lution because the stoichiometric details are different for
different transcriptional actions, and are not known sys-
tematically (see [29] for the only example we know of in
this direction). Notice that a similar functional represen-
tation, oriented at capturing the "information flow" rather
than the "mass flow", is possible also for signaling net-
works [4,7,9,10]. Although it may elucidate better the
causal transfer of "information" along the pathways, it
seems less appropriate to describe the energetic content
of the biochemical transformations necessary for the
propagation of the signal than the stoichiometric level
which we use in this paper, see Supplementary Notes in
Additional File 1 for a more detailed discussion. In any
case, the qualitative difference in the modeling assump-
tions made should always be kept in mind, and the classes
of networks analyzed should be connotated accordingly
as "transcriptional, at functional level" and "signaling/
metabolic, at stoichiometric level".

Under these assumptions, the frustration index we
observe varies considerably according to the type of net-

work analyzed: it is very low for gene regulatory, net-
works and much higher for signaling and metabolic
networks. In this paper we propose an interpretation of
this different behavior based on the characteristic
"energy" associated to the interactions of a graph. We
assume that the costs of the interactions (i.e., the weights
of the edges) are all comparable on each class of net-
works, but not across classes of networks. In particular,
transcriptional edges have a much higher cost than the
other classes of interactions, and we can speculate that on
an evolutionary scale this may have strongly disfavored
the development of interactions leading to frustration,
i.e., of incoherent or contradictory transcriptional orders.
For the "cheaper" signaling and metabolic interactions,
instead, such a tight control may not be required, espe-
cially since a higher frustration may induce a richer and
more complex dynamical behavior.

We know from the theory of Ising models that it is
energetically favorable for neighbouring spins to be
aligned when the interaction constant is positive and to
be antialigned when it is negative. If we associate to the
frustration index the global optimum of an "energy" func-
tion describing the amount of such unsatisfied interac-
tions, then we can say that networks with low frustration
will have a "ground state" (i.e., a global optimum) of lower
energy than more frustrated networks. In addition, rather
than just focusing on the energy of the optimal configura-
tion, we can average the state of the system over all possi-
ble perturbations, and study what is the average
frustration of a network. In particular, then, if we take the
strength of the interactions of a network as "cooling"
parameter, we can use statistical physics arguments [15]
to describe how the probability of occupancy of the
global minimum of the energy varies with the interaction
strength, and therefore how monotonically a network
behaves in average in response to random perturbations.
What we observe is that the more frustrated signaling/
metabolic networks achieve "order" (i.e, tend to populate
their global minimum of energy) in a range of interaction
energies which is lower than for the transcriptional net-
works, meaning that these networks (in average) tend to
respond to perturbations as coherently as they can even
for moderate values of energy. This behavior partially
compensates for the higher frustration, which, as already
mentioned, might be instrumental to the achievement of
more complex dynamics than those required for the tran-
scriptional networks. The transcriptional networks, on
the other hand, only contain strong interactions and are
therefore not concerned with the lower energetic regime.
Coherently, they show a topological structure richer in
tree-like subgraphs, which disfavor the transition to
ordered behavior, and which are absent in the other
classes of networks.
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That signaling and metabolic networks may require a
lower energetic content to experience a transition to
ordered behavior is also confirmed by the structure of
their energy landscapes which, unlike for the transcrip-
tional networks, lack high and neat energetic barriers
around the global optima, meaning that reconfiguration
to the ground state can be easily achieved even at modest
energies.

Results
The representation of a biological network as an n-

dimensional signed adjacency matrix is given by a matrix

 of elements Jij ∈ {±1, 0}, i, j = 1,..., n.  is assumed

symmetric (i.e., the frustrated cycles we seek are in the

underlying undirected graph), and with zero diagonal

(i.e., no self-loops), see [21] and the Methods Section for

details on the formulation of the problem. As explained in

the Methods, for a stoichiometric system we can assume

that  corresponds to the signature of the Jacobian lin-

earization around an equilibrium point. For networks

represented as functional activatory/inhibitory actions,

the interpretation is even more straightforward. Coher-

ently with our choice of model, we assume that also the

perturbations affecting the system around its equilibrium

point are of unit magnitude in each component, si ∈ {±1},

i = 1,..., n. In correspondence of a vector s = [s1 ... sn]T of

such signed perturbations, or "spin" variables, let us con-

sider the "energy" function

which expresses the total cost associated to the pertur-

bation s. Assuming that all interactions of a network have

the same strength, |Jij| = 1 whenever Jij ≠ 0, the cost of

each interaction depends on the sign of each nonzero Jij:

