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Abstract: Detecting outliers is a widely studied problem in many disciplines, including statistics,
data mining, and machine learning. All anomaly detection activities are aimed at identifying cases
of unusual behavior compared to most observations. There are many methods to deal with this
issue, which are applicable depending on the size of the data set, the way it is stored, and the type
of attributes and their values. Most of them focus on traditional datasets with a large number of
quantitative attributes. The multitude of solutions related to detecting outliers in quantitative sets,
a large and still has a small number of research solutions is a problem detecting outliers in data
containing only qualitative variables. This article was designed to compare three different categorical
data clustering algorithms: K-modes algorithm taken from MacQueen’s K-means algorithm and
the STIRR and ROCK algorithms. The comparison concerned the method of dividing the set into
clusters and, in particular, the outliers detected by algorithms. During the research, the authors
analyzed the clusters detected by the indicated algorithms, using several datasets that differ in terms
of the number of objects and variables. They have conducted experiments on the parameters of the
algorithms. The presented study made it possible to check whether the algorithms similarly detect
outliers in the data and how much they depend on individual parameters and parameters of the set,
such as the number of variables, tuples, and categories of a qualitative variable.

Keywords: qualitative data; outliers detection; data clustering; K-modes; ROCK; STIRR

1. Introduction

The basis of effective machine learning of intelligent systems is an effective data
analysis based on the insights of qualified analysts – experts in their specialization. Data
analysts typically have advanced technical skills that machines cannot cope with, such
as identifying the right questions, finding the right data sources, and interpreting the
results. Most of all, creating analytical data sets from which the intelligent system will
develop its own analysis schema. Thus, data analysis enables an effective viewing of
steadily growing datasets which are being continously generated by both companies and
customers. It also provides quick information and recommendations based on access to real-
time information. Data analysis methods focus on strategic approaches to extracting raw
data, retrieving information relevant to the company’s core goals, and searching for that
information in order to turn metrics, facts and figures into tools that bring improvement.
The selection of data analysis methods depends on the type of data analyzed. The methods
for quantitative data are different from those for qualitative data. Data need preparation.
For this purpose, the data are checked for any outliers, missing values, or the necessary data
discretization. One of the biggest problems in business reporting is to combine and view
data of different types with different characteristics. With data analysis, one can search
many different types of data for correlations and insights. The process of “mixed” research,
incorporating quantitative and qualitative research techniques, methods, approaches, and
concepts together into one research, was introduced in the 1970s by Denzin [1].
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Quantitative research focuses on collecting quantitative data and generalizing it into
groups or explaining a specific observation. Another type of data is qualitative data that
exists when you can make descriptive statements about a topic based on observations,
interviews or evaluation.

In this article, we dealt with the detection of unusual data in qualitative data. This
topic is challenging. While we can easily to determine whether numerical data represents a
deviation, this task is very complex in case of qualitative data. For example, the following
two features describe a human being: height in centimeters and eye color expressed as text.
Let us also assume that in the set used for comparitive purpose, we will select 3 people:
A, B, and C. Person A is 185 cm tall and has blue eyes, as is the vast majority of data in
the set (let’s say 90%). Person B is 148 cm tall with brown eyes - one of three in the entire
dataset. Finally, person C is 178 cm tall (exactly what the average height for all people in
the data set is) and has black eyes (the only one in the whole set). Without much difficulty,
we will find (based on the calculations for the numerical attribute of height) that person
B is a deviation here - because the 148 cm value differs significantly from the average of
178 cm. Detecting deviations for qualitative characteristics, such as eye color, is a much
more complex task. Because we cannot say unequivocally whether black or brown is more
different than blue from the information stored as text, all we can do is conclude that black
was the rarest occurrence, so this is a potential deviation.

It is worth explaining for what purpose we detect outliers. We do not assume at
all that they must appear in a given set. In our research work so far, we deal with data
clustering algorithms for data mining and faster searching. It is known that after dividing
the data into groups, we create representatives for each group. Then in the search process,
these representatives are analyzed when we look for a group that matches the analyzed
data. Thus, if there are outliers in the dataset, and we use a clustering algorithm that is not
immune to noise in the data, unfortunately, these outliers will negatively affect the quality
of the clusters and thus the quality of the search. We want our solution to be universal and,
therefore, to work effectively both for data with outliers and for typical data. We also want
our solution to be effective for any data type, not just only numerical, which is easier to
analyze [2–4].

We assume that by finding outliers in a dataset, we can draw the attention of an expert
in the field, who has a chance to check whether an outlier is an error or maybe a real data,
unlike the rest, and worth a deeper analysis. In case of medical data, these may be unusual
disease symptoms, which will allow experts in the field to explore them more widely and
get to know the topic better. If there are no outliers in the set, the clustering should proceed
without disturbances, and thus searching for clusters, or their representatives, should
provide the expected results.

In our research, we often analyze qualitative data. We obtain such data directly from
domain experts, e.g., in the form of rule-based knowledge bases, where rules are created
using qualitative attributes. We can also generate them from numerical data through the
discretization process. This is due to the fact that much more useful information can be
derived from qualitative rather than quantitative data. Going back to the aforenmetioned
example of height, we realize that the information about the average value for this feature
does not mean all people in the set are more or less of that average height. We would have
to support ourselves with information, e.g., about the median and standard deviation, to
find out more. However, when we consider the feature of eye color, if we know that the
most common eye color is blue (we got a dominant value), it gives us much more key
information. When browsing a large dataset, we often formulate questions without giving
specific values, e.g., for height, we do not provide the specific value we are looking for but
only approximate the search, stating that we are looking for tall people. Since qualitative
data is such a frequently used representation of data, we want to check how the clustering
algorithms deal with this data and whether it is possible to detect unusual values in such
data sets during clustering.
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Therefore, we chose completely random sets of qualitative data in our experiments.
We do not assume that there are outliers to be found. So we want to check how the three
selected clustering algorithms: K-modes, ROCK and STIRR deal with detecting deviations
if they occur.

Clustering data or combining data into clusters means dividing a data set into subsets,
including elements similar to each other in terms of a certain selected measure.

An outlier can be defined as a data object that appears to be inconsistent with the
rest of the dataset based on some measure, or as an observation that deviates significantly
from other observations giving rise to suspicions about the correctness of the data or
the behavior of the system. Frank E. Grubbs in [5] writes, “An outlying observation, or
outlier, is one that appears to deviate markedly from other members of the sample in
which it occurs.” Then, he describes the different types of outliers: outliers, which are a
symptom of noise in the data and have valuable information, so they should be treated as
other objects in the set, and cases that are errors that we must remove from the set. Such
objects or observations often contain useful information about the abnormal behavior of
the system described by the data, and remaining undetected could lead to incorrect model
specification, erroneous parameter estimates, and incorrect results. Data cleansing requires
invalid data to be identified and handled appropriately. Outliers that are detected are often
candidates for invalid data that we should remove from the set. Often, in order to extract
useful knowledge from large data sets, experts use data mining techniques. One of the
frequently used techniques is, for example, clustering algorithms. When such algorithms
work on imperfect data, i.e., data containing outliers, we should expect that they will
affect the clustering results. The resulting clusters will be distorted and may be difficult to
analyze and interpret later. For this reason, the research related to the detection of outliers
in the structures of data clusters is certainly important and will improve the quality of data
mining in such sets.

The question that may be asked is why we chose these three algorithms. The answer is
quite simple. First, we have chosen them because we had previously paid a lot of attention
to clustering algorithms. We know that the most popular algorithms are the K-means - a
partitional algorithm, and the Agnes algorithm which represents hierarchical algorithms
for numerical data. The two algorithms selected by us, K-modes and ROCK, respectively,
are equivalents of the algorithms indicated here for qualitative data. We found the STIRR
algorithm particularly interesting, and since we did not find a Python implementation for
it, we decided to fill the gap.

We want to compare whether the selected algorithms: K-modes, ROCK and STIRR
indicate the same objects as potential deviations. To do this, we look for 5%, 10%, and 15%
variations and check the coverage of the results. We can see that despite the analysis of as
many as nine different data sets, we cannot state clearly which methods are more similar
to each other, i.e., they indicate similar outliers.

2. State-Of-The-Art

Outlier detection methods are used by IT specialists on a daily basis in many systems
supporting the organization of everyday life, such as detecting credit card fraud, clinical
trials, analysis of voting irregularities, data cleansing, detecting network intrusions, predict-
ing difficult weather conditions, providing geographic information, athlete performance
analysis and much more. Different applications of outlier detection require the use of
case-specific methods. In many applications, outliers are more interesting than internal
values [6]. Fraud detection is a classic example where the focus is on outliers because in
cases of fraud they can provide more information than the data in the norm. The outliers
detected may indicate individuals or groups of customers whose behavior is outside what
is considered the norm. In article [7], the variance isolation method, MI − Local − DIFFI
(Multiple Indicator Local-DIFFI), was used to identify bank customers who have unusual
transactions that indicate money laundering. The authors have used a modified Isolation
Forest algorithm by assigning weights to individual features during the construction of iso-
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lation trees [8]. Early detection of financial negligence within financial institutions prevents
corruption, terrorism and the imposition of penalties on institutions, and helps to eliminate
cases of bank customer insolvency. The authors of [9] present advanced anomaly detection
systems in network traffic through various categorizations and conduct a comparative
study of Dropbox, Google Drive and iCloud security measures with qualitative data about
internet users.

Detection of outliers is also used to support mechanisms that ensure the flow of
information, support for logistics, medicine and economy. Stored records of patients with
unusual symptoms or test results can help detect potential health problems in an individual
patient. The identification of such abnormal observations will help to distinguish recording
errors from whether the patient fell on potential diseases, and thus to take effective medical
measures in time. In the article [10] the DBSCAN algorithm was used to clear the dataset
from unusual observations. The prepared data was then transferred to the Random Forest
model alerting patients to the risk of diabetes and hypertension in their early stages. The
authors of [11] present a method of graphical presentation of qualitative demographic
and personal data of patients to detect ouliters among hospitals that treat patients with
myocardial infarction. Likewise, logistics related to the management and control of the
flow of products from the source of production to the destination requires the cleaning of
potential anomalies from the data. It is very important to ensure the safety and reliability of
the goods during this process. