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Abstract

Pleiotropy is the well-established idea that a single mutation affects multiple phenotypes. If a mutation has opposite
effects on fitness when expressed in different contexts, then genetic conflict arises. Pleiotropic conflict is expected to
reduce the efficacy of selection by limiting the fixation of beneficial mutations through adaptation, and the removal of
deleterious mutations through purifying selection. Although this has been widely discussed, in particular in the context of
a putative “gender load,” it has yet to be systematically quantified. In this work, we empirically estimate to which extent
different pleiotropic regimes impede the efficacy of selection in Drosophila melanogaster. We use whole-genome poly-
morphism data from a single African population and divergence data from D. simulans to estimate the fraction of
adaptive fixations (o), the rate of adaptation (wA), and the direction of selection (DoS). After controlling for confounding
covariates, we find that the different pleiotropic regimes have a relatively small, but significant, effect on selection
efficacy. Specifically, our results suggest that pleiotropic sexual antagonism may restrict the efficacy of selection, but that
this conflict can be resolved by limiting the expression of genes to the sex where they are beneficial. Intermediate levels of
pleiotropy across tissues and life stages can also lead to maladaptation in D. melanogaster, due to inefficient purifying
selection combined with low frequency of mutations that confer a selective advantage. Thus, our study highlights the
need to consider the efficacy of selection in the context of antagonistic pleiotropy, and of genetic conflict in general.
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Introduction

Natural selection should ensure that only mutations that are
beneficial become fixed in a population, whereas deleterious
ones are removed. However, the efficacy of selection can be
reduced by several factors, leading to the fixation of deleteri-
ous mutations and loss of beneficial ones. The best under-
stood is a reduction in the effective population size, Ne, which
exacerbates the effect of genetic drift (Kimura and Ohta 1971,
Chapter |; Maynard 1976). Differences in effective population
size can occur between species, populations, and even geno-
mic regions. For instance, population bottlenecks, as well as
high levels of inbreeding, can lead to strong reductions of the
effective size of a population (Nei et al. 1975). Similarly, Hill-
Robertson effects (Hill and Robertson 1966), the interference
of selective effects between partially linked sites, can reduce
Ne in genomic regions of low recombination and/or high
density of functional sites (Elyashiv et al. 2016, Campos
et al. 2017; Booker and Keightley 2018).

Another facet of selection efficacy concerns the nature of
new mutations themselves. For instance, selection on reces-
sive mutations will be largely inefficient until these are at a
frequency high enough that homozygous individuals are
common, which may lead to a sieve against new recessive
beneficial mutations (Haldane 1927; Marad et al. 2018). Such
mutations should be more effectively selected on X chromo-
somes, which are haploid in males (Charlesworth et al. 1987;

Vicoso and Charlesworth 2009). Second, although mutations
are traditionally categorized as beneficial, neutral or deleteri-
ous, they can also have a context-dependent effect on fitness,
if they bring an advantage only to a specific tissue, sex or life
stage, but are otherwise deleterious. Because of these poten-
tially antagonistic pressures, pleiotropic genes, which affect
different phenotypes, likely evolve under unusual selective
scenarios (Connallon and Hall 2018). Specifically, pleiotropic
mutations have been predicted to be under stronger purify-
ing selection, as selection will act on many phenotypes at
once (Kimura and Ohta 1974; Van Dyken and Wade 2010).
On the other hand, if a new mutation affects many pheno-
types, adaptation may be strongly limited (Fisher 1930; Collet
et al. 2018), and divergence at that locus may be primarily
driven by drift.

The best-studied case of antagonistic pleiotropy, sexual
antagonism, occurs when the functional divergence of males
and females leads to sex-specific optima for phenotypes
expressed in both sexes (Darwin 1871). As males and females
share essentially the same genome, mutations favorable in
one sex may be deleterious to the other. Thus, it may be
difficult for the sexes to reach their own fitness optima, lead-
ing to a so-called gender load in sexual populations (e.g, in
beetles: Arngvist and Tuda 2010). Evidence for sexual antag-
onism in animals and plants is accumulating (Bonduriansky
and Chenoweth 2009), and experiments in Drosophila have
shown that sexually antagonistic variation occurs genome-
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wide (Rice 1992; Innocenti and Morrow 2010). The resolution
of sexual conflict is expected to involve mechanisms that
decouple developmental pathways between the sexes, such
as sex-biased expression (Ellegren and Parsch 2007; VanKuren
and Long 2018). The pervasive expression divergence be-
tween the sexes found in many organisms has consequently
been interpreted as potential evidence of past sexual conflict
(Parsch and Ellegren 2013). Many studies in Drosophila
(Zhang et al. 2004; Proschel et al. 2006; Grath and Parsch
2012; Perry et al. 2014; Avila et al. 2015) and in other taxa
(eg, nematodes: Cutter and Ward 2005 mammals:
Torgerson et al. 2002, Good and Nachman 2005; algae:
Lipinska et al. 2015) have further found a faster rate of evo-
lution of male-biased genes, possibly due to a relaxation of
pleiotropic constraints (Meisel 2011; Parsch and Ellegren
2013).

Developmental pleiotropy has also been well character-
ized, especially in Drosophila (Davis et al. 2005; Artieri et al.
2009) and Caenorhabuditis elegans (Cutter and Ward 2005). It
implies that genes expressed early during development will be
more evolutionary constrained than genes expressed later,
because they may be involved in a higher number of func-
tional interactions. This model echoes another pleiotropic
model used to explain the evolution of aging, first expressed
by Williams (1957) and experimentally validated by Rose and
Charlesworth (1980), which assumes the existence of pleio-
tropic alleles that increase fitness more strongly early in life
than they decrease it later (see Lemaitre et al. 2015 for a
review). Altogether, these models highlight the potential per-
vasiveness of antagonistic pleiotropy in nature and its impor-
tance in evolution.

Understanding how selective pressures shape genome evo-
lution has been a main goal of evolutionary genomics, and
many tests of the efficacy of selection in different species and
genomic regions have been performed (see Booker et al. 2017
for a review). A commonly used measure is o; (Smith and Eyre-
Walker 2002), the proportion of divergent sites fixed by pos-
itive selection, which can be estimated from the number of
synonymous and nonsynonymous sites that differ within and
between species. If selection is efficient and adaptive evolu-
tion dominates, o should approximate one, whereas if selec-
tion is too inefficient for adaptive mutations to become fixed
and deleterious mutations to be removed, « should be
strongly reduced. In genes evolving primarily under strong
purifying selection, o should also be close to zero. To under-
stand whether differences in o are due to changes in purifying
selection or in positive selection, the rate of adaptive substi-
tutions relative to the rate of neutral evolution (wA) can
additionally be estimated (Bierne and Eyre-Walker 2004;
Gossmann et al. 2010; Galtier 2016). Another estimate related
to o is the direction of selection (DoS, Stoletzki and Eyre-
Walker 2011), which is zero under neutrality, and negative
and positive under purifying and positive selection, respec-
tively. Finally, many studies simply use the ratio of nonsynon-
ymous to synonymous divergence (Dn/Ds) or polymorphism
(Pn/Ps) to assess selective pressures: Dn/Ds should increase
under positive selection, and both Dn/Ds and Pn/Ps should
decrease under purifying selection. These empirical studies

have consistently detected a reduced efficacy of selection in
regions of low recombination (Campos et al. 2014
Charlesworth and Campos 2014; Castellano et al. 2016) and
in species with lower effective population size (Jensen and
Bachtrog 2011; Bataillon et al. 2015; Galtier 2016; but see
Bachtrog 2008 and Andolfatto et al. 2011 for counterexam-
ples). Similarly, o values for X-linked genes are consistently
larger than for autosomal genes (Meisel and Connallon 2013),
even when differences in recombination are accounted for
(Campos et al. 2018; Charlesworth et al. 2018).

Although increased purifying selection against pleiotropic
mutations (McGuigan et al. 2014) and slow rates of evolution
of pleiotropic genes (Salathé et al. 2006) have been observed,
the overall effect of pleiotropy on selection efficacy is not as
well understood. Some studies found reduced rates of adap-
tation and/or efficacy of selection for more pleiotropic genes
(Hahn and Kern 2005; Papakostas et al. 2014), whereas others
found the opposite (Vedanayagam and Garrigan 2015; Huber
et al. 2017; Josephs et al. 2017), or no effect at all (Jordan et al.
2003; Hahn et al. 2004). One challenge in making sense of
these studies is that pleiotropy can be interpreted in many
ways (Paaby and Rockman 2013), and different measures are
used to estimate it. Common measures include the number
of protein—protein interactions, a proxy for the number of
molecular functions of a gene, as well as the breadth of ex-
pression, which reflects the potential of a gene to affect dif-
ferent phenotypes. Both of these suffer from the drawback of
not directly assessing whether the gene has an effect on more
than one fitness component (e.g, a gene may perform the
same function in many tissues, or have a single molecular
function in a very large gene network).