for Jij > 0 (activator) the aligned si, sj spin configuration is

more energetically favorable (-Jijsisj = -1 < 0) than the anti-

aligned one (-Jijsisj = 1 > 0) and viceversa for Jij < 0. Of all

2n possible spin assignments, those respecting monoto-

nicity will be such that Jijsisi > 0 on each edge of the graph,

i.e., those contributing to minimizing h(s). A spin system

is said frustrated when not all these constraints Jijsisj > 0

can be satisfied simultaneously by any assignment. Com-

puting how far a given network is from being monotone

corresponds to computing the ground state sground, i.e.,

the spin assignment that globally minimizes (1). It has

been shown [23] that this is an NP-hard problem, equiva-

lent to the MAX-CUT problem or, in terms of the Ising

model, to computing the exact frustration index of the

network [21,30], call it δ. In [26] (see also Supplementary

Notes in Additional File 1 for a quick recap), we proposed

efficient heuristic algorithms providing fairly tight upper

and lower bounds for δ in biological networks of the size

of the thousands nodes. From the theory of monotone

systems (see [21,22] and the Methods),  is monotone if

and only if there exists a diagonal signature matrix Dσ

(i.e., a matrix having on the diagonal the vector σ of ele-

ments σi ∈ {±1}) such that  has all non-

negative entries, see Lemma 2.1 in [22]. σ and  have

different sign patterns but the same frustration index δ, as

Dσ is a change of sign through a cut set of the graph of 

and such "gauge transformations" Dσ [31] leave the sign of

each cycle of the graph (and hence δ) unaltered.

Let us consider first as an illustrative example the yeast

cell cycle network introduced in [19] in the context of

boolean networks, see Fig. 1. With respect to the original

graph of [19], we drop the self-loops and consider the

underlying undirected graph (only a pair of edges is

incompatible with this symmetrization of the adjacency

matrix). The number of negative signs on the symme-

trized adjacency matrix  is 10. However, a gauge trans-

formation on the three nodes Cib1,2 Clb5,6 and Cln1,2

yields a σ with only 4 negative edges, which is a global

optimum for the frustration index δ, see Fig. 1(a) . The

presence of frustrated cycles in a network leads to a lack

of coherence in the response of the system to perturba-

tions.
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This can be observed in Fig. 1(b), where the response of

the yeast cell cycle and of a monotone network built on

the same graph are compared. The behavior of the non-

monotone cell cycle network is less predictable and

potentially contradictory (see also Fig. S2 for analogous

considerations on the simpler feedforward loop example

[5]). It is then important to have an estimate of how close

a true network is to being monotone i.e., frustration-free.

Our algorithms allow to obtain a σ with as low as possi-

ble number of negative signs also for large-scale net-

works. This number is typically close to δ, meaning that it

is now much easier to localize on the graph of σ the

potentially frustrated edges (or, more properly, the frus-

trated cycles). Another consequence is that the candidate

ground state for σ that globally minimizes (1) is now

straightforward to identify, as it corresponds to the "all

spins up" configuration, call it 1. Hence, the candidate

ground state for the original  can be found reversing

the gauge transformation: sground = Dσ 1. Approximate val-

ues for the frustration index δ and for the corresponding

energy minimum  not very

far from the true ones can therefore be computed.

Frustration in large-scale biological networks
For the eight large-scale biological networks listed in
Table 1, four transcriptional (E.coli, Yeast, B.subtilis and
Corynebacterium), two signaling (EGFR and Toll-like)
and two metabolic (E.coli and Yeast networks), we con-
sidered the corresponding signed graphs (see Tables S1-
S2 for further details on the networks and the Supple-
mentary Notes in Additional File 1 for the construction
procedure followed) and estimated δ through the algo-
rithms mentioned above, see Table 2. The theory of
signed graphs provides us with a theoretical upper bound
on the frustration index (see Supplementary Notes in
Additional File 1), call it δmax, which is a function only of
the number of nodes, edges and cycles of the networks.
The ratio δ/δmax, Fig. 2(a), shows a marked difference
between transcriptional networks and signaling/meta-
bolic networks, with the former exhibiting a consistently
lower level of frustration than the latter. The upper bound
δmax, however, disregards completely the topological
structure and the sign arrangements of a network. To
take into account also these parameters, we constructed a

