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Abstract

Tumors often harbor orders of magnitude more mutations than healthy tissues. The

increased number of mutations may be due to an elevated mutation rate or frequent cell

death and correspondingly rapid cell turnover, or a combination of the two. It is difficult to dis-

entangle these two mechanisms based on widely available bulk sequencing data, where

sequences from individual cells are intermixed and, thus, the cell lineage tree of the tumor

cannot be resolved. Here we present a method that can simultaneously estimate the cell

turnover rate and the rate of mutations from bulk sequencing data. Our method works by

simulating tumor growth and finding the parameters with which the observed data can be

reproduced with maximum likelihood. Applying this method to a real tumor sample, we find

that both the mutation rate and the frequency of death may be high.

Author summary

Tumors frequently harbor an elevated number of mutations, compared to healthy tissue.

These extra mutations may be generated either by an increased mutation rate or the pres-

ence of cell death resulting in increased cellular turnover and additional cell divisions for

tumor growth. Separating the effects of these two factors is a nontrivial problem. Here we

present a method which can simultaneously estimate cell turnover rate and genomic

mutation rate from bulk sequencing data. Our method is based on the estimation of the

parameters of a generative model of tumor growth and mutations. Applying our method

to a human hepatocellular carcinoma sample reveals an elevated per cell division mutation

rate and high cell turnover.

Introduction

Cancer is an evolutionary phenomenon within a host organism that unfolds on the timescale

of years, but only becomes apparent in late stages and, as a result, is most often not directly
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Copyright: © 2022 Tibély et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data is available in

the manuscript and Supporting information files.

Code is available at https://github.com/tg433/

evolgenom.

https://orcid.org/0000-0002-7900-0411
https://orcid.org/0000-0001-8865-9237
https://doi.org/10.1371/journal.pcbi.1010048
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010048&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010048&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010048&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010048&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010048&domain=pdf&date_stamp=2022-05-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010048&domain=pdf&date_stamp=2022-05-05
https://doi.org/10.1371/journal.pcbi.1010048
https://doi.org/10.1371/journal.pcbi.1010048
http://creativecommons.org/licenses/by/4.0/
https://github.com/tg433/evolgenom
https://github.com/tg433/evolgenom


observed during large part of its evolution. Genomic sequencing data offers a window into the

evolutionary processes underlying tumor development and progression. Analyzing widely

available bulk sequencing data, where sequences from individual cells are intermixed, how-

ever, is challenging. Bulk sequencing can only essay mutation frequencies for a population of

cells from each tumor sample and does not resolve the genotypes of individual cells, making

even basic evolutionary parameters, like mutation rate and death rate, difficult to recover.

Consider the neutral model of tumor growth, where new mutations can appear with each

cell division, while cells can also die for reasons such as lack of nutrients or immune reactions

[1, 2]. This simple process can be described by two paramaters, the ratio of cell death and birth

rates and the mutation rate per cell division. Despite the simplicity of such a model and a

plethora of bulk tumor sequencing data, these parameters remain largely unknown, with esti-

mates spanning several orders of magnitudes [2].

While tumor cells can contain a large number of mutations, it is not clear whether this is

due to an elevated mutation rate or frequent cell death and birth. There are arguments for

both cases [3–7], but distinguishing between these two alternatives is difficult because there

are no known methods for direct measurements. As a result, estimating the mutation rate per

cell division in human tumors must rely on assumptions about the duration of the cell cycle,

the growth rate of the tumor and the total mutational burden of the tumor [8–10].

In previous works, Williams et al. [2] and Bozic et al. [3] showed that the combined effect of

the mutation rate and the death rate can be estimated from the frequencies of neutral muta-

tions that is readily available from bulk sequence data. Distinguishing excess mutations and

increased cell death, however, still required external information or assumptions. In follow-up

work, Williams et al. [11, 12] showed that separating these two quantities can be achieved by

the bulk sequencing of multiple spatially disjunct samples from the same tumor, thus, resolv-

ing a coarse grained cell lineage tree. This approach, however, is inherently limited by the

number of samples in its ability to resolve the cell lineage tree and, as a result, in its ability to

distinguish excess mutations from increased cell death.

In general, tumor phylogenies represent the evolutionary history of its subclones and can

be used to test different hypotheses about tumor evolution. However, the specific features of

cancer data pose challenges to the direct application of classical phylogenetic models. In partic-

ular, bulk sequencing data contain an unknown number of novel cancer genomes, while classi-

cal phylogenetic approaches assume that taxa are known a priori [13]. Tree deconvolution

methods, for instance, attempt to solve this problem by combining phylogenetic inference

with a deconvolution step, in which clonal subpopulations from mixed genomic samples are

separated prior to or concurrent with inferring phylogenetic relationships between those sub-

populations [13–17].

Our approach also models mutation accumulation along a tumor phylogeny, a cell lineage

tree arising from a birth-death process described by the death-to-birth ratio of cells (character-

istic of cell turnover). It does not, however, attempt to infer a tree. Rather, it attempts to

approximate the approach conceptualized by Felsenstein, wherein the likelihood of a genetic

data set is assessed by considering all possible genealogical histories of the data, each in propor-

tion to its probability [18, 19]. As a result, in contrast to methods such as tree deconvolution

and other clone tree methods [15, 16] that attempt to infer complete or partial tumor phyloge-

nies, no single tree is inferred. Instead, the parameters of an explicit probabilistic model of

both mutations and the tree along which they occur are estimated by approximating the aver-

age over all possible trees.