Finally, a last challenge faced by all these studies is the fact
that many parameters influencing the efficacy of selection are
themselves correlated (e.g, expression and nonneutral diver-
gence, recombination and expression, connectivity and ex-
pression, etc; see supplementary fig. S1, Supplementary
Material online), making it difficult to disentangle their indi-
vidual effects. In particular, studies of pleiotropy rarely take
into account recombination, and generally focus on one type
of pleiotropic antagonism (e.g, between sexes, life stages,
tissues, or gene networks). Similarly, although many studies
have detected faster adaptive evolution of male-biased genes,
it is difficult to disentangle the effect of reduced pleiotropy
from increased rates of adaptation due to sexual selection, the
favored hypothesis.

Here, we take a systematic approach to examine the effect
of pleiotropy on the efficacy of selection in Drosophila mela-
nogaster. First, we consider the effect of well-known modu-
lators of selection efficacy, such as X-linkage, recombination
rate and expression level, on different measures of positive
and purifying selection (o, DoS, wA, Pn/Ps, Dn/Ds). We then
combine these with various proxies for pleiotropy: gene con-
nectivity, and breath of expression in different tissues, sexes
and life stages. This allows us both to disentangle the effect of
pleiotropy from that of its covariates, and to assess the rela-
tive effect of antagonism between sexes, life stages, tissues and
gene networks on the direction, strength, and efficacy of
selection.
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Results

A total of 10,631 and 9,895 genes were analyzed at coding and
noncoding (untranslated regions [UTRs]) sites, respectively.
The proportion of substitutions fixed by positive selection (o)
was calculated based on the number of synonymous and
nonsynonymous/UTRs polymorphic sites within D. mela-
nogaster and divergent sites with D. simulans (see Materials
and Methods). In the first two sections, we present results
related to coding regions, whereas in the last section we com-
pare them with noncoding regions.

General Modulators of Selection Efficacy
We first quantified the effect of factors that potentially affect
the efficacy of selection by means of Spearman’s rank corre-
lations using binned data (fig. 1). We ranked genes by their
value at each covariate and divided them into equally sized
classes for numerical variables (see Materials and Methods);
we then correlated the medians of the variable at each bin
with the respective median oy values. As previously found
(Campos et al. 2018; Charlesworth et al. 2018), we detected a
faster-X effect, that is, a higher fraction of adaptive substitu-
tions on X-linked genes compared with autosomal genes
(medians: a5 = 0.600, ax = 0.817; Wilcoxon’s rank test: P-
value = 2.94E-80, n, = 8943, ny = 1,688; fig. 1a) and a faster
rate of adaptive evolution (medians: WA, = 0.190, WAy =
0.322; Wilcoxon'’s rank test: P-value = 1.54E-49, ny = 8,943,
ny = 1,688; supplementary fig. S2a, Supplementary Material
online). This pattern held for all categories of sex-biased ex-
pression (male-biased: o4 = 0.800 [na = 799], ax = 0.831
[nx = 90], P-value = 3.43E-1; unbiased: xx = 0576 [np =
8,048], ax = 0.818 [nx = 1,555] P-value < 2.2E-16; female-
biased: o = 0.548 [na = 96), oy = 0.746 [nx = 43], P-value =
0.224), which may indicate a primary role of the higher effec-
tive population size of the X compared with autosomes in
D. melanogaster (see Campos et al. 2018 for a discussion).
We also found that the fraction of adaptive substitutions is
strongly positively correlated with the recombination rate
(p = 0932, P-value = 8.02E-23, n = 50; fig. 1b), consistent
with previous studies (Campos et al. 2014; Castellano et al.
2016). Similarly, there is a strong negative correlation between
the length of the longest transcript and o (p = —0.808,
P-value = 1.32E-12, n = 50; fig. 1c). We also confirmed earlier
findings (Larracuente et al. 2008) that transcript length is
negatively correlated with the evolutionary rate, Dn/Ds
(p = —0962, P-value = 8.38E-29, n=50; supplementary
fig. S2¢, Supplementary Material online). These observations
can be interpreted as a consequence of both positive and
purifying selection at linked sites (Hill-Robertson interfer-
ences), between neighboring genes or between sites within
a gene, which reduces the efficacy of selection in a linear
manner (supplementary table S1, Supplementary Material
online) in regions of low recombination and long genes.
Interestingly, we noted a strong decrease in the ratio of
nonsynonymous to synonymous polymorphism, Pn/Ps, with
the recombination rate (p = —0.878, P-value = 5.45E-17,
n = 50; supplementary fig. S2b, Supplementary Material on-
line), indicating that purifying selection is more efficient when
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interferences are weaker (see Campos et al. 2014 for similar
results in noncrossover vs. crossover regions of D. mela-
nogaster). On the contrary, the evolutionary rate, Dn/Ds, in-
creased with recombination (p = 0.608, P-value = 2.89E-6,
n = 50; supplementary fig. S2b), but the pattern was noisier.
Previous analyses of the correlation between Dn/Ds and re-
combination have yielded mixed results (Betancourt and
Presgraves 2002; Presgraves 2005; Zhang and Parsch 2005;
Haddrill et al. 2007; Campos et al. 2014; Bolivar et al. 2016).
This may reflect the fact that the predicted effect of recom-
bination rate on Dn/Ds depends on the predominant mode
of selection (and therefore on the set of genes used for the
analysis): Dn/Ds is expected to be positively correlated with
recombination under positive selection and negatively under
purifying selection. The detection of a positive correlation sup-
ports a significant contribution of positive selection to protein
divergence in D. melanogaster (consistent with the positive
correlation between wA and recombination: p = 0902, P-
value = 3.64E-19, n = 50; supplementary fig. S2b).

Genes with low expression are also known to be asso-
ciated with increased rates of evolution, presumably be-
cause they are under relaxed purifying selection (e.g, Pal
et al. 2006; Larracuente et al. 2008, see also our supple-
mentary fig. S2d). However, the relationship between ex-
pression and the fraction of adaptive fixations is not as
well understood (Carneiro et al. 2012). Figure 1d shows
that the lower the expression level of a gene, the lower the
fraction of adaptive fixations (p = 0.551, P-value = 3.41E-
5, n =50), whereas the rate of adaptive substitutions (wA:
p=—0.773, P-value = 4.67E-11, n=50) and Pn/Ps (p =
—0.954, P-value = 7.07E-27, n = 50) followed the opposite
trend (supplementary fig. S2d). This suggests that genes
with low expression are less conserved and evolve (adap-
tively) more rapidly than genes with higher expression.
However, the relationship with o was nonlinear (Akaike
information criterion: AlCjnear = —131, AlCquadratic =
—172.3, supplementary table S1) and mostly driven by
very highly expressed genes that are under strong purify-
ing selection but experience a higher adaptive evolution-
ary rate than expected linearly (supplementary fig. S2d).

Finally, o necessarily depends on the strength and fre-
quency of positive selection itself. Genes under very strong
constraint are expected to have low o, if their mutational
space only includes very few beneficial mutations compared
with neutral ones (supplementary fig. S2e). To account for
this, we performed a supplementary analysis that incorpo-
rates Dn/Ds itself as a predictor (supplementary tables S3 and
S4, Supplementary Material online). It should be noted that
using Dn/Ds as a confounding variable is a conservative ap-
proach, as Dn/Ds and o are intrinsically correlated, leading to
some loss of power to detect the effect of other predictors.
However, it is an important control, especially when sex-
biased genes, which are often under unusual selective regimes
due to sexual selection, are considered.

Notably, all these patterns were robust to the different
procedures used to filter the data (supplementary fig. S3a—e,
Supplementary Material online): excluding singletons in-
stead of variants below 5% frequency to control for slightly
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Fic. 1. The proportion of adaptive substitutions () in coding (red) and noncoding (blue) regions is strongly influenced by general modulators.
The relationship between each covariate (x axis) and o (y axis) is shown in successive panels: (a) chromosomal location, (b) recombination rate
(4*Ne*r per bp), (c) length of the longest transcript (bp), and (d) global expression level (RPKM). Each point represents the median over genes
grouped according to their values at each covariate. Error bars indicate 95% bootstrapped confidence intervals. For numerical covariates, the
Spearman’s rank correlation coefficient (p and pparial) is given. Categorical covariates were compared with Wilcoxon’s rank tests. Significance
levels are denoted by asterisks (***P < 0.001, **P < 0.01, *P < 0.5, ns: non significant). The lines are least-squares regressions (linear or quadratic
depending on which model best fitted the data based on AIC comparison; supplementary table S1, Supplementary Material online, for coding
regions and supplementary table S2, Supplementary Material online, for noncoding regions), but they should be considered as indicative because

of the binning procedure. Variants below 5% frequency were excluded.

deleterious polymorphisms; excluding transcript shorter than
900 bp to avoid small counts; and excluding X-linked genes,
sex-biased genes, or immune genes as these factors have a
strong effect on o (Obbard et al. 2009; Campos et al. 2018).
Moreover, we estimated o with another method (Eyre-Walker
and Keightley 2009) that explicitly models deleterious muta-
tions based on the site frequency spectrum of all variants
(supplementary fig. S2a—e, Supplementary Material online),
and we again recovered all qualitative patterns.