null-model of the networks, obtained by randomly
reshuffling the signs of the edges, while maintaining the
same number of positive and negative edges of the origi-
nal graph, see Supplementary Notes in Additional File 1
for more details. For the Z-score of this null model, a neg-
ative value means that the edges are arranged in order to
decrease frustration. We can observe in Fig. 2(b) that all
the transcriptional networks have a negative Z-score, and
only them (p-values of the Z-score in Table 2). The char-
acteristic property of the transcriptional networks that
enhances monotonicity is the tendency of many nodes to
have a skewed distribution of signs in their edges, see Fig.
3. Up to a gauge transformation, in fact, highly asymmet-
ric sign distributions correspond to highly positive sign
concentrations, hence closer to monotone than random
sign distributions. The "packing" of signs on certain
nodes is primarily due to the mode of action of the tran-
scription factors. Although dual role (i.e., both activator
and repressor) transcription factors exist in both
prokaryotes and eukaryotes [32,33], most transcription
factors seem to be playing only one role on their target
genes. The nature of this single role is sometimes associ-
ated to the regulatory domains found on the proteins,
especially for activator domains, which are usually
enriched in proline, glutamine or acidic amino acid resi-
dues [34-36]. The dual role transcription factors are usu-
ally able to perform opposite functions according to
possible different positions of their binding sequence
with respect to the gene sequence, or according to differ-
ent cellular contexts, or simply enhancing only the forma-
tion of the closed complex DNA-RNA polymerase [32].
For example, 71% of the E.coli transcription factors func-
tion only as activators or repressors, Fig. 3(b). The onto-
logical analysis of the dual role transcription factors is
significantly enriched for categories such as interfacing
the cell with its extracellular environment and for the
elaboration of external stimuli (see Table S5). Hence
mixed role transcription factors are more often mediating
signaling events than their single role counterparts. It is
shown in Fig. 3(a) that all transcriptional networks (and
only them) have sign arrangements on the edges that are
more skewed than expected (with respect to a binomial
distribution model, see Supplementary Notes in Addi-
tional File 1 and Table S6) and also this property contrib-
utes to their monotonicity (Fig. S5). Another structural
difference between transcriptional and signaling/meta-
bolic networks is the overrepresentation in these last
classes of short frustrated cycles. As explained in the Sup-
plementary Notes in Additional File 1, this characteristic
is encoded in the level of detail (stoichiometric) that we
choose to represent our networks, and expresses the lack
of global monotonicity of a biochemical reaction involv-
ing multiple reagents, see also [21,23,24,26].
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Table 1: Networks used in this study.

Network n m leaves description

transcriptional level of detail: functional

E.coli 1475 3320 556 gene regulatory network of the E.coli, from RegulonDB database, ([42],
 http://regulondb.ccg.unam.mx), version 6.3.

Yeast 690 1082 348 gene regulatory network of S.cerevisiae, from [5]

B.subtilis 918 1324 528 gene regulatory network for Bacillus Subtilis, assembled by [43]

Cory 344 366 264 Corynebacteria gene regulatory network (experimental interactions only). Assembled by [44]

signaling level of detail: stoichiometric

EGRF 330 852 12 Epidermal Growth Factor Receptor pathway. Created by [45]

Toll-like 679 2204 59 Signaling network for the Toll-like-receptor. Assembled by [46]

metabolic level of detail: stoichiometric

E.coli 757 6116 84 metabolic network of E.coli, from [47]

Yeast 797 4436 17 metabolic network of the yeast S.cerevisiae. Assembled from [48]

n and m are the number of nodes and edges of the directed graph; "leaves" is the number of nodes not involved in any undirected cycle. More 
details on the networks are provided in Tables S1-S2.

Average frustration and ordered response

The values of δ and h(sground) alone are not enough to

characterize how monotonically the system behaves in

average. In fact, the energy landscape of frustrated Ising

spin systems is known to be usually rugged [37,38], and

the presence of a single deep minimum in (1) is not

enough to guarantee that the energy averaged over all

configurations s (corresponding to all possible multinode

perturbations) is indeed more negative than in other sys-

tems whose energy landscape is characterized by valleys

which are maybe less deep but with larger basins. In other

words, to characterize how monotone is the response of

the system to arbitrarily complex perturbations we have

to consider the average value that h(s) assumes over all

possible spin assignments, weighted by the probability of

each s. This "internal energy", call it 〈h〉, is an indicator of

how coherently the system is behaving in average: the

more negative 〈h〉 is, the less the responses of the system

to perturbations are "contradictory" at some fan-in node

or along directed cycles. Denote 

with  the partition function of

the system, β ∈ R+. As usual in statistical physics, the par-

tition function Z is the normalization factor that renders

the frequencies of the various spin states true probability

densities. For spin systems, β has the meaning of an

inverse temperature and it is normally used as "cooling"

parameter, i.e., when β→ ∞ the probability of the state s,

p(s), tends to concentrate on the ground states: p(sground)

→ 1 as β → ∞. In the context of biological networks, the

temperature is taken as ~ 298 K and it is not a varying

parameter. However, we can use β to describe the

strength of the interactions of a network. Recall that in

forming the energy (1),  was taken as a signed adja-

cency matrix with all interactions equal to 1, regardless of

the nature of the network studied. As a matter of fact,

metabolic, signaling and transcriptional interactions are

characterized by widely different energetic costs. In par-

ticular, if in our stoichiometric representation a meta-

bolic reaction or a signaling event might have a

Z esi
( ) = ∈±∑  - ( )

1

J

β sβh

http://regulondb.ccg.unam.mx
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comparable energetic content, a link in a gene regulatory

network describes the entire cascade of events in which

the transcription of a gene can be broken down and over-

all its cost is much higher than in the other networks.