Below we demonstrate, as a proof-of-concept, that approximating the average over all possi-

ble trees can differentiate between a wide range of death rates (even very close to the birth

rate), and accurately estimate the mutation rates spanning a range of several orders of
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magnitude, based on a single tumor-normal sample pair. After introducing the underlying

probabilistic model and the parameter estimation procedure we assess its accuracy on simu-

lated data and present results on empirical data.

Model

We describe the evolution of tumor cells in terms of a cell lineage tree, i.e., the bifurcating tree

traced out by cell divisions. As cells that have died cannot be observed we consider the tree

spanned by surviving cells. The leaves of this tree correspond to extant cells and the internal

nodes to cell divisions. To model the descent of sampled cells, we consider a birth-death pro-

cess conditioned to have a fixed number of observed lineages (in our case sequenced cells) [20,

21]. This process is parameterized by the birth rate (which is identical to the cell division rate

and is also referred to as the cell turnover rate) b, death rate d, and number of sampled cells n.

We measure branch lengths in number cell divisions, i.e., birth events. Consequently, the birth

rate b can be considered as a scaling constant that sets the unit of time. Changing the unit of

time—an arbitrary decision of ours—should not change the shape of the tree. Therefore,

rescaling the rates should have no effect. Thus, the relevant parameter that determines the

structure of the cell lineage tree is the death-to-birth ratio δ = d/b. We only consider exponen-

tially growing cell populations (i.e., δ< 1), the growth rates of which in units of cell birth are

(b − d)/b = 1 − δ. Mutations occur at a rate μ per site per cell division. They are considered neu-

tral and we neglect the probability that a site is hit by mutation more than once.

Throughout the paper, the following notation is used: Branches of the cell lineage tree are

denoted by the index k, the length of branch k is denoted by lk and L = ∑k lk denotes the sum of

all branch lengths in the tree.

When simulating data we first sample random cell lineage trees with continuous-time

branch lengths (measured in units of one over the birth rate) from a conditioned birth-death

process parameterized by the growth rate 1 − δ and the number of surviving lineages n using

the point process approach described in [20]. Mutations are subsequently simulated along

branches of this tree: For each branch k the number of mutations is drawn independently

from a Poisson distribution with parameter corresponding to the product of the branch length

lk and the mutation rate μ, and appears in n � fk cells of the final population, where fk is the frac-

tion of cells that descend from branch k (cf. Fig 1A) in the final population.

The data available from bulk sequencing are the mutant and wild type read counts at each

site. To illustrate how such data can be used to separate the effects of the mutation rate and cell

death intensity, consider the variant allele frequency (VAF) spectrum, which can be obtained

from read count data. As shown in (Fig 1A and 1B) mutation frequencies in the population

reflect the branch length distribution of the tumor’s cell lineage tree, the leaves of which corre-

spond to the population of cells at the time the sample is taken, and its root is the most recent

common ancestor of these cells. Mutation frequencies in the population, however, are not

directly observable. What is observed is a random sample of mutant and wild-type read counts

per site. The ratio of the observed mutant and wild-type read counts (also called the variant

allele frequency) on average corresponds to the fraction of mutant cells in the population, and

the total number of reads is determined by sequencing depth.

Changing the death-to-birth ratio modifies the shape of the cell lineage tree by changing the

relative lengths of branches closer to and further away from the root and (Fig 1A), as a result,

modifies mutation frequencies in the population (Fig 1B and 1C) and the observed variant

allele frequencies (i.e. changes the shape of the variant allele frequency spectrum or VAF, Fig

1D). Changing the mutation rate, on the other hand, does not have any effect on the branch

length distribution as it changes the expected number of mutations uniformly along the tree.
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Fig 1. Distinguishing mutation rate and cell death intensity based on variant allele frequencies. Two possible scenarios for the generation of mutations along

cell lineage trees. A) Different death-to-birth ratios lead to different lineage tree shapes. Bifurcations are cell divisions, leaves are cells comprising the bulk

sequencing sample. Note that the (surviving) tree topologies are the same, only branch lengths differ. B) Mutations, symbolized by purple stars, accumulate at

cell divisions. High death-to-birth ratio and low mutation rate can lead to the same number of observed mutations as low death-to-birth ratio and high mutation

rate, however, the mutation spectrum of the two trees are different. C) For simulated trees of 104 leaves, the differences in the branch length distribution are

PLOS COMPUTATIONAL BIOLOGY Distinguishing excess mutations & increased cell death based on variant allele frequencies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010048 April 25, 2022 4 / 19

https://doi.org/10.1371/journal.pcbi.1010048


Thus, changing the mutation rate leaves the relative frequencies of mutations in the population

on average unchanged and, aside from the random sampling of reads, only changes the VAF

by on average a multiplicative scaling factor (cf. Fig 1C and 1D and Fig A in S1 Text).