The Proportion of Adaptive Substitutions under
Different Pleiotropic Regimes

Our aim was to quantify the net effect of different facets of
pleiotropy (namely, gene networks and breadth of expression
across tissues, life stages, and sexes) on selection efficacy after
controlling for the general modulators introduced above. This
was done by applying Spearman’s partial correlations on
unbinned data (table 1a). Although partial correlations be-
tween o and the general modulators were weaker than cor-
relations on binned data, they followed the same trends
(fig. 1). In addition, we obtained partial correlations (supple-
mentary table S3, Supplementary Material online) with the
direction of selection (DoS) and the adaptive substitution rate
(wAmk), and further estimated the effect size of each

predictor in linear models (supplementary table S3,
Supplementary Material online). Importantly, the general
modulators alone explained 10.5% of the variance in DoS
(respectively 9.5% for mAwmk), whereas pleiotropy explained
only 2.3% (respectively 2.5% for wAw) of the total variance.
The effect of all pleiotropic metrics combined was thus lim-
ited, but significant based on a likelihood ratio test
(Log Linodulators = 2,748.8, Log L, = 28932, P-value =
9.62E-58; supplementary table S3, Supplementary Material
online). In comparison, the Hill-Robertson factors alone (re-
combination rate and transcript length) contributed up to
9.5% to the variance in DoS (respectively 7.9% for mAm).

Gene Networks

Pleiotropy has been commonly measured by the number of
interactions a gene is involved in, that is, gene connectivity.
However, previous studies have found limited evidence of an
effect of connectivity on evolutionary rate (e.g, Dn/Ds:
Jordan et al. 2003; Hahn et al. 2004) or on the rate of adap-
tive substitutions (wA: Josephs et al. 2017). Here, we inves-
tigated gene networks at four different levels (Murali et al.
2011): genetic interactions, that is, the modification of the
phenotype of a mutant by an allele at a second gene;
microRNA-gene interactions, predicted primarily from the
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Table 1. Spearman’s Rank Partial Correlations on oy in (a) Coding and (b) Noncoding Regions.

(a) Coding (b) Noncoding

Covariate Estimate P-value Estimate P-value
Log(recombination rate) 1.28E-001 6.61E-040*** 1.21E-001 1.86E-033***
Log(transcript length) —1.32E-001 1.55E-042*** —2.89E-002 4.04E-003**
Log(expression level) 1.09E-001 2.76E-029*** —2.01E-003 8.42E-001ns
X chromosome 1.31E-001 1.34E-041*** 7.78E-002 9.33E-015***
Gene-gene interactions 2.57E-002 8.12E-003** —2.39E-003 8.12E-001ns
Protein—protein interactions 4.03E-002 3.21E-005*** 9.12E-003 3.65E-001ns
microRNA-gene interactions 2.41E-003 8.04E-001ns —3.66E-002 2.71E-004***
TF-gene interactions —9.08E-003 3.50E-001ns 1.02E-002 3.10E-001ns
Sexually antagonistic genes —1.26E-002 1.93E-001ns —2.99E-002 2.91E-003**
Intersexual genetic correlation —1.90E-002 5.01E-002* 6.69E-003 5.06E-001ns
Folded sex specificity 8.99E-002 1.72E-020*** 2.78E-002 5.79E-003**
Tissue-by-stage specificity —6.68E-003 4.91E-001ns —5.99E-003 5.52E-001ns

Note.—Variants below 5% frequency were excluded.

Significance levels are denoted by asterisks: ***P < 0.001, **P < 0.01, *P < 0.05. ns: non significant.

complementarity of microRNAs and putative target genes;
and experimentally derived transcription factor (TF)-gene
interactions and protein—protein interactions. In all cases,
there was a small number of highly connected genes (hubs),
whereas the majority of the genes were involved in no or a
few interactions. This pattern was extreme for genetic and
protein—protein networks, where 88% and 71% of the genes
had no interactors recorded, respectively, and only 10% and
6% displayed more than one interactor. Gene networks at
the microRNA and TF levels were less skewed, with only 16%
and 10% of the genes without interactors, respectively, and
10% and 26% showing more than 20 interactors.

If antagonistic molecular pleiotropy were widespread,
genes with more interactors should have lower o values.
Contrary to this, the most consistent pattern was a positive
correlation between the number of protein—protein interac-
tions and o (p = 0.748, P-value = 7.35E-3, n=12; fig. 2q;
Pparial = 0.0403, P-value = 3.21E-5, n=10,631; table 1a),
whereas patterns were not consistent across the different
data sets for the other types of interactions (supplementary
fig. S3f, Supplementary Material online). Accordingly, a step-
wise selection approach showed that of the four measures of
gene networks, only protein—protein interactions were rele-
vant in the DoS (table 2a) and wA (table 3a) linear models. In
the case of microRNAs, an apparent negative correlation was
observed between the number of interactions and o values
(p = —0.673, P-value = 3.12E-4, n = 24; fig. 2a). However, this
correlation was not significant with the alternative method of
Eyre-Walker and Keightley (2009) (supplementary fig. S2g,
Supplementary Material online), and disappeared when other
covariates were accounted for (pparial = 2.41E-3, P-value =
8.04E-1, n = 10,631; table 1a). This seemed to be partly due to
the positive correlation between the number of microRNA-
gene interactions and transcript length (p = 0.368, P-value
< 2.2E-16, n = 10,631, supplementary fig. S1a, Supplementary
Material online), which may be explained by the fact that
many microRNA-gene interactions were estimated in silico
based on sequence complementarity (and longer sequences
have a higher chance of being complementary). Finally, sup-
plementary fig. S2f, Supplementary Material online, indicates
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that the positive relationship between connectivity at the
protein level and the fraction of adaptive fixations was mainly
driven by stronger purifying selection acting on highly con-
nected genes (Pn/Ps: p = —0.863, P-value = 2.99E-4, n = 12),
whereas positive selection had a negligible effect (wA: p =
—0.657, P-value = 2.40E-2, n=12). Taken together, these
results suggest that the common assumption that highly
connected genes are more likely to be under antagonistic
molecular pleiotropy (Promislow 2004) may be unfounded
(He and Zhang 2006).

Specificity of Expression across Tissues and Life Stages

Analyses of the effect of expression specificity on evolutionary
rate have essentially been limited to adult tissues (Duret and
Mouchiroud 2000; Grath and Parsch 2012), whereas other
studies have found an impact of the timing of expression
during development (early vs. late, e.g, Artieri et al. 2009)
but did not survey its breadth across stages. Here, we explored
the influence on o of expression specificity across: 1) four
developmental stages (“stage specificity,” supplementary fig.
S3j, Supplementary Material online); 2) several tissues within
each stage (“larval tissue specificity,” “pupae tissue specificity,”
and “somatic adult tissue specificity,” supplementary fig. S3k,
Supplementary Material online); and 3) by combining these
two dimensions (“tissue-by-stage specificity,” supplementary
fig. S3I, Supplementary Material online). As expected, we
found that genes specifically expressed in a particular tissue
and/or stage have low expression overall (p ranging from
—0461 to —0.586, and P-value < 2.2E-16 in all cases,
n=10,631, supplementary fig. S1a, Supplementary Material
online). Interestingly, we also found a significant negative cor-
relation between the number of TF interactions and the ex-
tent of expression specificity (p ranging from —0.415 to
—0.662, and P-value < 2.2E-16, n= 10,631 in all cases, sup-
plementary fig. S1a, Supplementary Material online), suggest-
ing that broadly expressed genes have a more complex
regulatory architecture. As there was a positive correlation
between the five “expression specificity” metrics (p ranging
from 0.493 to 0.932, and P-value < 2.2E-16, n=10,631 in all
cases, supplementary fig. Sla, Supplementary Material
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Fic. 2. The proportion of adaptive substitutions (am) in coding (red) and noncoding (blue) regions is moderately influenced by different facets of
pleiotropy: (a) gene networks: protein—protein interactions and microRNA-gene interactions, (b) tissue-by-stage specificity, and (c) sex-related
metrics: sex specificity, sexual antagonism, and intersexual genetic correlation. Other details match figure 1.

Table 2. Best Linear Model on DoS Obtained After a Stepwise Model Selection in (a) Coding and (b) Noncoding Regions.

(a) Coding (b) Noncoding
Covariate Estimate P-value Estimate P-value
Intercept 1.41E-001 0.00E+000*** 6.78E-002 2.53E-250***
Log(recombination rate) 3.71E-002 1.71E-079*** 2.53E-002 1.92E-042***
Log(transcript length) —3.38E-002 8.28E-069*** —1.64E-002 8.99E-017***
Log(expression level) —3.54E-003 1.05E-001ns 5.20E-003 1.19E-002*
X chromosome 5.60E-002 4.80E-026*** 4.90E-002 8.94E-023***
Gene-gene interactions
Protein—protein interactions 2.80E-003 1.34E-001ns 4.36E-003 1.38E-002*
microRNA-gene interactions 4.06E-003 2.99E-002*
TF-gene interactions
Sexually antagonistic genes —1.40E-002 1.53E-002*
Intersexual genetic correlation
Folded sex specificity 2.87E-002 1.66E-051*** 5.37E-003 3.15E-003**
Tissue-by-stage specificity 7.10E-003 2.69E-003** —4.23E-003 6.03E-002ns
Note.—Shaded cells show the discarded covariates. Variants below 5% frequency were excluded.
Significance levels are denoted by asterisks: ***P < 0.001, **P < 0.01, *P < 0.05. non significant.
online), and they were redundant in a principal component nonmonotonic trend (p = —0.0596, P-value = 0.691,
analysis (supplementary fig. S1b, Supplementary Material on- n=47, fig. 2b; ppaia = —0.007, P-value = 0.491,
line), we focused only on the combined measure across tis- n=10,631, table 1a). Supplementary fig. S2k,

sues and stages (tissue-by-stage specificity) to avoid
collinearity issues.

The relationship between o and tissue-by-stage specificity
(fig. 2b) was significantly better explained by a quadratic
model than a linear model (AlCear = —107.6, AlCquadratic =
—149.1, supplementary table S1, Supplementary Material on-
line), and this pattern was consistent across the different
data sets (supplementary fig. S3/, Supplementary Material

online) and methods (supplementary fig.  S2k,
Supplementary  Material online). Accordingly, the
Spearman’s  correlation could not capture this

Supplementary Material online, reveals that the “U-
shaped” pattern arises from the combination of a negative
linear relationship between expression specificity and the
strength of purifying selection (either using the fraction of
strongly deleterious mutations [p = —0.890, P-value <
2.2E-16] or Pn/Ps [p 0.948, P-value 6.46GE-24,
n = 47] as found by Huber et al. 2017) and a positive non-
linear relationship with the adaptive evolutionary rate (A,
p = 0.672, P-value = 2.32E-7, n = 47). This suggests that
an increased fraction of adaptive substitutions can be ei-
ther caused by strong purifying selection on highly
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Table 3. Best Linear Model on Ay Obtained After a Stepwise Model Selection in (a) Coding and (b) Noncoding Regions.

(a) Coding (b) Noncoding
Covariate Estimate P-value Estimate P-value
Intercept 3.60E-001 0.00E+000*** 2.43E-001 9.66E-049***
Log(recombination rate) 1.12E-001 1.05E-043*** 1.23E-001 3.94E-015%**
Log(transcript length) —1.42E-001 1.10E-070*** —1.21E-001 3.23E-013***
Log(expression level) —6.94E-002 1.45E-014*** —2.45E-002 1.53E-001ns
X chromosome 1.65E-001 4.81E-014*** 1.82E-001 1.51E-005***
Gene-gene interactions
Protein-protein interactions 1.39E-002 7.15E-002ns
MicroRNA-gene interactions 2.74E-002 8.12E-002ns
TF-gene interactions
Sexually antagonistic genes —8.72E-002 7.25E-002ns
Intersexual genetic correlation 2.71E-002 6.29E-002ns
Folded sex specificity 1.11E-001 6.04E-046***
Tissue-by-stage specificity 4.73E-002 1.30E-006*** —3.72E-002 3.95E-002*
Note.—Shaded cells show the discarded covariates. Variants below 5% frequency were excluded.
Significance levels are denoted by asterisks: ***P < 0.001, **P < 0.01, *P < 0.05. ns: non significant.
pleiotropic genes (i.e.,, broadly expressed) or enhanced pos- n=10,631; supplementary table S3, Supplementary

itive selection on weakly pleiotropic genes (i.e,, specifically
expressed).

Sex-Biased Genes and Sexual Antagonism

As others have recently found (Avila et al. 2015; Campos et al.
2018), male-biased genes are characterized by a higher pro-
portion of adaptive substitutions than unbiased genes but
not female-biased genes, leading to an asymmetric “U-
shaped” pattern (fig. 2c). This pattern, observed based on
whole-body samples and robust to varying data sets (supple-
mentary fig. S3g, Supplementary Material online) and meth-
ods (supplementary fig. S2h, Supplementary Material online),
was mostly driven by reproductive tissues; heads did not show
sufficient sexual dimorphism for such an analysis to be mean-
ingful (supplementary fig. S4, Supplementary Material online).
When merging male-biased and female-biased genes together,
the folded sex specificity had a significant positive effect on
o after controlling for other factors (pparia = 0.0899, P-
value = 1.72E-20, n = 10,631, table 1a). It was also retained
in the best linear regression on DoS (table 2a) and wA
(table 3a), confirming its influence on selection.

Several hypotheses have been put forward to explain this
accelerated evolution of male-biased genes. First, the fact that
adaptive evolution is stronger in male-biased genes than in
unbiased and female-biased genes, and that male-biased
genes are primarily expressed in the male reproductive organs
(supplementary fig. S5, Supplementary Material online), may
indicate that sexual selection originating from male—male
competition drives this pattern. However, male sexual selec-
tion is unlikely to be the only process at play, because male-
biased genes had a consistently higher fraction of adaptive
fixations than unbiased and female-biased genes across three
categories of evolutionary rate (“slow,” “intermediate,” and
“fast” evolving genes; supplementary fig. S6, Supplementary
Material online). Similarly, partial correlations show that sex
bias remains a strong predictor of o even when Dn/Ds is
corrected for (pPpariai = 00584, P-value = 1.72E-9,
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Material online).

Second, sexual antagonistic pleiotropy could produce a
similar “U-shaped” pattern as genes under sexual antagonism
will exhibit unbiased expression, whereas intrasexual conflict
is expected to be resolved by sex-specific expression. We took
two approaches to detect an effect of sexual conflict on se-
lection. First, we estimated o for a set of genes that had ex-
perimentally been detected as sexually antagonistic
(Innocenti and Morrow 2010). The median folded sex specif-
icity was 0.807 for sexually antagonistic genes, and 1.00 for
nonsexually antagonistic ones (Wilcoxon'’s rank test: P-value
= 2.5E-11, nspg = 1,009, nsag = 9,622), as expected if dimor-
phism provides a resolution of conflict. However, when we
compared o between the two sets of genes, we did not find
any significant difference (medians: osag = 0.625, tpon-sac =
0.649; Wilcoxon’s rank test: P-value = 0.354, nsag = 1,009,
Nnon-sac = 9,622; fig. 2¢), and this was consistent across data
sets (supplementary fig. S3h, Supplementary Material online,
except when excluding only singletons) and methods (sup-
plementary figs. S2i and S7, Supplementary Material online).
As genes were classified as sexually antagonistic based on
interactions between expression and sex-specific fitness
(Innocenti and Morrow 2010), selection at the coding se-
quence level may not be involved in the conflict. A second
approach was to look at the intersexual correlation of expres-
sion of each gene, which is thought to underlie much of the
sexual conflict (as it prevents the two sexes from reaching
their optimum; Dean and Mank 2016). The intersexual ge-
netic correlation in expression (which was negatively corre-
lated to folded sex specificity, p = —0.185, P-value < 2.2E-16,
n = 10,631, supplementary fig. S1a, Supplementary Material
online; see Griffin et al. 2013 and Allen et al. 2018 for similar
results) was negatively correlated with o (p = —0.474, P-value
= 5.36E-003, n = 33, fig. 2¢; ppartial = —0.019, P-value = 5.01E-
2, n=10,631, table 1a), confirming that part of these highly
correlated genes may be under sexual conflict. Although the
trend was consistent across data sets (supplementary fig. S3i,
Supplementary Material online), it was not significant with
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the Eyre-Walker and Keightley method (supplementary
fig. S2j, Supplementary Material online).

Third, male-biased genes are more tissue-specific than
other genes (e.g, in Drosophila: Meisel 2011; Grath and
Parsch 2012; in vertebrates: Mank et al. 2008), and their in-
creased o may be mainly driven by tissue specificity.
Consistent with this, we found a significant positive correla-
tion between the folded sex specificity and the adult tissue
specificity calculated including male and female reproductive
tissues (0 = 0.200, P-value < 2.2E-16), confirming previous
findings in Drosophila (Assis et al. 2012; Allen et al. 2018).
Disentangling the effect of tissue specificity is difficult because
reproductive genes have by far the most specific patterns of
expression of any tissue (64% of all fully adult tissue-specific
genes were expressed in the male reproductive tissues). In
order to get around this, we focused instead on all genes
with high expression in the male reproductive tissues (testis
and accessory glands), and divided those into three categories
of adult tissue specificity: broad (t < 0.4; 952 genes), inter-
mediate (0.4 < t < 0.8; 273 genes), and specific (7 > 0.8; 946
genes). Supplementary figure S8, Supplementary Material on-
line, shows that the two extreme categories have similarly
high o values (medians: tproaq = 0.833, Gintermediate = 0730,
and Ogpeciic = 0.804, respectively), suggesting that tissue spe-
cificity is not the primary cause of increased selection efficacy
of male-biased genes (Meisel 2011; Grath and Parsch 2012).