Hence, in our fixed temperature context, taking into

account the interaction cost β rescales h(s) to the "abso-

lute" energy βh(s). The probability of a given configura-

tion s, p(s) = e-βh(s)Z(β)-1, is a function of β and is

maximized in the (usually degenerate) ground state

sground. As for spin systems, , i.e.,

when β is large enough, in average the system will always

be found in the configuration sground which minimizes the

energy (1) and which exhibits the least frustration for the

network.
Using β as a Lagrange multiplier, the internal energy 〈h〉

is defined as the expectation value of h(s),

and expresses this simultaneous weighting of the con-

figurations by their degeneracy and energetic content.

The more negative 〈h〉 is, the more we expect the system

to respond coherently to a generic perturbation. For any β

> 0, 〈h〉 < 0 and, as β increases, 〈h〉 reaches a stationary

value, see Fig. 1(c). For spin systems, small values of β

represent a regimen where thermal fluctuations are dom-

inant and all states tend to be equally populated. As β

increases, a spin system usually undergoes a phase transi-

tion characterized by the appearance of long range corre-

lations in the expectation values assumed by the si. For

our biological networks, when β (i.e., the energetic con-

tent of an edge of the network) is too small, the behavior

of the network tends to be random (and all states s
equiprobable) regardless of the monotonicity of the net-

work, a clear obstacle to carrying out any meaningful

task. On the other hand, when β → ∞, the probability

concentrates exclusively on the ground states (Z(β)

p ground( )s b →∞⎯ →⎯⎯⎯ 1

h
Z= − ∂

∂
ln ( )

,
b

b

Table 2: Data for the frustration index δ. 

Network δlow δup δmax δnull σnull Zscore Pvalue

transcriptional

E. Coli 365 371 1579 662,86 9,77 29,86 p<< 10-100

Yeast 41 41 401 116,67 5,83 12,98 p = 8 · 10-39

B. Subtilis 71 71 415 139,73 6,53 10,52 p = 3,5 · 10-26

Cory 9 9 48 71,15 2,16 3,76 p = 8,3 · 10-5

signaling

EGFR 183 193 375 149,75 5,01 -8,62 p = 3,3 · 10-18

Toll-like 401 468 873 384,92 7,70 -10,78 p = 2,1 · 10-27

metabolic

Yeast metab 670 747 1421 667,42 10,3 -7,72 p = 5,6 · 10-15

Ecoli metab 912 1017 1944 1006,9 12,73 -0,79 p = 0,21

δlow and δup are the computational lower and upper bounds found for δ by the algorithms described in Supplementary Notes in Additional 
File 1; δmax is the theoretical upper bound. The Z-score statistics for the frustration index δ is based on the null model obtained reshuffling the 
signs (see Supplementary Notes in Additional File 1). δnull and δnull are mean and standard deviation of the null model. The Z-score compares 
this statistics with the "true" δ (here we use δup, more conservative).
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becomes a Dirac delta function) and the behavior of the

system becomes as ordered as its frustration index allows,

i.e., the system response is as coherent and coordinated as

possible, regardless of the type of perturbation, see Fig.

1(c) . It is then important to see how the probabilities of

the various states p(s) and the internal energy (〈h〉) vary

as a function of β on the various categories of networks

under exam. Computing p(s) and 〈h〉 exactly is impossible

for systems larger than a few tens of nodes. For larger net-

works we shall make use of a mean field approximation

for heterogeneous networks [39,40]. This approximation,

see the "Methods" Section for details, allows to estimate

the expectation value 〈sσ〉 in the gauge transformed basis,

and the corresponding mean field energy hmf. Fig. 4

shows the behavior of 〈sσ〉 and hmf for a transcriptional, a

signaling and a metabolic network as function of β. In all

three cases, the population concentrates in the ground

state when β grows, and, correspondingly, hmf achieves its

global minimum. The true characteristic value of the

interaction strength β at which each of the classes of net-

works should be computed is unknown, except for the

suggestion that βtranscr Ŭ βsignal ~ βmetab. Interestingly, as β

grows, the transcriptional network is slower to reach its

energetic minimum than the other two networks, and

likewise for the other 5 networks, see Table S4 and Fig.

S7. This shift of the coherence barrier towards the low

energetic regions is a consequence of the topology of the

networks. In fact, as can be seen on Fig. 4, also the com-

pletely monotone networks built on the same graphs

(blue curves) as well as other networks with random sign

assignment to the same edges as our  (green curves)

present the same characteristic patterns in spite of differ-

ent δ. A feature behind this difference is the already men-

tioned overrepresentation of closed undirected cycles of

short length in the structure of metabolic and signaling

networks. Also the lower dispersion in the number of

connectivity degree classes k in these networks contrib-

utes to the quick convergence of 〈sσ〉 to 1. However, the

main reason behind the different thresholds for β is the

presence or less of leaves in the graph. For example, the

E.coli transcriptional network has 38% of the nodes that

are not involved in any (undirected) cycle, see Table 1.