It should be noted, however, that sequencing data contains more information than the VAF

spectrum. For each site the mutant and total read counts, and not only their ratio is known

(e.g., 10 mutant reads out of 30 total reads have different statistical significance from 1 out of 3,

even though they both correspond to a mutation frequency of 1/3).

To compare different combinations of mutation rates and death-to-birth ratios describing

the observed empirical data we employ a likelihood based approach. First, we derive the likeli-

hood LðDjm; dÞ of the observed data D, in our case the distribution of variant read counts, as a

function of the per site mutation rate μ and the death-to-birth ratio δ. As described below we

maximize a score based on the likelihood function using samples of cell lineage trees drawn

according to their probability corresponding to the conditioned birth-death process, in order

to estimate the parameters that are most likely to have generated the observed data.

First we derive LðDjm; T Þ the likelihood of the observed data for a fixed cell lineage tree T .

Similar to other phylogenetic methods we assume that sites collect mutations independently of

each other. This assumption is consistent with our assumption of neutral mutations, but is in

general a simplification that is motivated by computational tractability. Consequently,

LðDjm; T Þ takes the form

LðDjm; T Þ ¼
Y

i

pðmijm; T ; riÞ ð1Þ

where the product runs over all sites, mi is the number of reads exhibiting a mutation at site i,
and ri is the total number of reads covering site i. To calculate the probability of observing mi

mutant reads out of a total of ri reads we consider the following two alternatives: First, if mi =

0, then either a mutation occurred with probability μ � lk on some branch k with length lk, but

no mutant read was observed out of the ri reads, or with probability 1 − μ � ∑k lk = 1 − μ � L no

mutation occurred on any of the branches. Second, if mi> 0, then a mutation occurred on

some branch k with length lk with probability μ � lk and mi mutant reads were observed out of

ri. Thus,

pðmijm; T ; riÞ ¼

X

k

m � lk � Binomð0; ri; fkÞ þ ð1 � m � LÞ; mi ¼ 0

X

k

m � lk � Binomðmi; ri; fkÞ; mi > 0

8
>>><

>>>:

ð2Þ

where Binom(m, r, f) is the binomial distribution of m successes out of r independent Bernoulli

trials with success probability f, and fk denotes the fraction of sequenced leaf cells that descend

from branch k. Multiple mutations at the same site are neglected, which is an appropriate

approximation if μ � L� 1. In all of our applications we verified that this condition is satisfied.

To take into consideration sequencing errors, we must consider that they lead to an excess

of spurious mutant reads that are in fact the result of sequencing error. We do this by introduc-

ing the probability ε of a sequencing error per site per read. In the presence of sequencing

error (i.e., ε> 0) a read can be i) an apparent mutant read caused by an actual mutation (a

clearly visible. D) VAF spectra for death-to-birth ratios of 0 (left panel) and 0.999999 (right panel). See also Fig A in S1 Text, which shows the effect of varying

the mutation rate on the VAF spectra. The mutation rate was set to μ = 1. Fractions of mutant cells are binned (note the logarithmic scale). Ploidy is set to two,

contamination is zero. Simulated sequencing depth is 1000. The VAF spectra are based on the trees used to generate subplot C).

https://doi.org/10.1371/journal.pcbi.1010048.g001
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true mutant read) or a sequencing error (a false mutant read), alternatively it can be ii) an

apparent wild type read due to no mutation (a true wild type read) or because a mutation was

reverted by a sequencing error (false wild type read):

pðmijm; T ; ri; εÞ �
X

k

m � lk � Binom½mi; ri; fk � ð1 � εÞ þ ð1 � fkÞ � ε�

þð1 � m � LÞ � Binomðmi; ri; εÞ:
ð3Þ

Note that this equation incorporates both the mi = 0 and mi> 0 cases.

So far, we have assumed that each site can have 2 states, wild type or mutant, corresponding

to a DNA consisting of only two types of nucleotides, rather than four. It is, however, straight-

forward to introduce multiple mutant types. The likelihood function for 3 possible mutant

types relevant for DNA sequences that we use for inference where indicated, can be found in

the Materials and Methods section.

Parameter inference

A conceptually straightforward approach for treating the unknown cell lineage tree as a nui-

sance parameter is to average over all trees T [18] according to their probability:

LðDjm; dÞ ¼
X

T

LðDjm; T Þ � pBDðT jdÞ; ð4Þ

where pBDðT jdÞ is the probability of the cell lineage tree T conditioned on a birth-death pro-

cess with death-to-birth ratio δ. Due to the very large number of possible trees the above aver-

age is intractable and because of the inherent lack of resolution resulting from bulk sequencing

data a Markov Chain Monte Carlo sampler is impractical. To overcome these issues, here we

resort to sampling a finite number of trees from the conditioned birth-death process with

fixed δ. However, as we can sample only a small fraction of trees, the estimated likelihood is

typically dominated by a single tree, hence, the estimation becomes sensitive to the particular

realization of the sample set. Using synthetic data (see below), however, we demonstrate that

maximizing the average of the log-likelihood

ln �LðDjm; dÞ ¼
1

jT ðdÞj

X

T ðdÞ

ln LðDjm; T Þ; ð5Þ

where jT ðdÞj is the number of sampled trees, allows accurate and robust inference that is less

sensitive to sampling noise.