Finally, the fact that female-biased genes were not signifi-
cantly different from unbiased genes in terms of o (fig. 2c)
may be due to their higher breadth of expression (e.g, only 13
genes were strictly expressed in female reproductive tissues).
In particular, female-biased genes were far more expressed in
the carcass and digestive systems of adults than male-biased
genes (supplementary fig. S5, Supplementary Material online).
Moreover, female-biased genes were highly expressed in the
embryo (supplementary fig. S5, Supplementary Material on-
line), suggesting that many of them function as maternal
RNAs, which should further constrain their evolutionary dy-
namics due to ontogenic pleiotropy.

The Efficacy of Selection at Coding and Noncoding
Sites

We compared the selective regime of coding sequences and
the UTRs of transcripts, which are known to be involved in
gene regulation (Barrett et al. 2012). Synonymous sites were
used as the neutral control for both analyses, whereas in the
analysis of noncoding regions Du and Pu refer to mutations in
the UTRs. Overall, the median fraction of adaptive substitu-
tions was higher in coding than noncoding regions (tcoding =
64.6% VS. Olnoncoding = 36.7%; Wilcoxon’s rank test: P-value <
2.2E-16, Ncoding = 10,631, Nnoncoding = 9,895), and these values
were close to those previously reported (Andolfatto 2005).
Although the divergence ratio was slightly lower in coding
regions (Dn/Dscoding = 40% VS. DU/DSponcoding = 49%;
Wilcoxon'’s rank test: P-value < 2.2E-16, Ncoding = 10,631,
Nnoncoding = 9,:895), there was a 2-fold decrease in the median
polymorphism ratio in coding regions compared with non-
coding regions (Pn/Pscoding = 16% VS. PU/PSponcoding = 32%
when excluding variants below 5% frequency; Wilcoxon's

rank test: P-value < 2.2E-16, Ncoding = 10,637, Nnoncoding =
9,895), confirming previous findings that the latter are less
constrained (Campos et al. 2018). At the genome level, o
values in coding and noncoding regions were moderately
but significantly correlated (p = 0.23, P-value < 2.2E-16,
n =9,895), suggesting that the selective pressures acting on
genes and on their regulatory sequences are comparable.

Consistent with this, most strong modulators of selection
had similar effects on « for coding and noncoding sequences
(we obtained comparable patterns with DoS and wA, sup-
plementary table S4, Supplementary Material online).
Corroborating results by Campos et al. (2018), we found a
strong faster-X effect in UTRs (medians: ap = 0.328, ax =
0.530; Wilcoxon’s rank test: P-value = 6.28E-41, nn = 8,299,
nx = 1,596; fig. 1a), consistent with faster gene expression
divergence on the X chromosome compared with the auto-
somes (Kayserili et al. 2012; Meisel et al. 2012). Moreover,
selection efficacy strongly increased with the local recombi-
nation rate (p = 0.916, P-value = 1.19E-20, n =50, fig. 1b;
Pparal = 0.121, P-value = 1.86E-33, n = 9,895, table 1b). We
also found a significant negative partial correlation between
the length of the transcript and selection efficacy on its
UTRs (Pparial = —0.029, P-value = 4.04E-3, n=9,895,
table 1b). However, there was no linear effect of expression
level of the transcript on selection efficacy on its UTRs (p =
—0.006, P-value = 0.968, n = 50, fig. 1d; pparia = —0.002, P-
value = 0.842, n = 9,895, table 1b). This may reflect the fact
that, contrary to what is observed for amino acid divergence,
the rate of adaptive divergence of gene expression appears
to be reduced for high expression genes (Nourmohammad
et al. 2017). Taking into consideration general modulators
alone, 4.9% of the variance in DoS (respectively 1.6% for wA)
was explained (supplementary table S4, Supplementary
Material online), which is lower than in coding sequences
(supplementary table S3, Supplementary Material online), as
modulators were mostly designed based on coding
information.

Similarly, the effect of all pleiotropic metrics combined was
lower to that found in coding regions (DoS: 0.2%; wA: 0.1%)
but was significant based on a likelihood ratio test
(Log Linodulators = 3,574.0, Log L, = 3,589.7; P-value =
2.71E-4; supplementary table S4, Supplementary Material on-
line). Patterns obtained for gene networks were qualitatively
similar to those obtained using coding sequences. First, there
was a positive correlation between o and the number of
protein—protein interactions, but it was not significant for
noncoding regions (p = 0273, P-value = 0.391, n=12,
fig. 2a; Pparial = 0.009, P-value = 0.365, n = 9,895, table 1b).
We also found a negative correlation between o and the
number of microRNA-gene interactions (p = —0.526, P-
value = 8.32E-3, n = 24, fig. 2a). Contrary to coding regions,
this negative correlation remained significant after controlling
for other factors (pparia = —0037, P-value = 2.7E-4,
n=19,895, table 1b), and after the stepwise model selection
on DoS (table 2b), which may reflect the fact that microRNAs
bind primarily to 3-UTRs. We also found the same “U-
shaped” pattern (fig. 2b) in the relation between the fraction
of adaptive fixations and the tissue-by-stage specificity

507


https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy246#supplementary-data

Fraisse et al. - doi:10.71093/molbev/msy246

MBE

(AlCjnear = —142.9, AlCquadraic = —150.6, supplementary
table S2, Supplementary Material online).

Estimates of sexual antagonism pleiotropy were also cor-
related with o for noncoding regions. A positive correlation
between sex specificity and « was comparable but weaker to
that of coding regions (fig. 2¢; folded sex specificity: ppareial =
0.0277, P-value = 5.80E-8, n = 9,895, table 1b). The same was
true for the intersexual genetic correlation in expression (p =
—0.315, P-value = 7.4E-2, n = 33, fig. 2c), which was nonsig-
nificant after accounting for other factors (pparial = 0.006, P-
value = 5.06E-1, n=9,895, table 1b). On the contrary, the
pattern was stronger in noncoding regions when considering
genes that were previously classified as sexually antagonistic
based on expression data (Innocenti and Morrow 2010 and
see Materials and Methods). Sexually antagonistic genes were
under less efficient selection compared with other genes
(osac = 0.327, 0tnon-sag = 0.375; Wilcoxon'’s rank test: P-value
= 5.20E-3, Nsac = 954, Nnon-sac = 954; fig. 2¢), as expected if
opposing selective forces are acting on male and female ex-
pression. Moreover, sexual antagonism was retained in the
best model after stepwise selection on DoS (table 2b) and on
wA (table 3b).

Discussion

Pleiotropy is predicted to restrict the efficacy of selection,
because trade-offs between mutations that benefit one bio-
logical process but harm others are more likely to occur in
pleiotropic genes. There has been substantial debate in the
literature about the effect of pleiotropy on evolutionary rates,
and to a lesser extent, on selection efficacy. In this study, we
shed light on the factors influencing selection efficacy in D.
melanogaster and disentangle the relative contribution of dif-
ferent aspects of pleiotropy from that of these confounding
factors. Correlates are rarely accounted for in similar studies
and may have led to an overestimate of the effect of pleiot-
ropy. We explain 4.9% of the variance in the direction of
selection (DoS) (respectively 6.3% for wA) when only consid-
ering pleiotropic metrics. When general modulators are taken
into account (chromosomal location, Hill-Robertson effects,
expression level), the eight pleiotropic metrics (molecular
interactions, sex-related metrics, tissue-by-stage specificity)
have a significant but relatively small effect on selection effi-
cacy in coding regions: 2.3% of the total variance in DoS,
whereas the two Hill-Robertson factors alone explain up to
9.5% and the complete model 12.8% (respectively 2.5%, 7.9%,
and 12.0% for wA). These estimates should be taken with
some caution because of several caveats in the analysis. First,
the method assumes a linear relationship between DoS and
each predictor, which is clearly not the case with some pleio-
tropic metrics, such as tissue-by-stage specificity. Second, the
different data sets employed come from different populations
of D. melanogaster, and biological differences between them
could have affected our results. African populations were
used for the genomic data (Zambia) and for the recombina-
tion estimates (Rwanda), whereas American flies were used to
identifying the sexual antagonistic genes (LH_m lab strain),
for the intersexual genetic correlations (Raleigh), and for the
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expression data (modENCODE: Oregon-R and ISO1). Some
studies have reported a fair amount of divergence among
populations in the magnitude of sex-bias (e.g, in D. mela-
nogaster: Huylmans and Parsch 2014; in D. serrata: Allen
et al. 2017; but see Mdiller et al. 2012 for a counterexample).
However, we expect that these differences would add noise in
our data, therefore making our conclusions conservative.
Finally, we used synonymous sites as our neutral control, al-
though these have been shown to be under purifying selec-
tion in D. melanogaster, especially when highly expressed
genes are considered (Lawrie et al. 2013). The extreme values
of o and wA that we observed for genes with the highest
expression (supplementary fig. S2d, Supplementary Material
online) may therefore partly be due to the strong purifying
selection acting on synonymous sites, which can bias o up-
wards (Matsumoto et al. 2016). Despite these limitations, our
results generally support the idea that the adaptive potential
of a gene that has either multiple molecular functions or is
expressed in multiple contexts (sexes, life stages, tissues) may
be to some degree restricted.