Dropping these nodes and concentrating on the 2-core of

the undirected graph, we obtain mean field plots in which

the threshold for order is lower, and similar to those of

the signaling/metabolic networks, see Fig. S8. All of our

transcriptional networks have a high percentage of nodes

that are leaves, much higher that the signaling/metabolic

networks, see Table 1. The complete lack of feedback,

characteristic of tree-like subnetworks, disfavours the

J

Figure 2 Frustration index of the 8 biological networks listed in Table 1. In (a) the ratio δ/δmax is based only on the number of nodes and edges 
of a network and shows that the frustration index is much lower for transcriptional than for signaling/metabolic networks, see Table 2. The Z-score in 
(b) takes into account also the topology of a network. Again, the transcriptional networks are more monotone (i.e., less frustrated) than expected from 
a null model, while metabolic and in particular signaling are less monotone (i.e., more frustrated) than expected. P-values for the Z-score are in Table 2.
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Figure 3 (a) Z-score for the sign packing index (see Supplementary Notes in Additional File 1 for a definition). The 4 transcriptional networks 
have sign arrangements on the nodes that are significantly asymmetric, hence improving their frustration index. (b) Representation of the sign pack-
ing property on the E.coli  transcriptional network. The nodes significantly enriched in either positive or negative edges are shown in green (the size 
is proportional to their connectivity). The distribution of negative edges (dashed) is shown in (c). This graph should be compared with the random 
sign assignment of Fig. S6.
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achievement of a globally ordered behavior, which is

more easily achieved when short cycles, like the 3-node

motifs of signaling/metabolic networks, are abundant.

This is expected from the theory of spin systems, where

long-range correlations are more easily obtained in dense

graphs than in sparse ones. Of course adding leaves to a

graph does not change its monotonicity properties (a tree

is always monotone).
The qualitative difference in the phase transition to

order between transcriptional and signaling/metabolic
networks suggests an interpretation coherent with the
different energetic content associated to the classes of
networks. In fact, we can say that since βtranscr is high, it is
much less plausible for a transcriptional network to be
operating in a regimen of low β than it is for signaling/
metabolic networks. On the contrary, for these last two
classes of networks, it is not unlikely to have interactions
of medium-low strength. Hence it gets much more
important that 〈sσ〉 T 1 even in correspondence of moder-
ate values of β, because this helps in maintaining a coher-
ent behavior in response to perturbations, as required in
order to carry out correctly a biological task.

Sampling the energy landscape
Further information, from a different perspective, can be
obtained studying the structure of the energy landscape
of the different networks [37]. In order to have a picture
of how this landscape looks like, we have applied our
frustration minimization algorithms to uniformly distrib-

uted initial conditions and registered the local and global
minima achieved in the process (see Fig. 3 and Table S3).
Fig. 5 shows these distributions of minima as a function
of the relative Hamming distance. For the transcriptional
network of E.coli and the Yeast metabolic network, the
global minima are all localized in a small region, while
EGFR has two broader valleys of global minima. In all
three cases, the global minima are surrounded by many
local minima, thus confirming the ruggedness of the
landscapes. As can be seen on Fig. S11, unlike EGFR and
the metabolic network, the local minima of the transcrip-
tional network of E.coli tend to have an energetic differ-
ence from the global ones which grows linearly with the
distance. In addition, the separation between the well of
global minima and its surroundings is much more neat in
E.coli than in the other two networks, as can be seen on
the Montecarlo trajectories of Fig. 6 and even more
clearly on the average gradient of h(s) (bottom part of Fig.
6). See also Figs. S10, S12, and S13 for analogous consid-
eration on the remaining 5 networks. Overall, it appears
that global and local minima in the transcriptional net-
works are separated by high and steep energetic barriers,
while on the other networks there always exist low-
energy routes between random spin configurations and
global minima, possibly passing through low-energy local
minima. This of course facilitates the achievement of the
ground state and the creation of global order even in a
regime of moderate values of β.

Discussion
For a gene regulatory network, an edge represents the
cost of the entire action of transcription of a gene. This is

Figure 4 Computation of the mean field "magnetization" 〈sσ〉 (in the gauge transformed basis) and energy hmf for a transcriptional (E.coli-
transcr, left panel), a signaling (EGFR-signal, middle), and a metabolic (Yeast-metab, right) network as a function of β (interaction strength). 
The values for the three true networks are depicted in red. In blue and green the same 〈sσ〉 and hmf for two alternative networks built on the same 
graph: the exactly monotone network (i.e., with all Jij > 0), and a network with random sign assignments. The gray shaded areas in the upper plot de-
limit the region 〈sσ〉 ≤ 0.8 i.e., the region in which the response of the system to a generic perturbation results in a low-medium 〈sσ〉. 〈sσ〉 ≥ 0.8 means 
that in the gauge transformed basis the state sσ"concentrates" sufficiently well at the ground state, and, correspondingly, the energy is in average 
sufficiently close to the minimum (lower plots). For the E.coli-transc network the threshold 〈sσ〉 ≥ 0.8 is achieved in correspondence of β = 0.71, higher 
than the β = 0.46, 0.45 of EGFR-signal and Yeast-metab. Similar differences are observed in the other networks, see Table S4 and Fig. S7, and are also 
confirmed in Metropolis-Montecarlo simulations, see Fig. S9
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a complex, multistep process: for prokaryotes, for exam-
ple, it includes the binding of the transcription factor to
the DNA, the recruitment of a polymerase, the unwind-
ing of the DNA helix, the detachment of the σ -factor and
the conformational changes in the polymerase preceed-

ing elongation, the release of both the DNA and of the
complete mRNA at the termination phase. The energetic
cost and time constant of such a complex process are rel-
evant for a cell. Hence, especially in lower organisms, it is
natural to expect that in a transcriptional network the