The mutation rate (defined as the number of mutations divided by the number of sites and

the total branch length of the tree) is estimated directly from the data, in order to speed up the

inference. Since some mutations are expected to be sequencing errors, we only count muta-

tions of significant read count. The threshold number of mutant read counts is set in a

sequencing depth dependent manner such that the expected number of sites with mutant

reads that result from sequencing error is less than one for the entire dataset by choosing:

mthðr; εÞ ¼ minfm : Binomðm; r; εÞ <
1

nsites
;m > ε � rg; ð6Þ

where r is the number of reads (i.e., the local sequencing depth) of which m are mutant reads

and nsites is the total number of sites in the data. The expected total branch length of T
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corresponding to the significant mutant read counts can be estimated as

LsigðT ; εÞ ¼
X

r;k

nr

nsites
� lk �
X

m0�mthðr;εÞ

Binomðm0; r; fkÞ

" #

; ð7Þ

where nr is the number of sites with r reads and nsites is the genome length (number of all the

sites). Using the above formula, the mutation rate can be estimated as:

mestðd; εÞ ¼ E
MsigðεÞ

nsites � LsigðT ; εÞ

" #

T ðdÞ

; ð8Þ

where the Msig(ε) = ∑i,mi�mth(ri,ε) 1 is the number of sites that have at least a threshold number

of mutant reads in the data.

Results on synthetic data

We validated the parameter estimation method on simulated data generated according to the

model described above. The simulation procedure is described in the Materials and methods.

No sequencing errors

Fig 2 shows how the estimated death-to-birth ratios and mutation rates compare to the true

death-to-birth ratios and mutation rates. The method can reasonably differentiate between

datasets with different death-to-birth ratios and mutation rates, and estimate their values.

Fig 3 shows the joint estimation of mutation rate and death-to-birth ratio pairs. The simu-

lated data points are grouped into isolines with a constant number of observed mutations

Mobs mutðm; dÞ ¼ E m �
X

k

lk � ð1 � Binomð0;�r; fkÞÞ

" #

T ðdÞ

; ð9Þ

where �r denotes the average sequencing depth (average read count). The expected value is

approximated by averaging over trees generated with death-to-birth ratio δ.

Results on simulated data indicate that the accuracy of parameter estimates for different

datasets are not uniform. As Fig F in S1 Text shows resolving large death-to-birth ratios

requires trees with more leaves, and accuracy is increased when analyzing trees with a suffi-

ciently large number of leaves. Aside of the effect of the size of the trees in case of high death-

to-birth ratios, differences between estimates for different datasets can also result from: (i)

sampling noise from the trees used in Eq (5), (ii) stochasticity of the simulated data and (iii)

the simulated cell lineage tree used to generate the read counts. To differentiate between these

possible factors, we chose a dataset with an estimated death-to-birth ratio that markedly devi-

ated from the true value (dataset no. 7 for 1 − δ = 1.0 in Fig 2 with an estimated value of 1 − δ =

0.47). We calculated the estimated death-to-birth ratio values using 10 independent sets of

1000 trees. Estimates were obtained in the range of 1 − δ 2 [0.39, 0.54]. Therefore, the devia-

tion of the estimate from 1.0 cannot be attributed to the sample of fitting trees. Then, we simu-

lated 10 additional datasets using the same tree as for the original dataset. The estimated

death-to-birth ratio values were: 1 − δ 2 [0.44, 0.49], even more closely matching the original

estimate. Consequently, the effect does not depend on the simulated mutations but on the tree

along which they were generated. This suggests that the deviation of the estimates from the

true death-to-birth ratios primarily reflects the fluctuation of the shapes of the trees used for

sample generation. It seems that estimating the distribution of bifurcation times of the generat-

ing tree is not an easy task.
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Effects of sequencing error

To estimate the effect of sequencing errors we re-estimated death-to-birth ratios while varying

the magnitude of sequencing error, but using the same initial read counts as in Fig 2). In this

case, the error rate of the data was also estimated by the fitting procedure, along with the muta-

tion rate and the death-to-birth ratios. The range of the error rates is from 10−3, which is cited

as the error rate of the Illumina sequencing technology [22], to 10−8, which is what advanced

Fig 2. True vs. estimated death-to-birth ratios and mutation rates. In subplot A), the growth rate 1 − δ (in units of

the birth rate) is shown for better visualization. In both A) and B), 10 synthetic datasets were generated for each true

value, with an independent cell lineage tree and associated mutations for each replicate. For each replicate 104 trees

with 104 leaves were used for fitting (see the Materials and methods for details on calculating the likelihood). Points are

slightly dispersed horizontally for clarity. Datasets are the same for A) and B). Horizontal ordering of the data points is

the same for both subplots, e.g., the rightmost point in each group of points corresponds to dataset no. 10 in both plots.

https://doi.org/10.1371/journal.pcbi.1010048.g002
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technology can achieve [23]. The influence of sequencing errors on the estimation of the

death-to-birth ratios is shown in Fig 4. For an error rate of 10−3 (the case of the Illumina tech-

nology), the estimated death-to-birth ratios can have significant deviations from the true

values.

