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Proper intracellular trafficking is essential for neuronal development and function, and
when any aspect of this process is dysregulated, the resulting “transportopathy” causes
neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such
diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by
lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such
as those relating to microtubule structure and function and organelle biogenesis are
representative disease loci. Microtubule motor proteins, or kinesins, are also causal
in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family
members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons,
and involved in the anterograde transport of a variety of vesicles that contribute to
pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is
ubiquitously expressed and, in addition to anterograde cargo transport, also functions in
retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of
KIF1C cargos have been identified; however, many have crucial roles such as neuronal
differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are
characterized mainly as loss-of-function resulting in deficits in motility, regulation, and
cargo binding. Gain-of-function mutants are also seen, and are characterized by
increased microtubule-on rates and hypermotility. Both sets of mutations ultimately
result in misdelivery of critical cargos within the neuron. This likely leads to deleterious
cell biological cascades that likely underlie or contribute to HSP clinical pathology and
ultimately, symptomology. Due to the paucity of histopathological or cell biological data
assessing perturbations in cargo localization, it has been difficult to positively link these
mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to
encourage future academic and clinical efforts to focus on “transportopathies” through
a cargo-centric lens.

Keywords: KIF1, axonal transport, hereditary spastic paraplegia (HSP), neurodegenarative disease, vesicle
trafficking, kinesin
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INTRODUCTION

Neurons are highly polarized cells comprised of morphologically,
biochemically, and functionally distinct extensions of the cell
body: the axon and dendrites. Establishing and maintaining
these unique domains depends on the bidirectional transport
of cargos within these microtubule-based structures. Active
transport utilizes motor proteins, namely the kinesin superfamily
(KIFs) for anterograde transport, and cytoplasmic dynein for
retrograde transport. When any aspect of this process is
dysregulated the resulting “transportopathy” contributes to
neurological disorders, such as Huntington’s, Alzheimer’s, and
Parkinson’s disease (Millecamps and Julien, 2013). HSPs are also
a family of such transport-related diseases with over 80 spastic
gait genes (SPG), specifically characterized by lower extremity
spasticity. HSPs may present in both pure and complicated
forms where the former is primarily limited to progressive lower-
extremity spastic weakness and the latter also includes symptoms
such as ataxias and cognitive impairments (Blackstone, 2018).
Inheritance patterns can be autosomal dominant, autosomal
recessive, X-linked, or of mitochondrial (maternal) inheritance
(Hedera, 2018). Dominant de novo mutations have also been
described (Hedera, 2018). Multiple genes in the trafficking
pathway related to microtubule function and organelle biogenesis
are representative disease loci, such as Spastin (SPG4) and
adaptor protein-4 (AP-4 b1; SPG47), respectively (Hazan et al.,
1999; Marras et al., 2016). Notably, kinesins are also causal in
HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two
kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58;
Blackstone, 2018).

HSP-related kinesin mutations have primarily been
documented by clinical symptoms and gross pathology
combined with medical imaging such as MRI (Lee J.R. et al.,
2015; Roda et al., 2017). Furthermore, many thorough studies
have previously detailed the inheritance patterns and gene
mutations in KIF5 (Liu et al., 2014) and kinesin-3 family
members (Supplementary Table 1; Oteyza et al., 2014; Lee J.R.
et al., 2015). The structure and function of these kinesins have
also been reviewed at length by Hirokawa et al. (2009b) and

Abbreviations: Akt, protein kinase B; APP, amyloid precursor protein; AP-4,
adaptor protein 4; ATG-9, autophagy-related protein 9; BACE1, beta-secretase 1;
BDNF, brain-derived neurotrophic factor; BICDR1, bicaudal D-related protein
1;CaMKII, Ca2+/calmodulin-dependent protein kinase II; CBD, C-terminal
binding domain; CC, coiled-coil; CNS, central nervous system; CST, corticospinal
tract; DCV, dense core vesicle; DENN/MADD, differentially expressed in normal
versus neoplastic/ mitogen-activated protein kinase-activating death domain;
EGFR, epidermal growth factor receptor; FHA, forkhead-associated domain;
HSAN, hereditary sensory and autonomic neuropathy; HSP, hereditary spastic
paraplegia; KIF, kinesin superfamily proteins; LTP, long-term potentiation; MT,
microtubules; NC, neck coil; NGF, nerve growth factor; NL, neck linker;
NMDAR, N-methyl-D-aspartate receptor; NMJ, neuromuscular junction; NPY,
neuropeptide Y; NRG1, neuregulin-1; NT-3, neurotrophin-3; PEHO, progressive
encephalopathy with edema, hypsarrhythmia and optic atrophy; PH, pleckstrin-
homology; PNS, peripheral nervous system; PTPD1, protein tyrosine phosphatase
D1; Sema3a, semaphorin 3a; SNARE, synaptosomal nerve-associated protein
receptor; SPG, spastic paraplegia; SVP, synaptic vesicle precursor; SV2A, synaptic
vesicle protein 2A; Syt-I/IV, synaptotagmin 1/4; TANC2, tetratricopeptide repeat,
ankyrin repeat and coiled-coil containing 2; tPa, tissue plasminogen activator;
Trk, tropomyosin receptor kinase; VMAT2, vesicular monoamine transporter 2;
VAMP2, vesicle-associated membrane protein.

Siddiqui and Straube (2017) in addition to how HSP mutations
impair motor function (Ebbing et al., 2008; Füger et al., 2012;
Oteyza et al., 2014; Lee J.R. et al., 2015; Cheon et al., 2017;
Jennings et al., 2017; Dutta et al., 2018). The nature of these
mutations lead to loss of motor motility or the inability to
pause at sites of capture such as at synapses. To our knowledge,
no histopathological and little cell biological data assessing
perturbations in cargo localization allowing one to infer how
mutations in kinesin-3 contribute to HSPs exist. The goal of this
review is to link mislocalization of known kinesin-3 cargos to
neuronal dysfunction in HSP.

OVERVIEW OF NEURONAL TRANSPORT

Microtubule-based intracellular transport is required by all
eukaryotic cells for proper spatiotemporal delivery of proteins
and organelles. Intracellular transport is particularly critical
for neurons due to their extreme morphological dimensions,
polarity, and need for efficient communication between the cell
body and distal processes (Bentley and Banker, 2016). Cytosolic
and cytoskeletal proteins, such as neurofilaments, tubulin, and
tau are moved from the cell body by slow transport, ranging from
0.2 to 2.5 mm per day (Roy, 2014). Slow transport is an essential
aspect to neuronal function, and defects in this process contribute
to an array of pathologies including Charcot-Marie-Tooth,
amyotrophic lateral sclerosis, and Parkinson’s disease (Yuan et al.,
2017). This form of transport is mechanistically distinct utilizing
primarily kinesin-1 family members and not kinesin-3 (Hirokawa
and Tanaka, 2015). By contrast, membranous organelles are
moved to the axon terminals by fast transport, which can exceed
400 mm per day (Hirokawa and Tanaka, 2015). Because the
axon is largely devoid of biosynthetic machinery, it relies on
anterograde axonal transport to supply axon terminals with
cargos such as SVP, DCV, and other Golgi-derived proteins
and lipids. Retrograde transport from distal portions of the
neuron is of equal importance to prevent accumulation of
toxic aggregates by clearing recycled or misfolded proteins
(Hinckelmann et al., 2013; Millecamps and Julien, 2013),
as well as supporting synapse-cell body communication by
signaling endosomes ferrying trophic signals (Olenick and
Holzbaur, 2019). This bidirectional intracellular transport is
driven by kinesin and cytoplasmic dynein motor proteins that
use ATP hydrolysis to provide the energy to transport cargos
anterogradely toward the synapse or retrogradely toward the
cell body, respectively. Notably, axonal and dendritic transport
tends to be conflated in the literature. Although mechanistically
related, there are key features that distinguish the axon from
dendrites that affect transport. For example, dendrites contain
MT of mixed polarity, whereas the axon contain MT of plus-end
out orientation. Additionally, post-translational modifications
on tubulin monomers have region-specific effects on kinesins.
Several recent reviews delineate distinguishing features between
axonal and dendritic transport (Maeder et al., 2014; Nirschl et al.,
2017; Kelliher et al., 2019).

Although seemingly straightforward, the regulation of
transport is extremely complex. For example, the Golgi
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apparatus is the primary site responsible for the maturation of
membrane-bound and secreted proteins, and also the segregation
into specific organelles based on sorting signals (Bentley and
Banker, 2016). Once transport vesicles are formed, they bind to
motors typically utilizing a motor-cargo adaptor that can include
small GTPases, scaffolding proteins, or the cargo itself. This
step of motor-cargo recruitment is complex as there are dozens
of post-Golgi cargos and as many transport motors. Although
motors are capable of “multi-tasking,” in that one motor is
capable of binding several different cargos, specific motors bind
only a subset of cargos (Maday et al., 2014). Furthermore, many
neuronal cargos eventually display a polarized distribution, for
example, presynaptic proteins are delivered to the axon, and
postsynaptic receptors, such as glutamate receptors are trafficked
to dendrites (Bentley and Banker, 2016). Thus, neurons tightly
regulate this delivery either by indirect transport mechanisms
where cargo may travel into both the axon and dendrite, yet
fuses and is retained in the correct membrane, which is typical
of the axon. By contrast, dendritic proteins are dependent upon
directed transport where motors either recognize dendritic MT or
are excluded from the axon by a filter located in the axonal initial
segment (Gumy and Hoogenraad, 2018). Finally, neuronal cargos
may be generated at other locations within the cell. For example,
autophagosomes are formed in the distal axon and undergo a
series of fluctuating transport dynamics from bidirectional in the
distal axon toward a bias of retrograde, dynein based-transport
toward the cell body (Stavoe and Holzbaur, 2019). Mitochondria,
which are distributed throughout the neuron undergoing fusion,
fission, and remodeling, also travel bidirectionally in both axons
and dendrites (Saxton and Hollenbeck, 2012). Taken together,
HSP-related kinesin mutations, and those found in other disease
states, will reduce the efficacy of active transport and perturb
cargo delivery, ultimately leading to neuronal dysfunction.