Different aspects of pleiotropy appear to restrict adap-
tation to different extents. First, the influence of gene con-
nectivity on o was not robust to filtering choices or
methodologies at any of the four levels investigated, and
highly connected genes did not appear to be under less
effective selection. Previous work has primarily focused on
purifying selection, and conclusions have also been incon-
sistent (Jordan et al. 2003; Hahn et al. 2004; Hahn and Kern
2005; Larracuente et al. 2008). Similarly, functional analy-
ses in which the number of biological processes of a gene
was recorded found limited effects of molecular pleiotropy
on the evolutionary rate in yeasts (Salathé et al. 2006), and
on o or WA in coexpression networks in plants (Josephs
et al. 2017). Finally, an RNAi study performed in D. mela-
nogaster (Vedanayagam and Garrigan 2015) found that
more pleiotropic genes, that is, those having a measurable
effect on multiple molecular phenotypes, are in fact under
stronger positive selection. Collectively, these findings sug-
gest that gene connectivity, despite having been widely
used, is not an accurate indicator of antagonistic molecu-
lar pleiotropy (He and Zhang 2006).

On the other hand, we detected an influence of sex spe-
cificity on selection efficacy. Our results suggested that this
was not solely driven by the fast evolution of male-biased
genes due to sexual selection, nor by their strong tissue spe-
cificity. We argue that sex specificity may be an efficient way
to escape pleiotropic sexual antagonism and to evolve toward
optimal sex-specific phenotypes. A caveat concerning this
reasoning is our assumption that sex-biased genes typically
have sex-biased fitness effects. Empirical tests are scarce but
found that this is generally true in D. melanogaster (Connallon
and Clark 2011). Finally, several studies have considered the
effect of tissue specificity on the overall evolutionary rate (Dn/
Ds) and found a positive correlation (Duret and Mouchiroud
2000; Larracuente et al. 2008), suggesting that adaptation is
more prevalent in the absence of tissue pleiotropy. Likewise,
breadth of expression across developmental stages may im-
pede selection efficacy, especially in holometabolous insects,
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as it has been reported in D. melanogaster (Perry et al. 2014).
A notable finding of our work is that by combining both the
temporal (life stages) and spatial (tissues) dimensions, an in-
termediate level of tissue-by-stage specificity appears to lead
to maladaptation. We suggest that this complex pattern
arises because the accumulation of slightly deleterious non-
synonymous fixations is not compensated by adaptive fixa-
tions for intermediate level of ontogenic pleiotropy.

Our estimate of o in coding regions was above 50%,
consistent with what has been found in Drosophila
(Andolfatto 2005; Eyre-Walker et al. 2006) and in other
animal species (Galtier 2016). This value was ~35% for
noncoding regions (UTRs), which is similar to the 37.1%
reported by Andolfatto (2005). These results confirm that
these sequences are under effective natural selection
(Andolfatto 2005; Elyashiv et al. 2016; Campos et al.
2017), supporting their role in the regulation of gene ex-
pression (Barrett et al. 2012). We found that pleiotropy
has similar consequences on selection efficacy for muta-
tions in coding regions and for those regulating gene ex-
pression, though effects were generally less pronounced in
the latter. Notably, we found more support for an influ-
ence of sex-specific selection on regulatory evolution than
previously reported. We observed an asymmetric U-
shaped pattern between sex specificity and o in noncod-
ing regions, contrary to Campos et al. (2018), who did not
find faster adaptive evolution of male-biased genes in
UTRs. The reason for this discrepancy is not entirely clear,
but may have to do with how genes were classified in sex-
bias categories, as Campos et al. (2018) employed a more
sophisticated method. Genes that had been detected as
having sexually antagonistic effects on fitness (Innocenti
and Morrow 2010) also had reduced o values, further
supporting the role of sexual conflict in limiting the effi-
cacy of selection on regulatory regions.

Although our results were robust to different filtering
procedures and methods to estimate o, the weak effects
reported may be partly due to incomplete information on
pleiotropy. There are many conflicting definitions of plei-
otropy (Paaby and Rockman 2013), and many ways of
estimating it. Some studies (Salathé et al. 2006;
McGuigan et al. 2014) have used the number of anno-
tated gene ontology terms, but concluded a weak effect
on the rate of evolution or on the strength of stabilizing
selection; this was the case even when pleiotropy within
functional modules (modular pleiotropy) was considered
(Collet et al. 2018). More direct and accurate measures
include quantitative trait locus mapping (e.g, in mice,
Wagner et al. 2008) and RNAI screening (e.g,, in yeast,
Ohya et al. 2005). These studies have shown that most
of the genes influence only a few phenotypes (L-shaped
distribution of pleiotropy, Wagner and Zhang 2011; but
see Hill and Zhang [2012] for a counterpoint), but how
applicable this is to other organisms is still unclear.
Overall, our knowledge of the consequences of pleiotropy
is still scarce, and thus future empirical studies should
focus on what matters from an evolutionary perspective,

that is, when a single gene influences more than one fit-
ness component.

Materials and Methods

Genomic Data

Polymorphism within D. melanogaster

We used the Drosophila Population Genomics Project phase
3 data (Lack et al. 2015) consisting of a sample of 197 haploid
genomes from a single locality, Siavonga in Zambia (Africa).
This locality is considered to be part of the ancestral range for
the species (Pool et al. 2012), and so the population shows
high genetic diversity and has a simple demography. Whole-
genome data for chromosome 2 (arms 2R and 2L), chromo-
some 3 (arms 3R and 3L) and chromosome X were retrieved
from the Pool lab (http://johnpool.net/genomeshtml,
“DPGP3 SEQ” downloaded in September 2017). We sequen-
tially masked regions with evidence of 1) heterozygosity, 2)
identity by descent, and 3) admixture from non-African pop-
ulations using the “MASKING PACKAGE” provided by the
Pool lab. We then converted the 197 haploid sequences to
standard vcf format using snp-sites.v2.3.3 (Page et al. 2016)
and the D. melanogaster release 5.57 genome (http://popfly.
uab.cat) as the reference. We filtered-out sites with more than
50% missing data with VCFtools v0.1.12 (Danecek et al. 2011).
The “ingroup vcf’ (available in supplementary file S1,
Supplementary Material online) provides a list of polymor-
phic sites segregating in the Zambia population.

Divergence with D. simulans

We retrieved the D. simulans 2 genome aligned to the D.
melanogaster 5.57 genome from the Pool lab (http://john-
pool.net/genomeshtml, “SIMULANS SEQ” downloaded in
September 2017). We then converted the D. simulans se-
quence to standard vcf format using snp-sites.v2.3.3 and
the D. melanogaster release 5.57 genome as reference. Sites
segregating within the Zambia population were discarded, so
the “outgroup vcf’ (available in supplementary file S2,
Supplementary Material online) provides a list of divergent
sites between D. simulans and D. melanogaster. Alleles at each
site were orientated based on the D. simulans sequence (sites
with missing data in D. simulans were discarded).

Annotation

Only biallelic sites were considered for further analyses, and
only the longest transcript of each gene was retained. We
conducted variant annotation based on the vcfs with SnpEff
v43r (Cingolani et al. 2012) using the D. melanogaster
BDGP5.75 database. For each transcript, we extracted the
number of synonymous (tagged “synonymous_variant”)
and nonsynonymous (tagged “missense_variant”) polymor-
phic sites (Ps and Pn, respectively) from the annotated
“ingroup vcf”. Similarly, we extracted the number of synony-
mous and nonsynonymous divergent sites (Ds and Dn, re-
spectively) from the annotated “outgroup vcf”. To investigate
the evolution of noncoding DNA, we also extracted the num-
ber of UTR variants (tagged “3_prime_UTR_variant” and
“5_prime_UTR _variant”) as an alternative nonneutral class
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of sites in the “ingroup” and “outgroup” vcfs (Pu and Du,
respectively). Annotations for each transcript are provided
in supplementary file S3, Supplementary Material online, for
coding data and supplementary file S4, Supplementary
Material online, for noncoding data.

In the Supplementary Material online, we performed an
additional annotation based on vcfs with SNPGenie (Nelson
et al. 2015) using the D. melanogaster 5.75 genome and an-
notation file (ftpflybase.net/releases/FB2014_03/dmel_r5.57).
SNPGenie was run twice: once for the forward strand with
argument vcfformat = 1 and once for the complementary
strand. For each transcript, we obtained the total number of
potential synonymous and nonsynonymous sites (Ns and Nn,
respectively), together with Ps, Pn, Ds, and Dn as described
above. We also computed the folded synonymous and non-
synonymous site frequency spectra (SFSs and SFSn, respec-
tively) by downsampling 186 haplotypes at each site to get
data without missing genotypes. Annotations for each tran-
script are provided in supplementary file S5, Supplementary
Material online.