Results on empirical data

To estimate in vivo death-to-birth ratios and mutation rates, a tumor sample is required. Due

to the sensitivity of our method to high sequencing error rates, we need a sample which is

sequenced using a very low error rate technology. We found a partial whole genome sequnce-

ing sample of a human hepatocellular carcinoma (HCC) [24], which was sequenced using the

o2n sequencing technology [23], providing error rates between 10−5 and 10−8, which is signifi-

cantly lower than the 10−3 rate of the standard Illumina process. Besides the low error rate, the

dataset also has very high sequencing depth coverage, the average sequencing depth is 904,

over 923383 sites. High sequencing depth allows the identification of more mutations and pro-

vides better resolved VAF spectra.

After preprocessing the data (see details in the Materials and methods), 2284 mutations

were identified. The variant allele frequency spectrum is shown in Fig 5. Trees of 104 leaves

were used for estimating the parameters, as DNA was extracted and quantified from 104

tumor cells that were precisely collected by laser capture microdissection (LCM) [24]. Using

the procedure described above we obtained: a sequencing error of ε = 10−7, consistent with the

reported error rate of between 10−5 and 10−8 [23] for o2n, a death-to-birth ratio of δ = 1

− 1.1 × 10−3, and a mutation rate of μ = 9.3 × 10−8 per site per cell division. Fig 5 also shows

the VAF of a synthetic sample, generated using the sample tree that fits best the empirical data.

Fig 3. Joint estimates of mutation rate and death-to-birth ratio pairs. 10 synthetic dataset replicates were generated,

each based on an independent cell lineage tree and associated mutations. For each true parameter pair replicates are

denoted by the same color. True parameter values are indicated by large filled circles. Solid lines show the numerical

approximation of parameter pairs for different values of Mobs mut. Data around the middle line are the same as in Fig 2.

Note that the death rate decreases along the horizontal axis.

https://doi.org/10.1371/journal.pcbi.1010048.g003
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Fig C in S1 Text shows that the mutation rate and the death-to-birth ratio do not depend

strongly on the value of the error rate.

Estimates for the mutation rate of healthy somatic cells can come from fitting mathematical

models to the development of certain tumors, or cell line experiments, both methods observing

mutations on a single gene [25]. A third method is to count the number of mutations in

sequenced cells and estimate the number of corresponding cell divisions [26]. Finally, a

Fig 4. The effect of varying the error rate. Sequencing error rates are shown in the subplots. 104 trees with 104 leaves were used

for fitting. Horizontal coordinates are slightly dispersed for clarity. Open circles are results corresponding to error rates fixed to

their true values, crosses correspond to error rates estimated by the parameter fit. Each open circle-cross pair corresponding to

the same dataset is vertically aligned. Note that the death rate decreases along the horizontal axis.

https://doi.org/10.1371/journal.pcbi.1010048.g004

PLOS COMPUTATIONAL BIOLOGY Distinguishing excess mutations & increased cell death based on variant allele frequencies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010048 April 25, 2022 10 / 19

https://doi.org/10.1371/journal.pcbi.1010048.g004
https://doi.org/10.1371/journal.pcbi.1010048


mathematical model fitted to multiple samples from the same donor was applied to estimate

mutation rates during early development in haematopoietic stem cells and neurons [11]. For

all of these studies, estimated mutation rate values are in the range 10−9 to 10−10 per site per

cell division [11, 25, 26], lower than our estimation of the hepatocellular carcinoma data.

Estimates of the mutation rate in tumors have high variance. In colorectal cancers, μ =

5 × 10−10 per site per cell division [8] was estimated by observing the number of mutations and

estimating the corresponding number of cell divisions. In kidney cancer, μ = 2 × 10−9 per site

per cell division was estimated [11], using multiple samples from the same tumor and fitting a

mathematical model. The same study estimated μ = 5 × 10−8 per site per cell division for lung

Fig 5. Estimating the death-to-birth ratios and mutation rates on empirical data. A) The solid purple bars show the

VAF spectrum of a human hepatocellular carcinoma sample [24], obtained by o2n sequencing [23]. The orange line

shows the VAF spectrum of a synthetic sample, generated using the tree having the highest likelihood for the empirical

data. The tree has 104 leaves corresponding to the number of sequenced tumor cells. B) counts are shown on a

logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1010048.g005
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cancer. An effective mutation rate was estimated using a different mathematical model, in

which the mutation and death rates are not separable [2]. Assuming no cell death (δ = 0), for

brain and prostate cancers μ = 9 × 10−8 per site per cell division was estimated, along with μ =

8 × 10−7 per site per cell division for lung and bladder cancers. Substituting our estimation of δ
= 0.999, these change to μ = 9 × 10−11 and 8 × 10−10 per site per cell division, respectively. Our

estimation of μ = 9.3 × 10−8 per site per cell division for HCC is at the higher end of the estima-

tions for the mutation rates in tumors.

For the death-to-birth ratio, earlier estimations range within δ 2 [0.08, 0.97] [11] for colon

cancer, using the same methodology as above. In another study [3], δ = 0.72 was estimated for

fast-growing colorectal cancer metastases and δ = 0.999 for premalignant colorectal tumors.