KIF1A STRUCTURE AND FUNCTION

KIF1A carries a number of critical cargos, including SVP, DCVs,
and BACE-containing vesicles all of which will be explored in
greater depth in the following section (Figure 1A). KIF1A is
generally similar in overall structure to other kinesin family
members as they contain motor, coiled-coil, and cargo-binding
domains. KIF1A, a neuron-enriched motor, belongs to the
Walker-type ATPase family: ATPase’s defined by a conserved
phosphate-binding loop (P-loop) containing Walker A and
Walker B motifs (Hirokawa et al., 2009a). The entire kinesin-3
family motor domain sequence is highly conserved with KIF1A
being no exception. The motor domain (MD) is composed of
both a catalytic core in which the N-terminal half acts as the ATP
catalytic center with the P-loop forming the nucleotide-binding
pocket, while the C-terminal half acts as the MT-binding surface
(Hirokawa et al., 2009a). The MD is connected via a flexible NL
to a neck coil domain (NC), which is followed by the coiled-
coil 1 (CC1), forkhead-associated (FHA), coiled-coil 2 (CC2)
and coiled-coil 3 (CC3) domains, respectively. There is also a
pleckstrin homology (PH) region which acts as a C-terminal
lipid-binding domain. Furthermore, KIF1A contains an insert of

positively charged lysine residues in loop 12, an area within the
MD known as the K-loop, which is also conserved across the
kinesin-3 family (Hirokawa et al., 2009a). This region allows for
enhanced binding to the C-terminal region of tubulin known as
the E-hook (glutamine rich). As a result, KIF1A undergoes super-
processive movement making it especially efficient for long-range
axonal transport (Soppina et al., 2014a).

Regulation of KIF1A is complex and not fully understood.
Competing models have posited that KIF1A is a motile monomer
(Okada et al., 1995), an autoinhibited dimer (Hammond et al.,
2009; S. Niwa, Personal Communication), or monomers that
dimerize on the cargo membrane (Tomishige et al., 2002; Soppina
et al., 2014a). The current model demonstrates activation of
KIF1A is dependent on a monomer to dimer transition at the
cargo surface (Soppina and Verhey, 2014b; Figure 1B). This
process involves relief of autoinhibition, a regulatory mechanism
seen in other KIFs. The formation of the dimer at the cargo
surface depends on an interaction between the NC and CC1
domains. To form a dimer, an intramolecular interaction between
the NC and CC1 domains must be relieved (Soppina and
Verhey, 2014b). In the case of SVP, relief of autoinhibition
involves interactions with the GTPase ARL-8 and CC domains
of UNC-104/KIF1A (Niwa et al., 2016). The dimer forms via
an intermolecular reaction between the NC domains of the
monomers and allows for motility. The catalytic core is regulated
by switch II, a region within the C-terminus of the core
(Hirokawa et al., 2009a). This works in concert with the NL, with
the complex acting as an actuator to produce mechanical work.
Switch I, a segment between the P-loop and switch II, links, and
therefore regulates, the switch II-NL complex via the nucleotide
state of the binding pocket (Hirokawa et al., 2009a).

Cargo binding is an essential aspect to motor-driven transport
and has been reviewed extensively (Karcher et al., 2002; Vale,
2003; Ross et al., 2008; Bentley and Banker, 2016). Knowledge
on KIF1A cargo binding and how it relates to motor function
is still not well characterized, but certain mechanisms have been
elucidated. One of the first mechanisms identified for KIF1A
cargo interactions entails the C-terminal PH domain binding
to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] on synaptic
vesicles in C. elegans neurons (Klopfenstein and Vale, 2004).
However, protein-protein interactions lend specificity to cargo
recognition and regulation. For example, the GTPase Rab3a
regulates the binding of SVP to KIF1A in a DENN/ MADD
dependent mechanism (Niwa et al., 2008). DENN/MADD acts
as a Rab3-effector, allowing for transport of SVPs down the
axon. A shift in the nucleotide state of Rab3 releases SVPs at
the synapse. For DCVs, another KIF1A cargo, a few mechanisms
have been described that may account for their trafficking.
One such mechanism involves carboxypeptidase E (CPE), a
transmembrane protein needed for neuropeptide processing,
where it also acts as a cargo adaptor (Park et al., 2008; Ji et al.,
2017). The cytoplasmic tail of CPE binds the dynein activator
dynactin. Dynactin also recruits KIF1A, thereby creating a
mechanism to potentially regulate the bidirectional transport
of DCVs. Another mechanism implicated liprin-α as a possible
KIF1A adaptor (Shin et al., 2003), however, recent findings
indicate that liprin-α, in addition to TANC2, act to capture KIF1A
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FIGURE 1 | Cargos, structure, and regulation of KIF1A. (A) KIF1A is a homodimer that traffics a number of cargos (box; right) from the soma to distal portions of the
axon including synapses. Below, a schematic indicates the domains identified in KIF1A (adapted from Soppina et al., 2014a; UniProt #Q12756). (B) Diagram of
activation steps of KIF1A.

at specific sites (Stucchi et al., 2018). Instead, the PH domain in
concert with calmodulin (CaM) dictates binding and movement
of DCVs in response to increases in Ca2+ concentrations through
direct binding to the KIF1A stalk domain (Stucchi et al., 2018).
Taken together, mutations that affect anyone of the various cargo-
binding and regulatory domains involved in these processes may
lead to dysregulation of KIF1A-mediated cargo delivery.

KIF1A MUTATIONS IN SPG-30 AND
RELATED DISORDERS

SPG-30 causing KIF1A mutations are found in the motor,
regulatory, and cargo binding regions (Figure 2 and
Supplementary Table 1). As such, specific mutations may
differentially affect KIF1A function depending on the domain.
For example, E253K affects ATPase activity within the motor
domain, while the Q632∗ deletion mutant removes the CC2,
CC3, and PH domains critical for regulation and cargo binding
(Esmaeeli-Nieh et al., 2015; Van De Warrenburg et al., 2016).
The consequent changes in KIF1A function are ultimately
mislocalization of cellular cargos via distinct mechanisms,
including failure to properly regulate KIF1A motility and to bind
to cargo. The extent and severity of SPG-30 symptomology is

dictated by the patient’s genotype and the resulting changes in
KIF1A amino acid residues.

Loss-of-function mutations in the motor domain of KIF1A
constitute the vast majority of SPG-30 cases. They affect a
variety of structural domains such as those critical for ATP
hydrolysis, generation of mechanical force (Switch I and II),
and microtubule binding (loop L8). Some examples include
mutations that reside in Switch I (R216C) and Switch II
(E253K), as well as mutants that destabilize loop L8 (R316W)
(Esmaeeli-Nieh et al., 2015; Lee J.R. et al., 2015). The vast
majority of KIF1A mutants have not been analyzed for function,
but a subset results in impaired motility and/or an altered
distribution compared to wild type, where the motor accumulates
proximally. For example, the Switch II mutant E253K, and the
ATP-binding cassette mutant T99M, have drastically reduced
motility and are unable to reach the distal portions of the
axon (Esmaeeli-Nieh et al., 2015; Cheon et al., 2017). This
suggests that the inability to traffic cargos into the axon may
underlie downstream pathogenesis in SPG-30. Surprisingly,
gain-of-function mutations in KIF1A are also seen in SPG-
30. Using single molecule assays, Chiba et al. (2019) recently
demonstrated, that three KIF1A mutants causal in SPG-30 (V8M,
R350G, A255V) had higher landing rates on MT’s, along with a
greater velocity than WT KIF1A in two of the three mutations
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FIGURE 2 | Amino acid changes in KIF1A in HSP and related disorders in humans. See Supplementary Table 1 for details of each mutation. NC, neck-coil; CC,
coil-coil; FHA, Forkhead association; PH, Pleckstrin homology.

(A255V had similar velocity to WT). Notably in two of the
mutants (V8M, A255V), SVPs accumulated at the axonal tips
of C. elegans ALM neurons, suggesting that excessive cargo
accumulation may be pathogenic.

Moreover, an interplay between a variety of factors influence
the pathogenicity of the mutation including the functional
domain, the amino acid properties, and heritability patterns.
Conserved amino acid changes, such as the A255V mutant,
tend to result in less severe effects on motor motility, which
is reflected in reduced severity of symptomology (Esmaeeli-
Nieh et al., 2015; Cheon et al., 2017). Mutants in which the
residue properties are drastically changed, such as that in
the E253K mutant, show much more severe motor motility
changes, leading to complicated SPG-30 (Esmaeeli-Nieh et al.,
2015; Cheon et al., 2017). Some SPG-30 loci have multiple
different amino acid changes, for example, R216 mutations can
be either a histidine, proline, or cysteine leading to differing
clinical symptoms (Lee J.R. et al., 2015; Esmaeeli-Nieh et al.,
2015; Travaglini et al., 2018). It is important to note that
without histopathological samples, the link between changes in
motor properties and symptomology is tenuous. Furthermore,
prediction of the presentation of the disease based on the
mutation is difficult as certain conserved mutations can differ
in the severity of symptom presentation. This is exemplified by
the A255V mutant, as it causes both the pure and complicated
forms of SPG-30 where a patient’s genetic background may affect

how the mutations manifest physiologically (Erlich et al., 2011;
Klebe et al., 2012). As such, one cannot say with certainty that
the amino acid properties are the sole determinants of how the
disorder will present. Larger patient populations would be needed
to confirm such a hypothesis. Lastly, it is important to note
that mutations implicated in complicated SPG-30, such as T99M
and E253K, are causal in PEHO syndrome suggesting a similar
etiology between the disorders (Esmaeeli-Nieh et al., 2015; Lee
J.R. et al., 2015; Samanta and Gokden, 2019). Furthermore, a
mutation exclusive to PEHO syndrome, E148D, presents with
symptomology akin to complicated SPG-30, further suggesting
that the etiology of these KIF1A-related disorders may be similar
(Ohba et al., 2015).

Mutations that implicate regulatory and cargo binding regions
of KIF1A are both causal in pure and complicated forms of
SPG-30 and HSAN-IIC. Presently, no studies exist that assay the
motility, regulatory, or cargo binding capabilities of these KIF1A
mutants. However, mutations in the KIF1A PH domain lead
to reduced cargo binding in C. elegans’ neurons (Klopfenstein
and Vale, 2004). Thus, disease loci that likely truncate the cargo
binding domains of KIF1A, such as the pure SPG-30 Q632∗
mutant, might result in in a complete absence of cargo binding
and delivery (Van De Warrenburg et al., 2016). Despite such
changes to KIF1A in SPG-30, patients can live for decades
with this disorder implying there is some redundancy in KIF1A
function. One example may be that DCVs can be transported

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 September 2019 | Volume 13 | Article 419

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00419 September 25, 2019 Time: 15:27 # 6

Gabrych et al. Kinesin-3 Cargo Misdelivery in HSP

in tandem or by alternate motors such as KIF1C and KIF5
(Gauthier et al., 2004; Lim et al., 2017; Stucchi et al., 2018). The
fidelity of cargo delivery may be altered when the complement of
neuronal kinesins are shifted.

KIF1A CARGOS

Although it is proposed that KIF1A mutations lead to cargo
mislocalization and ultimately disease, no histological data in
animal models or humans currently explains this. We will explore
several KIF1A cargos in an attempt to bridge motor mutations,
transport aberrations, and clinical symptomology (Figure 4).
Where possible, we will also attempt to focus on the impact of
cargo mislocalization in specific neuronal subtypes, for example,
differences between CNS and PNS neurons.

Synaptic Vesicle Precursors
The first cargo identified for KIF1A was the SVP, a Golgi-
derived organelle containing essential proteins required to build
synapses and regulate synaptic vesicle release (Okada et al.,
1995). KIF1A/UNC-104 misdelivery of SVPs alters the size and
density of synapses in model organisms such as C. elegans
and mice (Yonekawa et al., 1998; Niwa et al., 2016). SVPs are
required in every neuron in the body, thus, KIF1A mutants
may have broad effects on HSP patients. KIF1A traffics SVPs
involved in various aspects of vesicle fusion and release, in
particular, synaptotagmin-1 (syt-1), VAMP2, and synaptophysin
(Okada et al., 1995; Yonekawa et al., 1998; Sgro et al., 2013).
These proteins are expressed in all cells undergoing synaptic
vesicle exocytosis, therefore, any form of disruption may cause
widespread synaptic dysfunction. Syt-1 is a membrane-bound
Ca2+-binding protein that is critical for inhibiting spontaneous
fusion of synaptic vesicles and for fast synchronous release of
synaptic vesicle contents (Maximov and Südhof, 2005; Bacaj
et al., 2013; Lai et al., 2014; Bornschein and Schmidt, 2019). Syt-
1 knockout hippocampal neurons lost this ability but retained
slow, asynchronous release, whilst release of the neurotransmitter
glutamate was maintained at normal levels (Maximov and
Südhof, 2005; Bacaj et al., 2013). Interestingly, asynchronous
release of the neurotransmitter glutamate results in an increase in
postsynaptic activity (Iremonger and Bains, 2007; Iremonger and
Bains, 2016). As such, increases in NMDAR opening may follow
and cause spikes in local Ca2+ concentrations in downstream
neurons resulting in neurodegenerative cascades in susceptible
populations of neurons (Dong et al., 2009).

VAMP2 is a SNARE protein involved in the formation of
the SNARE complex with syntaxin-1 and SNAP-25 (Südhof,
2013). In VAMP2 knockout mouse models, both spontaneous
vesicular fusion and Ca2+-induced fusion was severely depleted
but not ablated (Schoch et al., 2001). Defects in HSP-related
KIF1A motility or cargo binding may mirror this knockdown
phenotype, resulting in a reduced synaptic vesicle release which
may have neurodevelopmental consequences. Interestingly, when
the SNARE complex partners SNAP-25 and syntaxin-1 are
knocked out, neurons go through a neurodegenerative process,
while VAMP2-deficient neurons do not (Schoch et al., 2001;

Santos et al., 2017). This suggests that VAMP2 participation in
the SNARE complex is not critical for cell viability.

Another KIF1A cargo, synaptophysin, is thought to be an
adaptor for VAMP2 endocytotic recycling as well as aid in
synaptic vesicle maturation, as the VAMP2/synaptophysin
complex cannot fuse (Becher et al., 1999; Schoch et al.,
2001). Synaptophysin mutants are implicated in a variety of
neurodevelopmental disorders such as X-linked intellectual
disability, epilepsy, and hypotonia, similar to what is seen
in complicated SPG-30 (Gordon and Cousin, 2013; Harper
et al., 2017). As synaptophysin knockouts very closely
approximate synaptophysin mutant phenotypes (Harper
et al., 2017), namely failure to retrieve VAMP2, it is possible that
impaired synaptophysin trafficking by mutant KIF1A may copy
such phenotypes.

Synaptic Vesicle protein 2A (SV2A), although previously not
thought to be transported by KIF1A, was identified as a cargo
by Sgro et al. (2013), Okada et al. (1995). It is involved in
regulation of synaptic vesicle release and SV2A deficiencies lead
to a disrupted GABA exocytosis contributing to temporal lobe
epilepsy (Crowder et al., 1999; Janz et al., 1999; Menten-Dedoyart
et al., 2016). As epilepsy is also seen in complicated SPG-30, it is
possible that KIF1A mutations contribute to epileptic seizures by
mislocalizing and impeding SV2A function.

Lastly, Rab3a, the GTPase that regulates SVP transport
by KIF1A in a DENN/MADD-dependant fashion, also plays
a role in fusion probability regulation of synaptic vesicles
(Geppert et al., 1994, 1997). Furthermore, Rab3a seems to
recruit synaptic vesicles to the active zone. Rab3a knockout mice
have demonstrated that although the vesicle numbers in the
synapse stay the same, recruitment to the active zone is ablated
(Leenders et al., 2001). As such, secretion of synaptic vesicular
cargos is reduced, a phenotype that should be mimicked with
dysfunctional KIF1A. Neurodevelopmental defects as a result of
dysregulation in synaptic transmission may be a consequence.

Neurexins Are SVP Cargos
The neurexins are single-pass transmembrane proteins acting as
cell-adhesion molecules that are derived from three genes (Nrxn
1-3). They are split into long α and short β isoforms via two
distinct promotors found in each of the three neurexin genes.
Alternative splicing may result in thousands of different isoforms.
The various neurexins are found throughout the CNS but the
expression of the neurexins changes throughout development, as
well as the function of particular neurexins can differ in different
neuronal populations (Chen et al., 2017; Harkin et al., 2017). They
are mainly concentrated at presynaptic sites and broadly function
in neurite outgrowth, synaptogenesis, and synaptic maturation
(Dean and Dresbach, 2006; Gjørlund et al., 2012; Krueger et al.,
2012; Gokce and Sudhof, 2013). This is accomplished through
interactions with a plethora of intracellular proteins via their
C-terminal PDZ-recognition motif, as well as with extracellular
proteins such as the neuroligins via their N-terminus. The various
pathways and downstream effects that are elicited through
these interactions have been extensively reviewed previously
(Südhof, 2017). Furthermore, mutations in neurexins are linked
to several neurodevelopmental and psychiatric disorders such as
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autism, epilepsy, and mental retardation (Kasem et al., 2018).
Mouse models of neurexin conditional knockouts show little
to no change in number of synapses, but do show presynaptic
transmission defects (Missler et al., 2003). However, triple
knockout mouse models generated by Chen et al. showed that
certain neuronal populations do show a loss of synapses in
response to loss of neurexins (Chen et al., 2017).

Trafficking of both α- and β-neurexins anterogradely to
distal axonal sites is accomplished by KIF1A-mediated SVP
transport (Neupert et al., 2015). In addition, both of these
neurexins colocalize with synaptophysin, another known SVP
cargo. Knockdown of KIF1A results in reduced delivery of the
neurexins to the plasma membrane (Neupert et al., 2015). To
our knowledge, there are no follow up studies to demonstrate
how reduced neurexin trafficking may affect the development
and function of the synapse. However, it is possible that the
inability for HSP-related KIF1A mutants to traffic neurexins
to the distal membranes may result in similar presynaptic
transmission defects as seen in conditional knockouts. Synaptic
dysfunction is a critical pathogenic event that often precedes
neuronal degeneration and is seen in a variety of other
neurodegenerative disorders including Alzheimer’s, Parkinson’s,
Huntington’s disease, and ALS (Coleman et al., 2004; Wishart
et al., 2006; Morfini et al., 2009; Bae and Kim, 2017). Such
synaptic defects may underlie the “dying-back” phenotype that
is seen in certain populations of neurons in HSP. Lastly, Chen
et al. demonstrated that different hippocampal populations
show differential pathological synaptic phenotypes in response
to neurexin knockouts which suggests different vulnerabilities
(Chen et al., 2017). As such, it is possible that the neurons mainly
affected in HSP, namely the upper CST neurons, may be more
susceptible to neurexin misdelivery.

Dense Core Vesicles
The DCV was the second cargo identified for UNC-104/KIF1A
in C. elegans (Zahn et al., 2004). This finding was subsequently
confirmed in Drosophila, and rodent models (Barkus et al., 2008;
Lo et al., 2011; Kondo et al., 2012), however, KIF1C and KIF5
may also contribute to DCV transport (Gauthier et al., 2004; Lim
et al., 2017; Stucchi et al., 2018). Dense-core vesicles (DCVs)
are Golgi-derived vesicles typified by the presence of granin
family members. DCVs contain a host of proteins necessary for
proper neuronal development, function, and viability. Examples
of cargos include neurotrophic peptides such as BDNF and
NPY, both essential for a multitude of neuronal functions (Dieni
et al., 2012; Russo, 2017). An additional cargo of note is POMC,
which can be cleaved into a host of physiological important
peptides including a-MSH, ACTH, and endorphins (Cawley et al.,
2016). Lastly, DCVs contain a host of other cargos including,
proteases, protease inhibitors, and membrane proteins such as
tPA, neuroserpin, and VMAT2, respectively (Nirenberg et al.,
1995; Lochner et al., 1998; Ishigami et al., 2007). Despite the
potential heterogeneity of DCVs across different neuron types,
they share KIF1A transport mechanisms. As such, dysfunctional
KIF1A-mediated DCV transport may lead to pathogenesis in
neurons. In this section, we focus on only a few select cargos and
their potential involvement in SPG-30 pathogenesis.