Figure 5 Relative Hamming distance (number of spin flips over the number of nodes) between pairs of minima found by the algorithms 
for a transcriptional, E.coli-transcr, (a), a signaling, EGFR-signal, (b), and a metabolic, Yeast-metab, (c), network. The top plots refer to pairs of 
global minima; the middle row to pairs global-local minima and the bottom row to pairs of local minima. In all three networks the red line delimits 
the global symmetry axis of the spin assignment (the locations of the minima have a global spin flip symmetry; the different height of the peaks means 
that an area has been explored less by the random searches of the algorithm, not that they have different "probabilities"). While for E.coli-transcr and 
Yeast-metab the minima are concentrated in a single well, which is quite tight and located near the right margin of the histograms (i.e., short inter-
minimum distances), in EGFR-signal there are two such wells and they are disjoint and quite broad. In all 3 networks, adding the local minima, the 
landscape of minima becomes diffuse, with many different local minima located at varying distances from the global ones.

Figure 6 Montecarlo trajectories connecting a global minimum to its surrounding local minima. The spin configurations of a global and a local 
minimum are randomly chosen among those provided by our minimization procedure. The first is mapped in the second by a number of moves (sin-
gle spin flips) equal to the Hamming distance between the two minima. For visualization purposes, the trajectories are depicted as emanating from 
a unique point and radially distributed according to a polar coordinate. The vertical axis (and color code) represents the energy, the two remaining 
axes a relative Hamming distance between spin configurations. The three plots essentially confirm the landscape described in Fig. 5. For E.coli-transcr, 
global and local minima seem to be always separated by a high and steep barrier. In EGFR-signal and Yeast-metab, the landscape is scattered with 
different local minima, many of which have energies similar to the global ones, see Fig. S11. This results in some trajectories never emerging from the 
ordered phase while moving from a minimum to the optimal frustration. The lower row shows the average gradient over 1000 Montecarlo trajectories 
originating in a global minimum. For E.coli-transcr the barriers of the well of global optima is precisely observable in correspondence of the peak of 
the gradient. For Yeast-metab such kinetic traps are less steep. For EGFR-signal no clear boundary at all is observable. This, together with Fig. S11, sug-
gests that in the last two networks also spin configurations that are distant from the optimum have cheap routes to converge to the optimal frustra-
tion through intermediate low-energy local minima.
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genes behave in concert and that the fraction of the gene-
gene interactions that contribute to minimizing the
energy in response to perturbations is substantially larger
than in a metabolic or signaling network, as a frustrated
bond costs much more to the cell and its effect lasts much
longer. In particular, frustrations manifest themselves on
the cycles of the underlying undirected graph of the net-
work as contradictory transcriptional orders. While
changing the transcriptional commands is necessary to
cope with e.g. different environmental conditions, encod-
ing them as frustrated cycles can easily lead to unpredict-
able or erroneous dynamical behavior. Therefore, in spite
of the presence of certain characteristic motifs leading to
frustration (the incoherent feedforward loops mentioned
in [5,6] for the E.coli and Yeast transcriptional networks
are common examples), overall the transcriptional net-
works we analyze are indeed near-monotone. Both the
topology and the sign assignments to the nodes of the
transcriptional networks contribute to achieve a degree
of monotonicity which is higher than expected from null
models. On the contrary, incoherent signaling or meta-
bolic actions are energetically much less relevant than a
single transcriptional event and can be easily tolerated by
the cell, especially since nonmonotone patterns favour a
richer dynamical behavior. While the level of detail at
which we model our networks (functional for transcrip-
tional networks, stoichiometric for signaling and meta-
bolic networks) certainly contributes to the systematic
differences in the frustration index, other factors such as
the tendency of the transcriptional networks to have
skewed sign distributions are also crucial in attaining a
low frustration. It is interesting, then, to notice that in
E.coli the transcription factors violating this rule are pri-
marily involved in the mediation of external signaling,
rather than in regulatory or structural functions (Table
S5).