Upper limits are provided [2] within δ 2 [0.99, 0.999], assuming μ = 10−9 per site per cell divi-

sion. Using our estimated mutation rate μ = 9.3 × 10−8 per site per cell division, this changes to

δ 2 [0, 0.88]. Our estimated death-to-birth ratio is similar to the previously estimated δ = 0.999

of premalignant colorectal tumors. Possible causes for such an elevated death rate include the

effect of the immune system, the deleterious nature of mutations, or competition for resources

among tumor cells. In conclusion, for this tumor sample, the high number of mutations is due

to a combination of an elevated mutation rate and a high death-to-birth ratio.

The above results allow us to estimate the number of cell division rounds from the founder

cell to the biopsied tumor. The average height of the simulated trees with the estimated param-

eters is 2023 cell divisions. This value might seem counterintuitively low at first, according to

the following estimation. A naive estimation of the average tree height would assume that to

reach the size of ntumor cells leaves, the tree should have log2 ntumor cells branches between the

root and a leaf. The average length of such a branch should be 1/(1 − δ) = 1/(1.1 × 10−3). As ntu-

mor cells = 2.7 × 109 (see the next paragraph), the naive estimation of tree height is

log2(2.7 × 109) � (1/1.1 × 10−3) = 2.8 × 104. This reasoning, however, does not take into account

the fact that trees with a death-to-birth ratio close to 1 have very different shapes compared to

cell lineage trees resulting from a pure birth process. Consequently, the much lower tree height

of 2023 as opposed to 2.8 × 104 can be attributed to the difference between the average tree

with birth-to-death ratio 1 − 1.1 × 10−3 and the average tree of a pure birth process stretched

out by a factor of 1/(1.1 × 10−3).

It is also possible to estimate the lifetime of the HCC sample and the cell division rate of the

HCC tumor. The diameter of the tumor is 35 mm, while the length of a HCC cell is 25 μm

[24]. This gives a total number of 2.7 × 109 cells in the entire tumor. The median HCC tumor

volume doubling time is 86 days [27]. Based on these figures, the lifetime of the analyzed sam-

ple is around 7 years, and the cell division rate is estimated to be around 2023/[log2(2.7 × 109) �

86days]� 0.75 day−1.

In the above calculation, the effect of sampling was neglected, which corresponds to cutting

out exactly the descendants of one branch in the tumor lineage tree. This can be regarded as

an approximation of taking a local sample from a solid tumor, and the estimated parameters

refer to that branch of the lineage tree. Random sampling from a perfectly mixed population

can be considered as an opposite extreme. In this case, the transformation of the birth rate is

known [28]:

b ¼ b0=r; ð10Þ

where ρ is the sampling ratio and b0 is the birth rate corresponding to the ρ = 1 case. In our

case, the size of the tumor is 2.7 × 109 cells, from which 104 cell were sampled. Then the sam-

pling ratio is ρ = 104/(2.7 × 109) = 3.7 × 10−6 and the division rate is b = 2.03 × 105 day−1,

which is perhaps biologically less realistic.
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Conclusion

In summary, we describe a method to simultaneously estimate the mutation rate and the

death-to-birth ratio together with the sequencing error rate, making it possible to answer the

question which of the two is responsible for the elevated number of mutations in tumors. In

particular, the mutated sites’ read counts, which are closely related to the distribution of

branch lengths and the shape of the cell lineage tree, contain useful information about the

death-to-birth ratio, even in the presence of a moderate sequencing error rate.

Our results on simulated data show that the estimation method can resolve the death-to-

birth ratio even if the birth and death rates are close to each other (i.e., 1 − δ� 1) as long as

the sequencing error is sufficiently small. Unfortunately, for the error rates of standard Illu-

mina sequencing, the estimation has a significant variance, therefore applying the method to

typical samples is impractical. One solution is to use a sequencing technology with much

lower error rates, e.g., as in Refs. [29, 30], or even below the 10−6 error rate of the PCR process

[22, 23]. Another possibility is to apply noise filtering to standard sequencing data, e.g.,

deepSNV [31], and modify the error model of the fitting process accordingly.

As a proof of concept application we analyzed low error sequencing data from human hepa-

tocellular carcinoma [23]. For both the death-to-birth ratio and the mutation rate we recov-

ered estimates, a mutation rate being 9.3 × 10−8 per site per cell division, and death-to-birth

ratio δ = 0.9989, which are higher than expected for most healthy tissues but fall within the

range of previous estimates for tumors [2] and are consistent with a high mutation burden in

HCC [32].

It is important to note that high death-to-birth ratios can produce marked subclonal peaks

in the VAF spectrum (Fig 5). This implies that subclonal peaks are not necessarily the conse-

quence of selection. Neutral processes, in particular a high death-to-birth ratio, can also pro-

duce such signal.

In this work, the death-to-birth ratio was assumed to be constant during the evolutionary

process. It is more realistic to assume a death-to-birth ratio which changes during tumor

growth [3]. In our case, the estimated strong cell death suggests that the tumor reached a

slowly growing phase, in line with a Gompertzian model of tumor growth [33, 34], which is

corroborated by the large sizes of observed tumors (diameter� 1cm) used in the doubling

time estimation [27]. It is possible that in earlier stages of tumor development, cell death is less

frequent and doubling time is shorter. It might be the case that the rate of cell division is con-

stant during tumor growth, and doubling time is set by the death-to-birth ratio, which, in

turn, is limited by external factors.

The probabilistic model introduced here, together with the associated likelihood calculation

and averaging procedure, including the simulation of cell lineage trees, can be extend in a rela-

tively straightforward manner to consider the death-to-birth ratio as well as the mutation rate

to be time or lineage dependent or both. Our current model has the potential to act as a null

model compared to which models with increased complexity can be compared.

Lineage specific changes in the mutation rate or the death-to-birth ratio during the course

of tumor evolution will both result in subtrees of the cell lineage tree that are described by dif-

ferent rates and descend from the cell in which the mutation rate or turnover rate changes.

The two changes can be expected to have markedly different effects: a change in the mutation

rate will from the perspective of the rest of the mutations observed act to “rescale” the branches

of the subtree, while a change in the death-to-birth ratio will change the shape of the subtree

together with the expected number of descendants surviving until the present. A decrease in

the death-to-birth ratio (corresponding to an increase in 1 − δ, i.e., a positively selected

“driver” mutation) is expected to have the most substantial effect on the mutations eventually
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observed during tumor sequencing. As show in Fig G in S1 Text, despite a substantial lineage

specific increase, the mutation rate is recovered relatively accurately. A systematic increase is,

however, apparent in the inferred values of both the mutation rate and the death-to-birth ratio

compared to “wild type” values resulting from the subtree with an increased death-to-birth

ratio. This highlights the limitations [35] of the assumption of only neutral mutations, which

our model shares with Williams et al. [2] and which is incompatible with recent empirical

results on patterns of selection in cancer and somatic tissues [36].

Finnally, our model ignores any reminants of underlying tissue architecture and stem cell

renewal mode that might impact the dyanmics of cell proloferation in a tumour. In heathly tis-

sues it is clear that these effects play an imporant role, for instance, the organization of intesti-

nal epithelial stem cells into crypts imposes constraints on clonal expansion resulting in

elevated competition between stem cells belonging to the same crypt [37].

To go beyond a proof of concept application, aside of introducing “driver” mutations, sev-

eral other important developments are required: At present we assume a simple uniform

mutational process that is independent of genomic context and other mutational processes

that shape the genomes of the clones comprising a tumor. In particular, taking into account

mutational signatures [38] that incorporate a tumor’s evolutionary context [17] based on the

cell lineage tree offer the potential to increase both the realism and accuracy of our method. In

addition, currently the method uses a well mixed population model for tumor growth and

assumes uniform sampling. In the future, a more realistic growth model that includes spatial

effects [39, 40] would enhance the applicability of the method opening up the possibility to use

data from spatially resolved sampling of tissues, in which the measured mutation frequencies

intertwine the correlated ancestry of sampled cells with the prevalence of the mutations.

Materials and methods

3 mutant types

For 3 possible mutant types, relevant for DNA sequences, instead of the mutant read count m,

we introduce three mutant read counts, corresponding to the three possible mutant types,

m(1), m(2), m(3). Consequently, the input data need to contain three mutant read counts rather

than one for each site. This leads to the use of a multinomial distribution, with four states: wild

type and 3 mutant types. The possibility of more than one real mutation at the same site is still

neglected, because it is very rare, technically a second-order process in the mutation probabil-

ity of a site. We also neglect the probability of more than one error hitting the same site. The

likelihood function at a single site is then
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and

pðjÞM ðfk; εÞ ¼ fk � ð1 � εÞ þ ð1 � fkÞ � ε=3

pðjþ1Þ

M ðfk; εÞ ¼ fk � ε=3þ ð1 � fkÞ � ε=3 ¼ ε=3

pðjþ2Þ

M ðfk; εÞ ¼ fk � ε=3þ ð1 � fkÞ � ε=3 ¼ ε=3

pWðfk; εÞ ¼ fk � ε=3þ ð1 � fkÞ � ð1 � εÞ

ð12Þ

where (j), (j + 1), and (j + 2) denote the three possible mutant types with cyclic notation (j) = (j
+ 3), and Mult(vector of numbers of outcomes; number of trials; vector of probabilities of out-

comes) is the multinomial distribution. The factor of 1/3 is due to the fact the if a mutation

occurs at a site than the probability of each of the three possibilities is 1/3. In the multinomial

distribution the first outcome corresponds to the true mutant type, the second and third to the

false mutant types, and the forth to the wild type.

Generating trees

Cell lineage trees are simulated by our own implementation [41] of the point process described

in [20], which is more stable for death-to-birth ratios close to unity then the widely used Tree-

Sim implementation [21].

Generating synthetic samples

Simulated data consists of mutant and wild type read counts based on mutations generated

along a cell lineage tree T obtained using the ELynx suite.

Mutations are generated as follows. For each site, each branch k is checked for contributing

a mutation with probability 1 � e� mlk � mlk. The first branch providing a hit is selected.

The total number of reads of the current site is drawn from a pre-specified distribution.

The number of mutant reads is drawn form a hypergeometric distribution, corresponding

to the branch frequency fk. Sequencing errors, if required, are introduced using a multinomial

distribution, with probabilities ε/3, ε/3, ε/3, 1 − ε corresponding to the 3 possible false types

and the true type.