Brain-Derived Neurotrophic Factor
Brain-derived neurotrophic factor is a neurotrophin critical for
survival, as knockout mice die shortly after birth (Ernfors et al.,
1994). BDNF binds the TrkB and p75NTR receptors activating
downstream signaling cascades such as PLCγ1, Ras-MAP kinase,
and PI3 kinase to regulate neurotransmission, cytoskeletal
and membrane dynamics, and gene transcription, ultimately
affecting synaptic development, neuronal plasticity, and survival
(Kirschenbaum and Goldman, 1995; Lipsky and Marini, 2007;
Nikoletopoulou et al., 2017; Kowiañski et al., 2018). In addition
to trans-synaptic signaling, BDNF functions in an autocrine
manner at dendritic spines to regulate NMDA receptor –
CaMKII signaling, supporting functional and structural aspects
of plasticity (Harward et al., 2016). In axons, this autocrine
action stimulates a positive feedback loop to enhance BDNF
secretion and TrkB trafficking to the membrane to promote
axon differentiation and growth (Cheng et al., 2011). BDNF is
expressed throughout the nervous system including in the cortex,
cerebellum, hippocampus, and pyramidal tracts (Hofer et al.,
1990; von dem Bussche and Tuszynski, 2010). Upper motor
neurons signal to lower motor neurons to regulate voluntary
movement and muscle tone. As HSP is a distal axonopathy,
reduced BDNF availability in these neurons might affect their
development and survival (Giehl and Tetzlaff, 1996; Lu et al.,
2001). Complicated SPG-30 may include cerebellar dysfunction
typically characterized by ataxias as cerebellar neurons would
be affected similarly to other cell types by the lack of BDNF
(Carter et al., 2002). In fact, Mellesmoen et al. (2019) recently
demonstrated that endogenously applied BDNF can delay
cerebellar dysfunction onset in mouse models of ataxia. Cognitive
deficits arising in complicated HSPs may be explained by similar
mechanisms. In the hippocampus, BDNF regulates LTP but
interestingly not survival (Ip et al., 1993; Leal et al., 2017), similar
to neurons of the prefrontal cortex that are required for executive
function (Galloway et al., 2008).

Neuropeptide Y
NPY, another essential neuropeptide is trafficked in DCVs in
a KIF1A dependent manner (Lo et al., 2011). NPY governs
neurogenesis and neuroprotection, and is expressed in areas
associated with HSP such as the cerebral cortex, hippocampus,
and cerebellum (Berg et al., 2013; Gøtzsche and Woldbye,
2016). Depleted NPY levels in the cerebellum are associated
with progressive motor impairment in mouse models, while
increasing levels seems to ameliorate these impairments (Duarte-
Neves et al., 2015). This suggests that in complicated SPG-30
with cerebellar involvement, NPY may dictate pathogenesis. In
the hippocampus, NPY plays a critical role in neurogenesis
through a Y1 receptor-mediated pathway (Howell et al., 2003).
As learning and memory is thought to be dependent on the
genesis and incorporation of neurons into certain hippocampal
circuits (Ramirez-Amaya et al., 2006), failure to deliver and
release NPY to target sites may affect these processes. Learning
and memory is affected in certain complicated SPG-30 cases,
which underscores the possibility of NPY-mediated deficits in
this disorder.
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Nerve Growth Factor (NGF) and
Neurotrophin-3 (NT-3)
Although there are likely to be numerous other DCV cargos
where KIF1A involvement has not been confirmed, it is worth
speculating on their potential central role in HSP pathology.
For example, secreted peptides such as NGF and NT-3 have
differentiation, proliferation, and survival roles in the developing
and mature nervous system (Belliveau et al., 1997; Zhu et al.,
2012; Martorana et al., 2018). NGF and its receptors (e.g., TrkA,
TrkB, p75NTR) are found in a wide range of neurons including
those within cortical regions of the brain affected in HSP such
as the hippocampus, somatosensory and motor cortex, as well
as those implicated in complicated forms such as the cerebellum
(Pitts and Miller, 1995; Conner et al., 2009). NGF regulates
a variety of neuronal processes such as axon outgrowth, and
receptivity to myelination (Chan et al., 2004; Turney et al., 2016).
It also provides neuroprotection to excitotoxicity, a pathology
implicated in a number of neurodegenerative disorders (Kume
et al., 2000). Different localizations of NGF within neurons
can affect whether neurons will undergo apoptosis or axonal
pruning (Geden and Deshmukh, 2016; Geden et al., 2019).
When NGF is compartmentalized to the soma and proximal
axons (thereby depriving distal axons) axonal pruning occurs,
with the opposite resulting in apoptosis-induced axonal and
somal degeneration. Certain KIF1A mutations, such as the
Switch II and ATP-binding cassette mutants, E253K and T99M,
cause a somal/proximal axon localization of cargos and motors
which, taken together, may indicate that mislocalization of
NGF underlies the Wallerian-like, or “dying-back” phenomena,
seen in HSP.

In addition to differentiation, proliferation, and survival roles
similar to NGF, NT-3 plays critical roles in synaptic development,
organization, and transmission through interactions with the Trk
family of receptors (Paul et al., 2001; Han et al., 2016). NT-3 is
the most abundantly expressed neurotrophin in the developing
CNS, particularly in regions such as the hippocampus, neocortex,
cerebellum, and spinal cord, with levels drastically dropping in
the adult CNS (Maisonpierre et al., 1990). Interestingly, NT-3
mRNA is primarily found within motor neurons (Ernfors and
Persson, 1991), and enhances CST axon collateralization in the
developing nervous system (Schnell et al., 1994). Furthermore,
the TrkC receptor, which has the highest affinity for NT-
3, is highly expressed in regions of the cortex where CST
neurons originate (Ringstedt et al., 1993), suggesting that NT-
3 is important for inducing CST formation. Neuromuscular
synapse maturation and potentiation also depends on NT-3
as Xenopus nerve-muscle co-cultures show increased levels of
synaptophysin and synapsin 1 in spinal neurons, and increased
frequencies of spontaneous synaptic currents, respectively (Lohof
et al., 1993; Wang et al., 1995). Lastly, NT-3 is critical in the
survival of TrkC-positive muscle spindle afferents (Oakley et al.,
1997). Mouse models homozygous for defective TrkC lacked 1a
muscle afferent projections to spinal motor neurons, resulting in
defective movement and posture (Klein et al., 1994). Relating this
to HSP, reduced transport of NT-3 may therefore affect muscle-
related proprioceptive capabilities via muscle spindle afferent

dysfunction resulting in the spasticity, possible ataxias related
to developmental defects in neurons of the cerebellum, memory
and cognitive defects related to hippocampal and neocortex
developmental deficits, and weakness due to CST dysfunction.

Synaptotagmin-IV
The DCV associated synaptotagmin-IV (Syt-IV) belongs to a
family of membrane-trafficking proteins, many of which act as
Ca2
+-sensors that allow for membrane fusion and binding of

SNARE proteins (Südhof, 2002; Dean et al., 2009). Syt-IV cannot
bind Ca2

+ directly, however, it reversibly binds SNARE proteins
in a Ca2

+-dependent fashion (Wang et al., 2003). Ca2
+ influxes

cause release of Syt-IV from the SNARE proteins allowing
for a fusion event to occur both pre- and post-synaptically.
Syt-IV is distributed throughout the brain with particular
enrichment within the hippocampus and cerebellum (Ferguson
et al., 2000); two areas affected in KIF1A-dependent complicated
HSPs. Notably, colocalization studies between BDNF-containing
vesicles and Syt-IV indicate that Syt-IV associates with DCVs
(Dean et al., 2009). In Syt-IV knockout mouse models, mice
show an increase in spontaneous quantal release of BDNF in
pre-synaptic regions, and an increase in LTP, processes that
underlie learning and memory (Dean et al., 2009). Other studies
confirm effects on both hippocampal-mediated memory and
learning, as well as motor coordination defects consistent with
cerebellar involvement (Ferguson et al., 2000, 2004). Through
both co-immunoprecipitation and trafficking studies, Syt-IV was
confirmed to have a direct interaction with KIF1A (Arthur et al.,
2010; Bharat et al., 2017). KIF1A knockdowns in hippocampal
neurons result in a significant reduction in synaptic vesicles,
as well as causing an accumulation of what are thought to be
axonal-bound vesicles at the Golgi, similar to what is seen in
Syt-IV knockdowns (Yonekawa et al., 1998; Arthur et al., 2010).
Furthermore, Syt-IV knockout mice mirror learning and memory
deficits similar to KIF1A knockout animals (Kondo et al., 2012).
As such, HSP-related KIF1A mutants, whether loss-of-function
or gain-of-function, may result in misdelivery of Syt-IV, thereby
dysregulating synaptic vesicle fusion and release of a variety of
neurotrophins, altering LTP, and leading to downstream effects
such as learning and memory defects, problems with motor
control, and other brain region specific effects.

Tissue Plasminogen Activator (tPA) and
Neuroserpin
DCVs transport secreted proteases and protease inhibitors
such as tPA and neuroserpin (Lochner et al., 1998; Ishigami
et al., 2007). tPA is a serine protease best known for its role
in the conversion of the proenzyme plasminogen to active
plasmin in the blood clotting pathway. It is also expressed
widely throughout the nervous system in both neurons and
glial cells, particularly within the cerebellum, hippocampus, and
hypothalamus (Melchor and Strickland, 2005). tPA is involved
in a variety of neuronal processes including synaptic plasticity,
neuron migration, outgrowth, survival (Tsirka et al., 1995; Seeds
et al., 1999; Samson and Medcalf, 2006; Chevilley et al., 2015).
Notably, tPa/plasmin plays a role in processing of proBDNF to
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BDNF (Barnes and Thomas, 2008). This processing is critical
for late-phase LTP in the hippocampus, a process underlying
long-term memory. In affected patients, this may manifest as an
intellectual disability. Additionally, tPA can promote NMDAR-
mediated neurotoxicity, a mechanism implicated in a number of
neurodegenerative disorders (Parcq et al., 2012; Spalloni et al.,
2013; Liu et al., 2019). This may suggest that the control of tPA
trafficking to synapses, along with control of tPA activity through
inhibitors such as neuroserpin, is critical in mediating cell
survival. Notably, mouse models of neurodegenerative disease
express higher levels of tPA and other plasminogen activators,
resulting in Wallerian and Wallerian-like degeneration (a “dying-
back” phenotype in peripheral neurons and CNS neurons;
Bignami et al., 1982; East et al., 2005). Furthermore, when
these mouse models were crossed with transgenic mice that
overexpressed neuroserpin, a greater number of motor neurons
and myelinated axons were retained (Simonin et al., 2006).
Relating this to KIF1A-mediated HSP, it is possible that there is
a disequilibrium in the trafficking of either tPA or neuroserpin,
ultimately leading to the aforementioned neurodegenerative
phenotype. As these proteins are both highly expressed in
regions related to learning, memory, seizure activity, and motor
control, dysfunction in any of these areas could contribute to
symptomology seen in complicated forms of SPG-30.

Vesicular Monoamine Transporter 2
Dense core vesicles also traffic membrane proteins such as
VMAT2, a confirmed KIF1A cargo (Liu et al., 2012). The
integral membrane protein VMAT2 plays a crucial role in
transport and accumulation of monoamines such as dopamine,
norepinephrine, and serotonin into synaptic vesicles (Liu and
Edwards, 1997; Yaffe et al., 2018). VMAT2 is concentrated in
monoaminergic neuronal populations such as the nigrostriatal
dopaminergic neurons (Schafer et al., 2013), playing an
important role in packaging and release of dopamine and
GABA. Mouse models with VMAT2 knockdown show a marked
increase in nigrostriatal degeneration (Caudle et al., 2007),
supporting VMAT2’s importance in the proper functioning
and viability of this neuronal population. Nigrostriatal system
involvement is sometimes seen in complicated forms of HSP
(Kim et al., 2013) suggesting that VMAT2 may play a role.
Possible dysfunction in VMAT2 trafficking, whether due to
mislocalization or insufficient trafficking to synapses, may result
in the aforementioned neurodegenerative phenotype, as well
as nigrostriatal symptomology such as parkinsonism and other
motor deficits.

Netrin-1
Netrin-1 is a secreted protein that acts in axonal pathfinding
and cortical and cerebellar migration (Leonardo et al., 1997;
Boyer and Gupton, 2018). Whether netrin-1 is packaged within
DCVs is currently unknown. However, UNC-104/KIF1A has
been implicated in trafficking of its homologue UNC-6 in
C. elegans (Ogura et al., 2012) and in rats with intracerebral
hemorrhage, KIF1A abolishment led to attenuation of netrin-1-
related functions (Wang et al., 2018). Notably, netrin-1 seems
to be critical for guidance of CST axons, particularly within

the pyramidal decussation and dorsal funiculus as netrin-1
mutant mice show defects in these regions (Finger et al., 2002).
This may underlie the muscle weakness that is seen in pure
and complicated HSPs. Moreover, netrin-1 also has a role in
the modulation of APP signaling, as APP is a receptor of
netrin-1 (Lourenço et al., 2009). In Alzheimer’s disease (AD)
mouse models that have a decreased expression of netrin-1, an
increase in Aβ levels is observed: a phenotype implicated in
neurotoxicity (Lourenço et al., 2009). As netrin-1 is expressed
in the hippocampus, it is possible that such effects may be
underlying the cognitive symptoms seen in HSP.

Tropomyosin Receptor Kinase A (TrkA)
Another essential neuronal cargo is the tropomyosin receptor
kinase A (TrkA), a receptor with a high affinity for NGF (Tanaka
et al., 2016). Upon binding of NGF, the TrkA-NGF complex
is internalized and trafficked retrogradely to stimulate a PI3K-
dependent signaling cascade that promotes neuronal survival
(Marlin and Li, 2015; Tanaka et al., 2016). TrkA most likely
does not have a critical role in pure forms of HSP as this
receptor is not expressed within neurons of the CST, nor is NGF
neuroprotective to CST injury (Giehl and Tetzlaff, 1996; Liebl
et al., 2001). However, as TrkA is expressed extensively in the
cholinergic system of the basal forebrain that contain extensions
that innervate various regions that affect cognition, learning,
and motor control, there may be a role of KIF1A-mediated
TrkA trafficking dysfunction in some complicated forms of HSP
(Sobreviela et al., 1994; Wu et al., 2014). It is important to note
that to our knowledge, no studies have looked for basal forebrain
cholinergic dysfunction in either form of HSP.

Instead, the high degree of TrkA expression within the
dorsal root ganglion (DRG) primary afferent nociceptor sensory
neurons may underlie the pathology seen in the KIF1A-
dependent disorder HSAN II (Verge et al., 1992). Using KIF1A-
haploinsufficient mouse models, Tanaka et al. demonstrated that
mice not only developed sensory neuropathy with an ablated pain
response similar to that seen in HSAN II patients, but using live
imaging studies in DRG sensory neurons that TrkA trafficking
to distal axons and sensory neuron survival was significantly
reduced (Tanaka et al., 2016). The loss of sensory neuron survival
is consistent with KIF1A-knockout mouse models, which also
display decreased sensory neuronal survival (Yonekawa et al.,
1998). Although known KIF1A-dependent HSAN II mutations
in patients have not been characterized cellularly, they show
a truncation at the cargo-binding PH domain that may copy
the phenotype of the KIF1A-haploinsufficient mouse models
(Riviere et al., 2011; Tanaka et al., 2016). As such, patients with
such mutations may exhibit similar sensory loss resulting in
ablated pain and other nociceptive losses. Interestingly, TrkA is
also expressed within the superior cervical ganglion, a region
involved in autonomic, particularly sympathetic nervous system
responses, and is critical for its survival (Fagan et al., 1996).
However, patients with KIF1A-induced HSANII show minimal
to no autonomic disturbances (Riviere et al., 2011). This suggests
that these neurons may not be particularly vulnerable to KIF1A-
induced effects. It is interesting to note that in HSAN IV, or the
congenital insensitivity to pain with anhidrosis (CIPA), the TrkA
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gene is mutated causing a loss of function of the receptor which
results in attenuation of pain and temperature sensation similar
to that of HSAN II (Indo, 2001). Inability to traffic TrkA should
also mimic the loss-of-function phenotype seen in HSAN IV.

TrkA expression is also found in retinal ganglion cells (RGC)
whose axons constitute the optic nerve (Bai et al., 2010). TrkA is
integral for RGC survival as TrkA is upregulated in response to
retinal and optic nerve damage, as well as the neuroprotectivity
of a TrkA-selective NGF mutants in response to optic nerve and
retinal damage (Bai et al., 2010; Mesentier-Louro et al., 2019).
KIF1A mutations have been found in PEHO syndrome in which
histological studies show a marked reduction in nerve fibers of
the optic nerve and death of RGC layers (Somer et al., 1993;
Esmaeeli-Nieh et al., 2015; Lee J.R. et al., 2015; Ohba et al., 2015;
Samanta and Gokden, 2019). All of the mutations implicated in
PEHO syndrome, such as the T99M mutation, are found within
the motor domain of KIF1A, suggesting that motor motility is
impaired. Indeed, two of the mutations, T99M and E253K, have
been studied in vitro, with a proximal axonal and cell body
distribution being seen along with a loss of motility (Esmaeeli-
Nieh et al., 2015; Cheon et al., 2017). Although no studies to
our knowledge have studied these mutants with respect to TrkA
localization in RGC’s and their axons, we suspect that a similar
phenotype to that seen in the Tanaka et al. study would be seen,
i.e., failure of TrkA delivered to distal axonal sites.

Autophagy-Related Protein 9
Autophagy is a general cellular mechanism required for protein
clearance and recycling of damaged and aging organelles. In
neurons, autophagy also plays a crucial role in a variety of
developmental processes such as synapse development and
neurite outgrowth (Shen et al., 2015). Disruption to the
autophagic process is a central contributor to a host of
neurodegenerative diseases. The autophagosome is the functional
unit of autophagy and requires ATG-9, the only transmembrane
protein of the ATG family involved in its formation. Though
ATG-9A is ubiquitously expressed in mammalian cells, it is
highly enriched in neurons (Tamura et al., 2010). It is typically
found at autophagic sites in the axon terminal, however, is also
distributed throughout the somatodendrites and axons, and is
thought to play an integral role in sequestering membrane from
organelle donors for autophagosome formation (Tamura et al.,
2010; Feng and Klionsky, 2017). A study found that in C. elegans
KIF1A/Unc-104 transports ATG-9 to neurite tips and was critical
for cytoskeletal organization and synaptic architecture (Stavoe
et al., 2016). In vertebrates, ATG-9A deficient neurons show
reduced neurite outgrowth, and in ATG-9A knockout mice signs
of neurodegeneration are seen, including spongiosis of nerve
fibers in both axonal terminals and axons (Yamaguchi et al.,
2018). Failure to deliver ATG-9A to distal axons via a KIF1A
mutant might show similar effects. In AP-4 deficiency syndrome,
another form of complicated HSP, there is mislocalization of
ATG-9A from the peripheral cytoplasm to the trans-Golgi, which
results in symptomology akin to that seen in KIF1A-mediated
complicated HSP (De Pace et al., 2018). Currently, no studies
have been performed in vertebrate neurons to assess KIF1-ATG-
9A trafficking.

β-Secretase 1 (BACE1)
β-Secretase (BACE1), a KIF1A cargo, is an aspartyl protease that
regulates critical processes including neuronal growth, function,
repair, and myelination (Hung and Coleman, 2016; Yan, 2017) by
processing a number of essential proteins. One notable substrate
of BACE1 is the APP, where BACE1 cleavage leads to formation
of amyloid beta (Aβ) (Puzzo et al., 2008). APP can be cleaved at
multiple locations within the cell, for example in the ER, along
the trafficking pathway, and at the plasma membrane. Perturbing
APP transport at any step can lead to misprocessing. A result of
this might be a reduction in APP required for functions such
as neurite outgrowth and synaptogenesis. Additionally, this can
lead to generation of excessive Aβ, which is toxic. Though more
typically associated with AD, Aβ plays a physiological role in
neurons. For example, picomolar concentrations of Aβ 1–42
monomers and oligomers are needed to increase hippocampal
LTP and episodic memory formation (Puzzo et al., 2008, 2011;
Abramov et al., 2009). KIF1A mutations that mislocalize BACE1
may cause a shift in the balance between physiological APP and
Aβ, leading to changes in nervous system development, plasticity
and cognition, thus contributing to HSP pathology.