For spin systems, the tendency to satisfy pairwise all
interactions grows when the temperature decreases,
although in a frustrated Ising spin system all the condi-
tions can never be satisfied simultaneously. In this paper,
we consider the strength of the interactions as the key
factor that determines the increase in the probability of
finding the system in its ground state (i.e., in its least frus-
trated/maximally monotone configuration). If we param-
etrize the networks by the interaction strength and study
the probability of finding the system response in the
ground state as a function of this cost, we observe that for
signaling/metabolic networks it is higher than for tran-
scriptional networks in the region of medium/low values
of the interactions. This behavior, which is due to the
topological structure of the networks and to the energy
landscape it determines, could reflect the tendency of sig-
naling/metabolic networks to attain a globally ordered
response in spite of the weaker energetic content of their

interactions. As such, it helps maintaining coherence of
the response in spite of the higher level of frustration of
these networks (which, again, favors a richer dynamical
behavior). For transcriptional networks, on the other
hand, owing to the strong interactions, the regime of low
energies is less important, hence tree-like motifs, which
hinder the establishment of long-range correlations, are
abundant.

A Montecarlo investigation of the energy landscape of
the networks [37,41] suggests that transcriptional net-
works tend to have a more funneled landscape than the
other networks (at least around the global optima), with a
single deep well of global minima delimited by high barri-
ers, while in signaling and metabolic networks the optima
are surrounded by local minima of comparable energy.
Order in these classes of networks is favored also by the
lack of neat energetic barriers separating local and global
optima, which enables the reconfiguration to the global
optimum through low-energy paths. 

Several are the caveat and limitations of our study. First
of all, the different levels of resolution for the different
classes of networks may be a source (or the source) of the
systematic differences we are observing. Hints in this
direction come for example from the observation that
networks at functional level tend to have less cycles than
networks at stoichiometric level (see Supplementary
Notes in Additional File 1 for the origin of this fact), and
that functional models of signaling pathways may also
have asymmetric sign distributions (for example non-
specific kinases catalyzing the phosphorylation of various
proteins will have many positive edges, while non-spe-
cific phosphatases will have multiple negative edges).
This is observed to some extent in the functional model
of the hippocampal signaling network proposed in [9].
Notice that this network has a large fraction (approxi-
mately a third) of interactions representing protein-pro-
tein or protein-ligand bindings, to which it is unclear how
to associate a sign in an unambiguous manner. The ambi-
guity of course also propagates to the level of frustration
one obtains correspondingly. More generally, we are not
aware of any systematic way to map the pathway charts
available at stoichiometric level to the functional level,
allowing to univocally assign a sign to each edge without
at the same time loosing in this process a large part of the
molecular species involved. Notice also that the opposite
option, namely representing transcriptional networks at
stoichiometric level, is de facto impossible with our cur-
rent knowledge.

Another important source of uncertainty comes from
the limited coverage of the biological networks currently
available. In particular, for the transcriptional networks,
the fraction of target genes having at least a transcription
factor is below 50% of the genes. Furthermore, our con-
siderations about an higher than expected monotonicity
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may very well be overturned once more complex organ-
isms (for whom the regulatory mechanisms are expected
to be much more complex) are taken into account.

Conclusion
In conclusion, we have observed that distinct classes of
biological networks seem to be characterizable by differ-
ent features in response to perturbations. At least when
we model transcriptional networks at functional level
(i.e., as activation/inhibition links) and signaling and met-
abolic networks at stoichiometric level, we can observe
that transcriptional networks appear to be less frustrated
than expected and much less frustrated than signaling
and metabolic networks, meaning that they might admit
highly coherent responses to perturbations. On the other
hand, the signaling/metabolic networks seem to have the
ability to achieve an average ordered response in a lower
range of interaction strengths than the transcriptional
networks. We explain the first feature as the need to avoid
as much as possible erroneous or contradictory tran-
scriptional actions which would cost much more to the
cell than analogous incoherent signaling/metabolic
events. The second feature may partially compensate for
the higher frustration of these last networks, by lowering
the interaction strength needed for a transition to
ordered response (in average), and thereby ensuring the
effectiveness of this reduced coherent behavior in an
energetic range more critical for these classes of net-
works.

Methods
Model formulation: the signed adjacency matrix of a
dynamical system For an n-dimensional system of differ-
ential equations

consider the linearization around an operating point xo.
If z = x - xo,

where  is the Jacobian matrix computed at

. The system is at rest at

, implying that z = 0 is an equilibrium

point. A perturbation around xo is then any vector z

around 0 (assuming both positive and negative values on

each of its components zi). For a large-scale biological

network it is very difficult to have a precise knowledge of

the functional form of f(·) or even of the Jacobian matrix

. It is often more reasonable to assume that only the

sign pattern is known of :

i.e., ns of elements Jns,ij  {±1,0} is the signed adja-
cency matrix of a directed graph representing our net-
work. Coherently with Jns,ij  {±1,0}, also the magnitude
of the perturbations z is to be considered as unknown
except for its sign: s = sign(z), meaning si  {±1} i = 1,... n.
The entries Jns,ij of the matrix ns represent the effect of
the j-th variable on the i-th variable which can be activa-
tory, Jns,ij > 0, inhibitory, Jns,ij < 0, or inexisting, Jns,ij = 0. In
general, this effect can change of sign with the operating
point xo [21], but we shall not consider this scenario here.
As a matter of fact, it is worth remarking that for com-
mon choices of f(x), such as mass-action or Michaelis-

Menten, the partial derivatives  have indeed con-

stant sign .
If, rather than in the directed graph of adjacency matrix

ns, we are interested in the underlying undirected

graph (resulting by dropping the arrows in the edges),

then this is obtained symmetrizing the matrix ns

Denote  such symmetric signed adjacency matrix. The

symmetrization operation is always possible as long as

edge pairs Jns,ij and Jns,ji are compatible, i.e., Jns,ij Jns,ji ≥ 0. In

all of our networks, the symmetrization operation leads

to very few or no conflicting signs at all, see Table S1.