The mutation rate for different death-to-birth ratios is chosen such that the total number of

observed real mutations should remain close to each other, i.e., the estimation algorithm

should have a similar amount of input data.

Our implementation of the synthetic data generation method is available at https://github.

com/tg433/evolgenom.

Calculating the likelihood

We calculate the average of the log-likelihood, Eq (5), on a fixed grid of death-to-birth ratios,

where for each point we generate a sample of a given set of simulated trees using the ELynx

suite [41]. At each grid point the error rate is optimized either using Brent’s method [42]

implemented in Julia’s Optim package [43] or calculating the log-likelihood on a grid of error

rate values to speed up the calculation. The mutation rate is estimated in both cases according

to Eq (8). The final death-to-birth ratio is then estimated by interpolation using cubic splines

and the final estimate for the mutation rate is based on this value.

Our implementation of the parameter estimation method is available at https://github.com/

tg433/evolgenom.
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Preprocessing of the empirical data

The raw sequencing data was preprocessed according to [23], using the code provided by the

authors. The DNA contents of 104 cells were sequenced [24], along with a sample of neighbor-

ing normal tissue. Mutations were called using VarScan 2 [44], which is flexible and easy to

adapt to the requirements of the fitting procedure. The original study [23] targeted 410k sites,

however, the raw data covers well over 108 sites. We applied the mapping quality and base

quality thresholds of [23] to the data, and also left the minimum sequencing depth require-

ment of VarScan 2 at its default setting (8), both in the tumor and the normal samples. 923383

sites remained. Among these sites, the distribution of sequencing depths is wide, ranging from

8 to 10853, with a mean of 904. For mutation calling by VarScan 2, the minimum number of

mutant reads was set to 1 and the strand filter switched off. Although the number of false posi-

tives increases with these parameter choices, the resulting called mutations correspond better

to the error model of our fitting procedure than an error rate which changes sharply with

threshold frequency or read count values. The minimum variant frequency was set to 10−6 to

include even the least frequent mutation. Purity was set to 0.85, in accordance with [24]. We

also checked that the default somatic p-value threshold does not exclude any candidate somatic

mutations. Other parameters were left at their default values. Mutation frequencies were cor-

rected for i) copy number variation (CNV), using VarScan 2 with default parameters, and ii)
for ploidy of the sex chromosomes. CNV detection for targeted sequencing data is a more diffi-

cult task than for whole genome data, and VarScan 2 was found to be a stable performer [45].

We followed the CNV detection steps suggested by the VarScan manual. We used VarScan to

obtain raw copy numbers, using the copynumber command. The tumor-to-normal ratio was

set to 1.091 for this run. Adjustment for GC content and filtering for minimum region size

was done using VarScan’s copycaller, with default parameters. Finally, copy number data were

smoothed and segmented using the DNAcopy circular binary segmentation algorithm in R.

Sites having multiple variant types (i.e., number of reads of wild type plus most frequent

mutant type being lower than the sequencing depth) were checked manually. Read counts of

all 4 possible genotypes were identified for all variant sites.

Supporting information

S1 Text. Supplementary information for distinguishing excess mutations and increased

cell death based on variant allele frequencies. Fig A: VAF spectra for varying mutation

rates and death-to-birth ratios. Branch length distributions for A) low death rate and B) high

death rate and corresponding VAFs, respectively C) and D), with the mutation rate varying

over two orders of magnitude. Fig B: Loglikelihood-error rate curve of the empirical data.

The right panel shows the peak with a narrow loglikelihood range. Fig C: Death-to-birth

ratio-error rate and mutation rate-error rate curves of the empirical data. The loglikelihood

curve is shown in light gray. Fig D: Loglikelihood-death-to-birth ratio and loglikelihood-

mutation rate curves of the HCC data. Interpolation between data points is by cubic splines.

Green line highlights the maximum. Fig E: The effect of tree sizes on the estimations. Esti-

mated death-to-birth ratios for fitted trees with 100 (top left), 1000 (top right), 10000 (bottom

left), and 100000 (bottom right) leaves. Sizes of the sample generating trees are the same as

those of the fitting trees. Fig F: The effect of the error rate on the estimated mutation rate.

Sequencing error rates are ε = 10−3 (top left), 10−4 (top right), 10−5 (middle left), 10−6 (middle

right), 10−7 (bottom left), 10−8 (bottom right). 104 trees with 104 leaves were used for fitting.

Horizontal coordinates are slightly dispersed for clarity. Open circles are results corresponding

to error rates fixed to their true values, crosses correspond to error rates estimated by the

parameter fit. Each open circle-cross pair corresponding to the same dataset is vertically
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aligned. Fig G: The effect of the error rate on the estimated mutation rate. In 500 replicate

experiments we introduced a “driver” mutation that increases 1 − δ by 30%. The large purple

point indicates the parameter values used to simulate the data, gray circles are inferences for

data without driver mutations from Fig 3, and purple datapoints are inferences for data includ-

ing drivers. A small, but systematic increase is apparent in the inferred values of both the

mutation rate and the death-to-birth ratio compared to “wild type” values resulting from the

subtree with an increased death-to-birth ratio driver lineage.
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