In addition to mislocalization, certain KIF1A mutants
(i.e., V8M, A255V) may lead to an over-accumulation of
BACE1 at APP rich sites leading to overproduction of Aβ.
APP can function as an unconventional G-protein coupled
receptor linked to the Go signaling pathway that contributes
to neuronal outgrowth and survival (Nishimoto et al., 1993;
Milosch et al., 2014; Copenhaver and Kögel, 2017). Aβ promotes
APP multimerization at cell-surface sites leading to activation of
the heterotrimeric Go protein. Dysregulated APP-Go signaling
promotes cellular toxicity in AD eventually resulting in
neuronal degeneration (Copenhaver and Kögel, 2017). Moreover,
increased processing of APP may also produce Aβ peptides
that act as synaptic toxins analogous to the effects found in
AD. A similar mechanism may be at play in KIF1A-related
HSP. Furthermore, NMJ synaptic maturation in insect models
is dependent on APP-Go signaling (Luchtenborg et al., 2014).
Thus, altered Aβ production may perturb the homeostatic Go
signaling in this developmental process. Although this should be
replicated in mammalian models, dysregulation of NMJ synapse
maturation may be a possible pathological mechanism caused by
KIF1A mutants and could explain certain symptoms such as the
progressive muscular weakness seen in HSP.

BACE1 also cleaves the cell adhesion molecule NRG1
(Willem, 2016). NRG1 is critical in regulating PNS myelination,
development of Schwann cells, and development of muscle
spindles (Fleck et al., 2012). Cleaved NRG1 forms a complex
with ErbB, which subsequently binds onto Schwann cells,
activating downstream phosphorylation of Akt leading to
myelination of the axon. HSP-related KIF1A mutants may
result in BACE-1 mislocalization thereby impairing Schwann
cell myelination of peripheral nerves. As such, these BACE1
detriments likely contribute to KIF1A spasticity and the
motoneuron axon atrophy seen in peripheral neuropathy.
Notably, Fleck et al. (2012) demonstrated both BACE1 null
neurons and heterozygous mutant NRG1 expressing neurons
resulted in hypomyelinated peripheral neuron axons, indicating
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that deficiencies in either protein’s function results in the same
phenotype. Furthermore, BACE1-NRG1 signaling also controls
the development and maintenance of muscle spindles (Klebe
et al., 2012) with BACE1 knockout mice having malformed
and underdeveloped muscle spindles (Cheret et al., 2013).
Because proper muscle spindle function is essential for muscle
lengthening and subsequent correct muscle reflexes (Chen
et al., 2003), BACE1 mislocalization may contribute to the
hyperreflexia seen in SPG-30.

SPG-30 and PEHO patients may also exhibit optic
nerve impairments. Notably, BACE1 null mice display
oligodendrocyte-mediated hypomyelination and decreased
axonal regeneration in the optic nerve (Hu et al., 2006), which
may be caused by KIF1A-BACE1 localization defects. In the
retina, BACE1 cleaves Vascular Endothelial Growth Factor
(VEGF1) to inhibit lipofuscin deposition and retinal thinning
(Cai et al., 2012). Mislocalization of BACE1 due to KIF1A
mutation may explain the impairments mentioned above.
Further studies must be done utilizing histopathological data
of KIF1A-mutant HSP patients, or using KIF1A-mutant mouse
models to confirm the cause of these retinal defects.

Finally, patients with KIF1A mutations also present with
epilepsy, where some forms are connected to altered voltage-
gated ion channels activity. BACE1 is involved in the proteolytic
processing of the sodium channel subunit Navβ2 at the
plasma membrane (Kim et al., 2007, 2011). When Navβ2
remains uncleaved by BACE1, there is a reduction in Nav1.1a
at the plasma membrane (Kim et al., 2011). As a result,
neurons compensate by upregulating a different sodium
channel, Nav1.2. This upregulation is observed in BACE1
knockout neurons as hyperexcitability (Hu et al., 2010). The
interaction of BACE1 and Navβ2 subunits occurs at the
plasma membrane, thus KIF1A-BACE1 transport defects and
decreased BACE1- Navβ2 processing may account for changes
in sodium channel levels and composition that contribute
to HSP epilepsy.

KIF1C STRUCTURE AND FUNCTION

KIF1C, also a kinesin-3 family member, is causal in HSP (SPG58).
KIF1C is a ubiquitously expressed motor that is involved in
retrograde Golgi to ER transport, as well as anterograde transport
of α5β1 integrin and DCVs (Dorner et al., 1998; Schlager et al.,
2010; Theisen et al., 2012). KIF1C also acts in the maintenance
of Golgi structure (Simpson et al., 2012; Lee P.L. et al., 2015).
As with the rest of the kinesin-3 family members, KIF1C
belongs to the Walker-type ATPase family, which constitutes a
P-loop and Walker A and B motifs, as defined previously. The
motor domain sequence is highly conserved, with the sequence
similarity between KIF1C and KIF1A being around 81% (Lee P.L.
et al., 2015). Dorner et al. (1999) showed that KIF1C may form
four coiled-coil domains in the region of amino acids 370, 450,
640, and 850. The stalk and the tail domains, however, differ as
compared to KIF1A with the tail being homologous to KIF1Bα.
Within the C-terminus, a PTPD1-binding domain (amino acids
714–809) has been defined (Dorner et al., 1998), along with a

CBD that bind Rab6A and 14-3-3 family members (Figure 3;
Dorner et al., 1999; Lee P.L. et al., 2015).

KIF1C regulation is complex and not well defined, with both
inherent autoinhibitory components as well as cargo-mediated
regulation. KIF1C, unlike the autoinhibited monomers of KIF1A,
exists as an autoinhibited dimer in vivo (Siddiqui et al., 2019).
Recently, Siddiqui et al. (2019) demonstrated that autoinhibition
occurs between the stalk domain and the motor domain of
KIF1C. More specifically, the FHA domain, the third coiled-
coil domain, and the microtubule-interacting region of the
motor domain associate resulting in autoinhibition of the KIF1C
dimer by preventing its binding to MT. Certain mechanisms
regarding cargo-mediated regulation of KIF1C and how it relates
to motor function, whether that be changes in microtubule-
motor interactions, motor autoinhibition, directionality, or cargo
binding, have been elucidated. One of the first known interactors
of KIF1C, the protein-tyrosine phosphatase PTPD1, has recently
been implicated in activation of KIF1C. Siddiqui et al. (2019)
demonstrated that the FERM domain of PTPD1 is capable of
binding the stalk domain of KIF1C to relieve the autoinhibition
between the dimers, independently of its catalytic or phosphatase
activity. Furthermore, Siddiqui et al. (2019) showed that Hook3,
a microtubule-binding protein that associates with KIF1C,
bound to a region close to that of PTPD1 and also relieved
autoinhibition. Another known KIF1C interacting partner is the
BICD family like cargo adaptor 1 (BICDR1) which is thought
to act as a trafficking regulator. Low levels of BICDR1 result in
localization of the GTPase-Rab6 vesicles, a cargo of KIF1C, to
cytosolic regions within cells, while high levels result in retention
of these vesicles in pericentrosomal regions (Schlager et al., 2010).
As BICDR-1 also interacts with the dynein-dynactin complex,
BICDR-1 may act as a directionality switch for Rab6/KIF1C
complexes (Urnavicius et al., 2018). Hook3 also interacts with
the dynein-dynactin complex, suggesting a similar switching role
to that of BICDR-1 (Urnavicius et al., 2018). A particularly
interesting regulator of KIF1C is Rab6, as it is also a bona fide
cargo of this molecular motor (Lee P.L. et al., 2015). In addition
to interacting with the CBD of KIF1C, Rab6 can bind to the
motor domain directly (Lee P.L. et al., 2015). This interaction
blocks KIF1C microtubule binding, particularly when KIF1C is in
an ATP-On (microtubule binding) state. Kinases have also been
implicated in the regulation of KIF1C cargo-binding. In order
to bind 14-3-3 to KIF1C, the serine at position 1092 must be
phosphorylated via casein kinase II (CKII) (Dorner et al., 1999).
Phosphatase activity may also directly affect motor function, with
the possibility that PTPD1, in addition to its role as an activator
of KIF1C, may also modulate the motor in a phosphatase-
dependent manner. Taken together, mutations that affect any one
of the various motor, cargo-binding or regulatory domains have
the potential to dysregulate KIF1C-mediated activity.

KIF1C MUTATIONS IN SPG-58 AND
RELATED DISORDERS

To our knowledge, all known SPG-58 causing KIF1C mutations
are familial and can be either recessive or dominant.
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FIGURE 3 | Schematic diagram of KIF1C and HSP mutations (adapted from Siddiqui et al., 2019; UniProt #043896). See Supplementary Table 2 for details of
each mutation. Below, KIF1C cargos.

FIGURE 4 | Summary of KIF1A and KIF1C cargos and the potential cellular abnormalities resulting from trafficking defects.

Furthermore, they present clinically as a complicated form
of HSP, although other KIF1C-related disorders are seen.
These mutations are found almost exclusively within the
motor domain with two other deletion mutants: one which
truncates the stalk domain, and one that leads to degradation
by nonsense-mediated decay (Figure 3 and Supplementary
Table 2). For example, the R301G mutant, which is found
within the highly conserved loop 12, may affect microtubule
binding while the A828Rfs∗13 mutation, may truncate the
fourth coiled-coil and CBD which would most likely ablate
binding of cargos such as Rab6 and the 14-3-3 proteins
(Yücel-Yılmaz et al., 2018). As with KIF1A mutants, the extent
and severity of SPG-58 symptomology is dictated by the
changes in KIF1C amino acid residues and the patient’s overall
genetic background.

Most of the known SPG58 causing mutations have not been
characterized, however, Oteyza et al. (2014) defined three motor
mutants that are causal in SPG58 patients. Two of these mutants,
G102A and R301G, which affect the Walker A motif involved
in nucleotide binding and loop 12 involved in microtubule
binding, respectively, accumulate perinuclearly as opposed to
the normal accumulation at the cell periphery. By contrast the
P176L mutant accumulated peripherally similar to endogenous
KIF1C. Motility studies are needed to confirm if this is either
loss or gain-of-function. Another mutation at G102A appeared
to reduce KIF1C stability thereby reducing overall KIF1C levels.
In a previous study, Dorner et al. (1998) introduced a lysine
to alanine mutation in an adjacent amino acid, K103, which
halted Golgi to ER trafficking, suggesting mutations in this
region are critical for KIF1C motility. Both the position of the
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mutation and the nature of the amino acid change appear to
be critical in determining the extent of impairment that may
be seen in the motor. Furthermore, Oteyza et al. (2014) found
that parents of patients carrying the mutations were heterozygous
for those alleles and demonstrated a subclinical phenotype, as
opposed to the severe presentation seen in patients that were
homozygous for the mutant allele. This indicates that mutant
homozygosity is required for full presentation of SPG58 as all
the known mutations that result in full presentation in SPG58
patients have been homozygous to date. Co-ordinate expression
of the G102A mutant, along with wild-type KIF1C, showed a
normal localization pattern. This suggests that in heterozygous
patients, partial KIF1C function is retained, ameliorating disease
severity. Confounding the issue are studies with KIF1C-null mice
that have normal embryonic development, fertility, and viability
(Nakajima et al., 2002). This implies there are functionally
compensatory kinesins, and that the presence of mutations may
interfere with cellular processes more drastically than a complete
loss of KIF1C.