Monotone dynamical system

A partial order in �n is a signature vector σ = [σ1 ...σn], σi

 {±1}, which defines an order relation among vectors in

�n: x' and x''  �n are said ordered with respect to the

partial order . A sys-

tem is monotone with respect to the partial order σ if for

any pair of initial conditions x'(0) ≤σ x''(0) one has that

� �x x x= f n( ), ∈ + (2)

�z = AZ

A

x
x
xo

f
o

: |( )A = ∂
∂ =x x

x x zo , � �= = 0

A

A

J Ans = sign( )

J

J

∂ ( )
∂
fi x

x j

∀× ∈ +�n

J

J

J

s s ss, , , ,′ ≤ ′′ ′ ≤ ′′ =x x x x i ni i iif i 1 …



Iacono and Altafini BMC Systems Biology 2010, 4:83
http://www.biomedcentral.com/1752-0509/4/83

Page 14 of 16
x'(t) ≤σ x''(t) for every t ≥ 0. In terms of the signature adja-

cency matrix ns of the Jacobian linearization , a sys-

tem is monotone if and only if

As explained in detail in [21], the non strict inequality

for monotonicity allows to test such conditions (3), rather

than in the original directed graph of (2), on its underly-

ing undirected counterpart, in which we conventionally

drop the self-loops (for which σiσiJns,ii > 0 if and only if

Jns,ii > 0, i.e., the order relations (3) are trivial). Therefore,

from now on we shall consider only the symmetrized ver-

sion of ns ,with all diagonal elements fixed to 0, i.e., the

matrix . Practically, this symmetrization operation

means that we are interested not only to "true" directed

cycles and their frustration, but also to multiple directed

paths starting and ending on the same nodes (and form-

ing cycles on the underlying undirected graph). See the

feedforward examples in Supplementary Notes in Addi-

tional File 1 and Fig. S2.

Mean field approximation in heterogeneous signed 
networks

Mean field approximations [15] are necessary to compute

estimates of quantities such as Z, p(s) and 〈h〉. The

approximation described here is suitable for heteroge-

neous networks, i.e., networks in which the connectivity

of the nodes is not constant. It extends the approach pro-

posed in [39,40] to systems with frustration. For a given

signed network , apply first the gauge transformation

Dσ required to minimize the overall number of negative

signs on the edges, while maintaining the frustration

index δ invariant. Denote then k(1),..., k(£) the £ different

connectivity degrees of the nodes of σ, of probabilities

pk(1),...,pk(£), and 〈k〉 the average connectivity degree of

. The nodes having degree k will have a certain distri-

bution of positive and negative edges. Let kpn(1),..., kpn(£)

be the differences between positive and negative edges

averaged over all nodes of each degree class. As after pre-

processing with Dσ each node has more positive than

negative edges, we are guaranteed that kpn ≥ k/2. In order

to compute the expectation value of sσ on each degree

class, we use the self-consistency equation for heteroge-

neous networks. Following [39], the self-consistency

equation on the degree class k is given by

where

is the effective "field magnetization" of each node from
its neighboring nodes and the subindex σ in s indicates
that the value is computed in the gauge transformed
basis. The use of kpn instead of the degree k corrects the
equations (4)-(5) for the frustration of the system. In
practice, for our gauge transformed networks the number
of negative signs is at most 20% (often much less), mean-
ing that kpn ~ k for most degree classes. From (4) and (5),
we have an expression for the mean field expectation
value 〈sσ〉 weighted with respect to the degree classes:

and, neglecting fluctuations around each 7sσ8 the mean
field Hamiltonian is

As , the energy is invariant to the gauge trans-

formation Dσ. In fact, from sσ = Dσs, we have

. Hence the

mean field calculations for σ are valid also in the origi-

nal . In addition, however, as sσ,ground = 1, in the gauge

transformed system we have that, as β → ∞, 〈sσ〉 → 1, a

property which is in general not verified in the original

basis, which will instead concentrate at its own ground
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state . Therefore, for

all practical purposes, 〈sσ〉 can be taken as "order parame-

ter" of the spin glass. In fact, since the gauge transforma-

tion minimizes the number of negative edges, it also

maximizes the number of spins whose value is +1 in the

ground state. Hence, just like in a ferromagnet (i.e., in a

spin system in which for all nonzero Jij one has Jij = +1),

the average value of sσ (i.e., the "magnetization") tends to

1 when the system is "cooled".
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