Expression Data

We used the Model Organism ENCyclopedia Of Dna Elements
(modENCODE Consortium 2010) that provides RNA-seq ex-
pression patterns in D. melanogaster across multiple develop-
mental stages (embryos, larvae, pupae, male and female
adults) and types of tissues (carcass, fat, salivary glands, diges-
tive system, imaginal discs, central nervous system [CNS],
heads, ovaries, testes, and accessory glands). The expression
data (“gene_rpkm_report_fb_2017_04.tsv.gz") were retrieved
from ftp.flybase.net/releases/current/precomputed_files/genes
in October 2017. Expression values were provided as the num-
ber of reads per kilobase per million reads (RPKM) summed
over all transcripts for each gene. We quantile normalized the
expression values between samples using the R package
“preprocessCore” v1.36.0 (Bolstad 2017). Normalization was
applied either 1) between male and female adults, 2) between
developmental stages for whole body samples, or 3) between
tissues for a given developmental stage. In total, we had 56
samples across all tissues and developmental stages, among
which three were removed due to very low expression after
normalization (“em0.2hr,” “L3_Wand_fat,” and
“L3_Wand_saliv” stages). No minimal expression cutoff was
applied. Gene expression values for each sample are provided
in supplementary file S6, Supplementary Material online.

Efficacy of Selection

The Proportion and Rate of Adaptive Substitutions:
McDonald—Kreitman Method

Based on the SnpEff annotation, we calculated the proportion
of nonneutral substitutions fixed by adaptation (x). High
values of o can be due to either increased efficacy of positive
selection (higher rate of fixation of adaptive substitutions)
and/or increased efficacy of purifying selection (lower rate
of fixation of deleterious substitutions). We compared
the number of sites that were polymorphic within
D. melanogaster and divergent between D. melanogaster and
D. simulans for a selected class of sites (nonsynonymous or
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UTR variants) to a neutral reference (synonymous variants) as
follows: cipe = 1 — (Pn/Ps)/(Dn/Ds) (Smith and Eyre-Walker
2002, based on an extension of the McDonald—-Kreitman test
[McDonald and Kreitman 1991]). We assumed that synony-
mous variants are neutral. Although there is little evidence for
current selection on codon usage bias in D. melanogaster
(McVean and Vieira 2001), some purifying selection is likely
acting on synonymous sites in high expression genes (Lawrie
et al. 2013; see Discussion). We excluded rare variants from the
analysis (below 5% frequency in our 197 haplotype sample),
because the presence of slightly deleterious mutations segre-
gating within species is expected to bias estimates of & down-
ward (Fay et al. 2001, Charlesworth and Eyre-Walker 2008).
Estimates were obtained for both coding (supplementary file
S3, Supplementary Material online) and noncoding regions
(supplementary file S4, Supplementary Material online). In
the Supplementary Material online, we additionally obtained
estimates of ok in coding regions by: 1) removing transcripts
shorter than 900 bp; 2) excluding X-linked genes; 3) excluding
sex-biased genes (SBR > —4 or SBR > 4); 4) excluding im-
mune genes (n = 483 genes with GO:0002376 “immune sys-
tem process” on http://flybaseorg last accessed October
2018); or 5) removing only singletons. Finally, from o we
deduced the rate of fixation of beneficial mutations relative to
the rate for neutral mutations, as follows: WAuk = otmk * Dn/
Ds (Muyle et al. 2018). This complementary metric is suitable
under a nearly neutral regime as o,y would be affected by the
rate of both nonadaptive and adaptive substitutions.

The Proportion and Rate of Adaptive Substitutions: Eyre-
Walker and Keightley Method

Based on the SNPGenie annotation and all variants, we alter-
natively calculated o with the approach of Eyre-Walker and
Keightley (2009). The method is described in the appendix of
their paper, and implemented in the software DoFEx (http://
www.sussex.ac.uk/lifesci/eyre-walkerlab/resources; last
accessed October 2017). This extension of the classic
McDonald and Kreitman framework (1991) explicitly models
the contribution of deleterious mutations to polymorphism
and divergence, and corrects for distortions of the site fre-
quency spectrum, either due to recent demographic changes
or genetic draft (Messer and Petrov 2013), by introducing a
series of nuisance parameters. The method uses the folded
SFSs, folded SFSn, Ns, and Nn to infer the distribution of fitness
effects (DFE) of new mutations by fitting a gamma distribu-
tion with two parameters (the shape and the mean strength
of selection), based on the method of Eyre-Walker et al.
(2006). From the DFE, the method calculates the proportion
of mutations in four ranges of Ne*s, where Ne is the effective
population size and s is the selection coefficient for deleteri-
ous mutations in heterozygotes: 1) Ne*s=0-1 (nearly neu-
tral); 2) Ne*s=1-10; 3) Ne*s=10-100; and 4) Ne*s > 100
(strongly deleterious). We also calculated the rate of adaptive
substitution relative to neutral (wAgwk) following the
method of Gossmann et al. (2010) and implemented in the
software DoFEx. The method gives 95% confidence intervals
for oewi and WAgwK, and the standard error associated with
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the proportion of mutations in the four ranges of the DFE.
Binning was necessary here, because estimations for single
genes are imprecise. So we grouped genes into bins according
to their value at each covariate (see “Covariates” section be-
low), and DoFE was run for each bin independently. For nu-
merical covariates, bins were based on quantiles that divide
the data in equally sized groups.

The Direction of Selection, DoS

We calculated the direction of selection statistic (Stoletzki
and Eyre-Walker 2011) as follows: DoS = Dn/(Dn + Ds) —
Pn/(Pn+-Ps). A deficit of nonsynonymous polymorphisms rel-
ative to nonsynonymous substitutions (DoS > 0) indicates
positive selection, whereas an excess of nonsynonymous poly-
morphisms relative to nonsynonymous substitutions (DoS <
0) is indicative of purifying selection. The correlation between
wAmk and DoS was strong and highly significant (0 = 0.964,
P-value < 22E-16, n=10,631, supplementary fig. Sig,
Supplementary Material online), as was to a lesser extent
the correlation between o and DoS (p = 0.798, P-value
< 2.2E-16, n = 10,631, supplementary fig. S1a, Supplementary
Material online) and ok and wApmk (p = 0.676, P-value <
2.2E-16, n =10,631, supplementary fig. S1a, Supplementary
Material online).

Covariates

We used the following statistics for each gene as covariates: 1)
chromosomal location (autosome vs. X chromosome), 2)
length of its longest transcript, 3) recombination rate, 4)
global expression level (average expression of a gene over
the whole body samples), 5) intersexual genetic correlation
in expression, 6) sexual antagonism, 7) four types of connec-
tivities, and 8) six types of expression specificities across sexes,
life stages, and tissues. In the Supplementary Material online,
we additionally considered the global selection strength (Dn/
Ds in coding regions, and Du/Ds in noncoding regions). The
final data sets including all covariates, otpmk, @AMk, and DoS
estimates for each gene are provided in supplementary file S7,
Supplementary Material online (coding sites excluding var-
iants below 5%) and supplementary file S8, Supplementary
Material online (noncoding sites excluding variants below
5%). Similarly, we provide in supplementary file S9,
Supplementary Material online, the estimates for oy,
wAgwi, and the deleterious DFE obtained with the Eyre-
Walker and Keightley method on binned data. In the follow-
ing sections, details on the covariates are given.

Recombination Rate

We used a fine-scale recombination map of D. melanogaster
statistically inferred based on population data from
Gikongoro in Rwanda (Africa) and provided by Chan et al.
(2012). The recombination rate for a gene was calculated as
the mean rate (in units of 4*Ne*r per bp) across all bins (de-
fined as a window between each pair of successive single
nucleotide polymorphisms) that a gene contains.

Intersexual Genetic Correlation in Expression

We used expression data in males and females quantified by
genome-tiling microarrays in inbred lines of D. melanogaster
from Raleigh in North Carolina and provided by Huang et al.
(2015; http://dgrp2.gnetsncsu.edu/datahtml; last accessed
October 2017). The intersexual genetic correlation in expres-
sion was then estimated for each gene using a bivariate mixed
effects model with the TYPE = UNR option in Proc MIXED
from SAS v.9.4 (following Allen et al. 2018; https://doi.org/10.
6084/m9figshare.c4181168.v1; last accessed October 2018).

Sexual Antagonism

A list of candidate sexually antagonistic genes in D. mela-
nogaster (LH_m strain) was obtained from Innocenti and
Morrow (2010, table S1 sheet 4, doi: 10.1371/journal.
pbio.1000335.5004). These genes are characterized by a signif-
icant sex-by-fitness interaction in a linear mixed model that
partitions the variance in gene expression in different com-
ponents: sex effect, line fitness effect, batch effect, and sex-by-
fitness interaction. As previously found (Griffin et al. 2013),
sexually antagonistic genes were characterized by a higher
intersexual genetic correlation (median: 1Csag = 0.783)
than other genes (median: IC,on.sag = 0.610) and this differ-
ence was significant (Wilcoxon’s rank test: P-value = 1.77E-07,
Npon-sac — 9,622, Nsac = 1,009)

We performed a supplementary analysis (supplementary
fig. S7, Supplementary Material online) by considering only
sexually antagonistic genes that additionally have a significant
and opposite fitness effect in the sex-specific data sets (table
S1 sheet 1 and 2 of Innocenti and Morrow 2010). However,
we could not detect any significant effect of these genes,
which may be due to the reduced sample sizes (n =68 in
coding regions, and n = 66 in noncoding regions).

Gene Connectivity

Gene connectivity was assessed based on the Drosophila
Interactions Database (Murali et al. 2011) available from
http://www.droidb.org (last accessed in October 2017). We
calculated for each gene the number of interactions in which
it was involved at four different levels: 1) genetic interactions
(“fly_genetic_interactions.txt”) which represent interactions
between two alleles, 2) protein—protein interactions
(“flybase_ppi.txt”) which include experimentally derived
physical interactions, 3) microRNA—gene interactions
(“rna_gene.txt”) which include predicted regulatory interac-
tions, and 4) TF-gene interactions (“tf_gene.txt”) which con-
tain experimentally validated interactions.

Sex Specificity

For sex specificity, we estimated the sex-bias ratio as SBR =
log2(RPKME/RPKMJ) based on whole body samples of fe-
male adults (“AdF_Ecl_1days,” “AdF_Ecl_5days,”
“AdF_Ecl_30days”) and male adults (“AdM_Ecl_1days,”
“AdM_Ecl_5days,” “AdM_Ecl_30days”), and we calculated a
folded sex specificity metric by taking the absolute value of
the sex-bias ratio. Alternatively (supplementary fig. S4,
Supplementary Material online), sex specificity was calculated
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based on reproductive tissue samples in females
(“A_VirF_4d_ovary,” “A_MateF_4d_ovary”) and males
(“A_MateM_4d_acc_gland,” “A_MateM_4d_testis”). Genes
were also categorized in nine sex-bias bins depending on
the value of the ratio: 1) male-specific if SBR < —8; 2) three
male-biased classes if —8 < SBR < —4, —4 < SBR < —2, —2
< SBR < —1; 3) three female-biased classes if 8 > SBR > 4, 4
> SBR > 2,2 > SBR > 1; 4) female-specific if SBR > 8; and 5)
unbiased if —1 < SBR < 1. Expression values of the different
samples within each sex were averaged.

Developmental Stage/Tissue Specificities

We quantify the breadth of expression of a gene across dif-
ferent developmental stages and/or tissues by computing the
expression bias (Yanai et al. 2005):

21 — log(S;) /10g(Smax)
== ™

T
n—1

Here, n is the total number of stages/tissues, Sj is the ex-
pression level in stage/tissue j and Smax is the largest expres-
sion level over all stages/tissues. We used 7 to classify genes in
different bins based on quantiles that divide the data into
equally sized groups from broadly expressed (t = 0) to highly
specific (t = 1) genes. Stage specificity was calculated based
on whole body samples of four developmental stages: 1) em-
bryos (“em2.4hr,” “em4.6hr,” “em6.8hr,” “em8.10hr,” “em10.
12hr,” “em12.14hr,” “em14.16hr,” “em16.18hr,” “em18.20hr,”
“em20.22hr,” and “em22.24hr”); 2) larvae (“L1,” “L2,” “L3_
12hr,” “L3_PS1.2,” “L3_PS3.6” and “L3_PS7.9”); 3) pupae
(“P5,” “P6,” “P8,” “P9.10,” and “P15”); and 4) adults (“AdF_
Ecl_1days,” “AdF_Ecl_5days,” “AdF_Ecl_30days,” “AdM_Ecl_
1days,” and “AdM_Ecl_5days”). Tissue specificity within lar-
vae was calculated based on four tissues: 1) carcass
(“L3_Wand_carcass”); 2) digestive system (“L3_Wand_dig_
sys”; 3) CNS (“L3_CNS”); and 4) imaginal discs
(“L3_Wand_imag_disc”). Tissue specificity within pupae
was calculated based on two tissues: 1) CNS (“P8_CNS”)
and 2) fat (“P8_fat”). Somatic tissue-specificity within adults
was calculated based on three tissues: 1) carcass
(“A_1d_carcass,” “A_4d_carcass,” and “A_20d_carcass”); 2)
digestive system (“A_1d_dig sys” “A_4d_dig sys,” and
“A_20d_dig_sys”); and 3) heads (“A_VirF_1d_head’

“A_VirF_4d_head,” “A_VirF_20d_head,” “A_MateF_
1d_head,” “A_MateF _4d_head,” “A_MateF_20d_head,”
“A_MateM_1d_head,” “A_MateM_4d_head,” and

“A_MateM_20d_head”). Finally, we computed a “tissue-by-
stage” specificity measure based on the four larval tissues, the
two pupae tissues, and the three adult tissues. Expression
values of the different samples within each stage/tissue
were averaged.

Statistical Analyses
All statistical analyses were performed using the R version
3.3.1 (R Core Team 2016).

512

Single Covariate-Related Statistics

Confidence intervals were obtained by bootstrapping across
genes (1,000 replicates) using the R function “boot” (from the
package “boot”), and we report the 95% confidence intervals
as *£2 SD of the distribution of bootstrapped values.
Differences in oy values for the categorical covariates (chro-
mosomal location, sexual antagonism, and the nine sex spe-
cificity bins) were assessed with Wilcoxon’s rank-sum tests (R
function “wilcox.test” in package “stats”). For numerical cova-
riates, we grouped genes into bins based on quantiles that
divide the data into equally sized groups. We then calculated
the Spearman’s rank correlation between the median of the
covariate at each bin and the median o using the R func-
tion “cor.test” (from the package “stats”). We also fit least-
squares linear regressions in the form ok ~ covariate, and
least-squares quadratic regressions in the form oy ~ covar-
iate + covariate® on unbinned data, calling the R function
“Im” (from the R package “stats”). Model fits were then com-
pared based on AIC (supplementary tables S1 and S2,
Supplementary Material online).

Multicollinearity among Covariates

We performed a quantitative assessment of the relationships
between covariates on unbinned data. First, Spearman’s pair-
wise correlations were computed with the R function
“cor.test” (from the package “stats”) between oy, DoS,
wAmk and all numerical covariates (supplementary fig. S1ag,
Supplementary Material online). Second, a principal compo-
nent analysis on all covariates was carried out with the R
function “PCA” (from the package “FactoMineR,” supple-
mentary fig. S1b, Supplementary Material online).
Numerical covariates were scaled to zero mean and unit var-
iance. In both analyses, the five stage/tissue expression spe-
cificities proved to be nonindependent, and so we removed
them all from subsequent investigations, except for the com-
bined metric tissue-by-stage specificity. Computation of the
variance inflation factors (R function “ols_vif_tol” in package
“olsrr”) in the linear models on DoS confirmed that the
remaining 12 covariates had limited collinearity (supplemen-
tary tables S3 and S4, Supplementary Material online).

Multiple Linear Regression

We constructed linear models on unbinned data with the R
function “Im” (from the package “stats”) to analyze the rela-
tive contribution of the different covariates on the efficacy of
selection. We analyzed separately DoS and wApk as the re-
sponse variables (they were chosen instead of o because DoS
and wAy follow the assumptions required by linear regres-
sions, which o does not), and we compared two alternative
sets of covariates. First, only the general modulators were
included, as follows: DoS (respectively wAmk) ~ chromo-
somal location + log(transcript length) + log(recombination
rate) + log(global expression level). Then, we included the
eight noncollinear pleiotropic covariates described in the pre-
vious section: gene—gene interactions -+ protein—protein inter-
actions + microRNA-gene interactions + TF-gene
interactions + sexual antagonistic genes + intersexual genetic
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correlation + folded sex specificity + tissue-by-stage specificity.
In both cases, residuals were independent, identically distrib-
uted and followed a Gaussian distribution of null mean (DoS:
supplementary fig. S9a, Supplementary Material online;
wAmi: supplementary fig. S9b, Supplementary Material on-
line). Estimate of the effect of each covariate, its standard
error, and significance were computed using the type llI
ANOVA implemented in the R function “Anova” (from the
package “car”). The two linear models (“general modulators
only” vs. “all covariates”) were compared based on a likelihood
ratio test using the R function “Irtest” (from package
“Imtest”). Additionally, we carried out a stepwise model se-
lection to eliminate step by step the covariates that contrib-
ute the least to the model, based on AIC comparison
(table 2). We used the R function “stepAlC” (from the
MASS package) including both direction of selection (forward
and backward).

Partial Correlations and Principal Component Regression
As o was not suitable for a linear regression analysis, and
many covariates were correlated with one another (supple-
mentary fig. S1, Supplementary Material online), which can
lead to imprecise estimates of individual effects in linear
models, we alternatively calculated Spearman’s rank partial
correlations on unbinned data between o (respectively DoS
and wAwk) and each covariate, conditional on all other cova-
riates, using the R function “pcor.test” (from the package
“ppcor,” supplementary tables S3 and S4, Supplementary
Material online).

To further overcome the issue of multicollinearity within a
linear modeling framework, we performed a principal com-
ponent regression on DoS (supplementary tables S5 and S6,
Supplementary Material online). We first identified the inde-
pendent source of variation in the data using a principal
component analysis on all 12 covariates. Then, we performed
a linear regression of DoS on the principal components to
obtain an estimate of the effect of each principal component
and its significance. Covariates basically show the same order-
ing regarding their contribution to the variance in DoS as in
the linear models on the original covariates.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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