KIF1C CARGOS

We will explore several KIF1C cargos in an attempt to
bridge motor mutations, transport aberrations, and clinical
symptomology (Figure 4). Where possible, we will also attempt
to focus on the impact of cargo mislocalization in specific
neuronal subtypes, for example, differences between CNS
and PNS neurons.

Rab6-BICDR1
The small GTPase-Rab6 is a known marker of secretory vesicles
and is thought to control spatial distribution of exocytosis within
cells (Grigoriev et al., 2007). Rab6 family members include the
ubiquitously expressed Rab6A, and Rab6A’, as well as Rab6B,
which is enriched in the brain (Echard et al., 2000; Wanschers
et al., 2007). Rab6A, similarly to other members of the family,
interacts with the CBD of KIF1C, as well as with loops 6 and
10 of the motor domain: the latter acting as a microtubule
binding inhibitor (Lee P.L. et al., 2015). Furthermore, Rab6
interacts with BICDR-1, a regulator of KIF1C movement, with
the strongest interaction occurring between the brain-enriched
Rab6B and BICDR-1 (Schlager et al., 2010). Additionally, Rab6
co-localizes with DCV markers such as NPY, BDNF, and Sema3a
in hippocampal neurons (Schlager et al., 2010). As Rab6-
secretory vesicles traffic to distal neuronal processes, many of the
same concepts regarding the cargos NPY and BDNF that were
discussed in the KIF1A DCV section apply.

An interesting avenue to explore would be whether HSP-
causing mutations affect KIF1C-BICDR-1 or KIF1C-Rab6
interactions leading to changes in intracellular distribution of
the DCV cargos, and the overarching effects on neuronal
populations implicated in SPG58. Indeed, changes in BICDR-
1 expression result in changes in secretory vesicle localization,
as does Rab6A (Schlager et al., 2010; Lee P.L. et al., 2015).
Furthermore, knockdown of Rab6 and sustained expression of
BICDR-1 do exert negative changes, particularly decreases in

neurite outgrowth (Schlager et al., 2010). In certain SPG58
cases, embryonic and early postnatal development is normal,
indicating that neuronal migration is complete at an early stage
(Dor et al., 2014). This implies that potential BICDR-1/Rab6
pathfinding defects may begin late in post-natal development. As
both Rab6 and BICDR-1 have binding sites at the C-terminus
of KIF1C, it follows that mutations in these regions could
result in cargo binding deficits. However, as only two known
mutants, R731∗ and A828Rfs∗13, affect these regions, with the
former resulting in nonsense-mediated decay, this could not
explain all the other cases of SPG58 (Dor et al., 2014; Yücel-
Yılmaz et al., 2018). It is possible, however, that mutations
within the motor domain may cause steric changes that disallow
direct interactions between Rab6A and KIF1C, thereby relieving
the Rab6A-dependent microtubule-binding inhibition. This may
result in aberrant trafficking of KIF1C cargos resulting in a variety
of changes to neurite growth, neuronal development, and survival
in a cargo-dependent manner.

Semaphorin 3a (Sema3a)
Sema3a is a membrane-associated secreted protein that has roles
in axon guidance, growth, and neuronal migration (Schwamborn
et al., 2004; Kruger et al., 2005; de Wit et al., 2006). It
is widely expressed throughout the CNS and functions as a
guidance cue that can act as an axonal chemorepellent, or as
a chemoattractive agent for cortical apical dendrites (Polleux
et al., 2000; Vo et al., 2013). Notably, in corticospinal neurons,
ventral spinal cord-derived Sema3A interacts with a neuropilin-
1/L1CAM complex that is subsequently internalized. This results
in a shift away of the corticospinal axons from the medullary
junction (Bechara et al., 2008; Blackstone, 2012), highlighting
possible neurodevelopmental defects in CST formation in HSP.
It is possible that the inability to ferry this cargo to sites of release
during the formation of the CST may result in neuronal guidance
defects. In a separate Sema3A-related mechanism, internalization
of Sema3A in hippocampal and subicular pyramidal neurons
lead to neurodegeneration in an AD model (Good et al., 2004).
Furthermore, in the motor cortex of patients affected with ALS,
Sema3A expression is highly upregulated, suggesting that it is
involved in the degeneration of motor neurons (Korner et al.,
2016). These two mechanisms would seem to oppose each other
in KIF1C-related HSPs as failure to deliver Sema3A to sites of
release should lead to CST defects, but should be neuroprotective,
or at least not induce degeneration, of neurons within the
hippocampus/subicular pyramidal neurons or that of the motor
cortex. It may be that depending on the mutation in KIF1C,
whether it is loss-of-function or gain-of-function, may result in
different HSP pathophysiology. Inability to deliver Sema3A to
sites of release may result in greater CST defects, whilst more
hippocampal/motor cortex defects may arise in gain-of-function
mutations that cause increased delivery of Sema3A.

α5β1 Integrin
α5β1 integrin, also known as the fibronectin receptor, is a
transmembrane heterodimer that is trafficked by KIF1C. Multiple
thorough reviews exist that summarize the functions of α5β1
integrins in neurons (Clegg et al., 2003; Wu and Reddy, 2012;
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Lilja and Ivaska, 2018), therefore, we will only focus on a
select few that may influence HSP pathology. α5β1 is expressed
throughout the CNS and PNS including regions such as the
hippocampus, cerebellum, and cerebral cortex (Wu and Reddy,
2012). Expression varies throughout development, as developing
neurons express α5β1 in higher levels than that of mature
neurons (Wu and Reddy, 2012). α5β1 is important for a variety of
neuronal processes including neurite outgrowth, synaptogenesis,
and more broadly, plasticity (Tonge et al., 2012; Wu and
Reddy, 2012; Nishimura et al., 2016). More specifically, α5β1
subunits play roles in synaptic cytoskeletal organization, LTP, and
hippocampal presynaptic release probabilities (Huang et al., 2006;
Webb et al., 2007; Babayan et al., 2012; Lilja and Ivaska, 2018).
In mice with excitatory neuron-specific β1 integrin knockouts,
NDMAR-dependent LTP and AMPA receptor-mediated synaptic
transmission were impaired and as a consequence; working
memory (Chan et al., 2006). As such, intellectual disabilities
seen in SPG58 may possibly be explained by such mechanisms.
Although this study focused mainly on hippocampal regions,
the CST neurons are mainly excitatory glutamatergic neurons,
perhaps indicating that similar synaptic defects may be at play
underlying the weakness seen in SPG58. Furthermore, it is
possible that neuronal outgrowth and regeneration in response to
neuronal damage may be impaired in a α5β1-dependent manner.
Both expression of α5 and β1 subunits is sufficient to enhance
neurite outgrowth and regeneration (Condic, 2001; Clegg et al.,
2003). Insufficient or ablated trafficking of these subunits by
KIF1C may result in various neurodevelopmental defects, and
possibly reduced regeneration in peripheral neurons that are
damaged by SPG58-related pathogeneses. In another example,
α5β1 integrin protects against Aβ deposition, where Matter
et al. demonstrated that α5β1-expressing cells showed increased
degradation of Aβ 1-40, reducing Aβ-induced apoptosis (Matter
et al., 1998). As possible Aβ-mediated neurodegeneration has
been a recurring theme in our exploration of kinesin-3 cargo
function, this would be an exciting avenue to explore regarding
HSP pathogenesis.

14-3-3
Yeast-two hybrid screens have shown an interaction between
the 14-3-3 family members β, γ, ε, ζ and KIF1C, with
coimmunoprecipitation studies confirming an interaction
between the γ-isoform and KIF1C (Dorner et al., 1999). The
14-3-3 family of proteins are a group of ubiquitously expressed
regulatory proteins that are particularly enriched in the brain,
constituting approximately 1% of total soluble proteins (Berg
et al., 2003). 14-3-3 protein functions include acting as an
intracellular scaffold, as well as with binding to target proteins
thereby masking their localization signals and regulatory sites
(Cornell and Toyo-oka, 2017). 14-3-3 proteins function in
neurite outgrowth, synaptogenesis, ion channel regulation,
and release of neurotransmitter. Furthermore, 14-3-3 proteins
are implicated in a variety of neurodegenerative disorders
including Alzheimer’s and Huntington’s disease, ALS, and
spinocerebellar ataxia type 1. Many thorough reviews exist
detailing the function of 14-3-3 family members in neurons and
in neurological disorders (Berg et al., 2003; Foote and Zhou,

2012; Cornell and Toyo-oka, 2017; Zhang and Zhou, 2018).
However, no studies to our knowledge explore 14-3-3
proteins in HSPs.

A few interesting avenues exist to explore 14-3-3 protein-
KIF1C interactions in HSP. The distribution of 14-3-3 protein
isoforms differ between different regions of neurons. For
example, γ and ε –isoforms are found at presynaptic sites
and the ζ isoform is found on synaptic vesicles (Martin
et al., 1994; Broadie et al., 1997). Potential studies should
explore the possibility of KIF1C-mediated transport of 14-3-3
proteins. The inability of 14-3-3 isoforms such as γ and ε to
reach presynaptic sites could have a variety of consequences
on overall synaptic function. One such consequence may be
dysregulation of CaV2.2 ion channels critical for mediating Ca2+

influx for neurotransmitter release. Electrophysiological studies
demonstrated that 14-3-3 γ and ε inhibition results in increased
inactivation kinetics of CaV2.2 channels, with a corresponding
change in short-term synaptic plasticity (Li et al., 2006), which
may alter neural circuits which underlie the spasticity seen
in HSP. Furthermore, the ζ-isoform seems to play a role
in glutamatergic synapse formation and neuronal navigation
(Cheah et al., 2012). Cheah et al. generated 14-3-3 ζ knockout
mice and found that they exhibit hippocampal abnormalities such
as abnormal mossy fiber navigation (Cheah et al., 2012; Xu et al.,
2015). Symptomology similar to that of certain KIF1C-mediated
complicated HSP such as learning and memory defects were seen
in these mice. It is important to note that no motor defects were
seen, suggesting that the ζ-isoform does not participate in CST
glutamatergic synapse formation, or there is possibly redundancy
between 14-3-3 proteins.

PTPD1
The protein tyrosine phosphatase PTPD1 was primarily
identified as a KIF1C interactor, yet more recently was described
as a regulator of KIF1C autoinhibition with Siddiqui et al.
(2019) postulating that it may also be a cargo (Dorner et al.,
1998). PTPD1 interacting partners play a number of roles in
neuroprotective and neurodegenerative pathways. For example,
Src tyrosine kinase, when in complex with PTPD1, is activated,
and that rapid activation of Src is integral in glutamate-
induced excitotoxic neurodegeneration (Cardone et al., 2004;
Khanna et al., 2007). Using a Src knockdown approach, they
demonstrated that glutamate-induced neurodegeneration was
decreased. If PTPD1 is indeed a cargo, gain-of-function KIF1C
mutants may result in over accumulation of PTPD1 at Src
sites sensitizing excitatory neurons to glutamate, resulting in
a neurodegenerative cascade. Another interacting partner of
PTPD1 is the EGFR, in which PTPD1 acts as a potentiator
of EGFR activity (Roda-Navarro and Bastiaens, 2014). This
potentiation is dependent on recruitment of PTPD1 to EGFR
sites, which could relate to its possible dependence on trafficking
by KIF1C. EGFR is implicated in cortical neuronal survival via an
astrocyte-mediated mechanism (Wagner et al., 2006). Knockout
of EGFR in cortical astrocytes resulted in an Akt-dependent
apoptotic cascade. It is possibly that a similar phenotype may be
seen if PTPD1 was unable to be recruited to EGFR sites to allow
for potentiation and subsequent proper activation. This may
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have widespread effects throughout the cortex, possibly affecting
a variety of neuronal populations that are associated with HSP
symptomology, such as hippocampal and upper motor neurons.

SELECTIVE NEURONAL
VULNERABILITY IN HSP

A widespread and unsolved issue in neurodegeneration is
understanding the underlying cause of selective neuronal
vulnerability (Han et al., 2010; Fu et al., 2018). In both pure
and complicated forms of HSP, a heterogeneous population of
neurons constituting different regions of the CNS and PNS
are affected. This raises questions of why these specific tissues
and nerves are involved, why different mutants may affect
different subsets of nerves, as well as how the same mutation
may affect different neuronal populations in different patients.
Understanding the exact neuronal populations that display
HSP-related pathology is critical to understanding the specific
properties that render them selectively vulnerable. Currently,
the neuroanatomy is well characterized in HSP; however,
information regarding specific affected neuronal populations is
incomplete (Bruyn, 1992; Fink, 2013). One proposed idea is that
axon length confers a particular vulnerability to degeneration
of affected neuronal populations such as the CST and fasciculus
gracilis nerve fibers (Han et al., 2010; Fink, 2013). However,
this concept has been challenged as certain regions affected
do not constitute neurons with long axons, such as that of
the cerebellum and basal ganglia (Han et al., 2010; Fink,
2013). It may not therefore encompass the entirety of the
vulnerability but may well be a compounding factor. The
genetic background of the patient also plays a role in the
differing phenotypic presentation between mutants. This concept
has been reviewed at length with factors such as epigenetic
changes, stochasticity, penetrance, and expressivity all playing
a role in determining HSP phenotypes (Cooper et al., 2013;
Kammenga, 2017).

Other factors that may contribute to neuron-specific
vulnerability may be motor redundancy, or the ability of one
motor type to compensate for another. Motors such as KIF5,
KIF1C and KIF1A may have overlapping or redundant roles in
the transport of BDNF- and NPY-containing vesicles (Gauthier
et al., 2004; Lim et al., 2017; Stucchi et al., 2018). Furthermore,
there may be motor isoform differences between neuronal
populations which contribute to their vulnerability. KIF1A,
for example, has 3 defined isoforms, with 13 other potential
isoforms (The Uniprot Consortium, 2019). As such, these
different isoforms may display varying functions in different
neuronal populations, with mutations detrimentally affecting one
specific isoform more so than another. Moreover, cytoskeletal
differences between neuronal populations may contribute to
their vulnerability. For example, tubulin isoforms vary greatly
between different regions in the CNS and within different
neurons of the same regions (Bai et al., 2008; Tischfield and
Engle, 2010; Hawrylycz et al., 2012). Notably, motor dynamics are
altered via differences in tubulin isotypes, as well as differences in
post-translational modifications (Sirajuddin et al., 2014; Lessard

et al., 2019). Polyglutamylation of tubulin, for example, results
in dynamic changes in both KIF5 and KIF1A motility. For KIF5,
polyglutamylated tubulin results in an increase in motility, while
KIF1A run lengths and pause durations are decreased; processes
that are critical to maintaining KIF1A’s velocity (Sirajuddin et al.,
2014; Lessard et al., 2019). Mutants may display differential
effects depending on which tubulin isotype is expressed, and the
post-translational modifications present within specific neuronal
sub-populations.

Lastly, preferential susceptibility to apoptotic signaling
cascades, particularly those conferred via glutamate-induced
excitotoxicity, has been a recurring theme throughout this review.
To our knowledge, no studies have probed whether glutamate-
induced excitotoxicity plays a role in HSP pathology. However,
neuronal populations implicated in HSP have shown selective
vulnerability to this mechanism. Susceptibility to glutamate-
induced excitotoxicity is seen in certain neuronal populations
associated with neurodegenerative disorders such as ALS and
AD (Mattson et al., 1989; Lorenzo et al., 2006). For example,
in ALS, vulnerable motor neurons display consistently low
expression of inhibitory GABA and glycine receptors resulting
in the neuron’s susceptibility for hyperexcitation (Lorenzo et al.,
2006). Furthermore, these vulnerable populations of neurons
display low levels of Ca2+ buffering proteins, which would
contribute to the inability to resolve abnormal changes in
intracellular Ca2+ levels (Vanselow and Keller, 2000). In ALS
mouse models corticospinal motor neurons show selective,
marked degeneration of apical dendrites in regions with high
levels of cortical modulatory input (Jara et al., 2012). Notably, the
mouse model of Alsin-mediated HSP showed a similar dendritic
phenotype, with additional axonal pathology and mitochondrial
and Golgi apparatus defects; organelles critical for intracellular
Ca2+ homeostasis (Wong et al., 2013; Gautam et al., 2016; Bagur
and Hajnóczky, 2017). In hippocampal neuron populations
that are affected in AD such as the CA1 and CA3 neurons,
vulnerability to glutamate-induced excitotoxicity is seen while
resistance in other populations such as the dentate granule
cells and CA2 pyramidal neurons (Mattson et al., 1989) is
retained. It is important to note that other neurodegenerative
pathways likely exist that we have not considered here including
changes in protein homeostasis, mitochondrial energy demand,
and differences in the synthesis of neurotransmitters and their
cognate receptors (Fu et al., 2018).

FUTURE DIRECTIONS

As with many other neurodegenerative disorders, HSP is neither
treatable nor curable with current therapies. Rather, treatments
center on relieving symptomology, such as the use of intrathecal
Baclofen, and botulinum toxin injections to reduce spasticity,
along with physical therapy for general motility and maintenance
of strength (Fink, 2013; Bellofatto et al., 2019). To target the
underlying pathophysiology in kinesin-3 motor-mediated HSP,
therapeutics would have to be mutation specific, as mutants
can exhibit either loss-of-function or hyperactivity. In KIF1A-
mediated HSP, targeting of the motor itself is a good course
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of action as the motor is neuron-enriched with little to no
expression in other tissues, thus minimizing off-target effects.
Identifying or designing drugs that are unique to specific
sequences within the KIF1A motor domain is a possible
therapeutic route. However, due to the high sequence similarity
in the motor domain of the kinesins, this could be challenging,
but not without precedence. In the mitotic motor Eg5, for
example, the cell-permeable small molecule inhibitor monastrol
binds a specific sequence, leading to allosteric inhibition of
ATPase activity and reduced MT-binding ability (Maliga et al.,
2002). Therapeutics that target regulatory domains may also be
desirable, such as identifying macrocycle scaffolds which force
dimerization and would subsequently activate KIF1A (Ito et al.,
2015). This approach would be particularly useful in cases such as
the loss-of-function T99M mutant, where transport deficiencies
may be overcome by activating additional motors on the cargo
membrane. In hyperactive KIF1A mutants such as the V8M
mutant, compounds that partially reduce motility would be
advantageous. For example, small molecules or biologics that
reduce the ATPase function, destabilize MT-KIF1A interactions,
or reduce force generation, may lead to a greater chance of
cargo delivery. Therapeutic design for KIF1C-mediated HSP
may be more problematic as KIF1C is ubiquitously expressed,
thereby targeting the motor may result in off-target effects.
Although KIF1C is ubiquitously expressed, mutants tend to result
only in neurological symptomology, suggesting that neurons
are more susceptible to KIF1C disruption than other cell types.
It may therefore be feasible to target the motor itself in
ways similar to that of KIF1A without concurrent effects on
non-target populations.

The Chinese philosopher Confucius once said that “going too
far is the same as falling short.” This piece of wisdom is fully
embodied by the kinesin-3 family members KIF1A and KIF1C in
HSP and the related disorders HSAN IIC and PEHO syndrome.
Both loss-of-function and gain-of-function motor mutants may
result in aberrant subcellular localizations of essential neuronal
cargos (Figure 4). These cargos play a variety of roles in
the development, maturation, and viability of the nervous
system, and many are implicated in other neurodegenerative
disorders. To further our understanding of kinesin-3 motors

roles in these disorders, cellular characterization of disease-
related mutants needs to be carried out. Future studies should
include characterization of motility properties, as well as changes
in subcellular localization of the motors, and particularly their
cargos. HSP pathology samples would yield clues regarding cargo
mislocalization. To the best of our knowledge, such samples are
limited, therefore experiments in mouse models and engineered
neural stem cells will have to be designed to provide relevant data
regarding kinesin-3 mediated pathophysiology. Ultimately, the
goal of this review is to encourage future academic and clinical
efforts to focus on “transportopathies” such as HSP through a
cargo-centric lens.
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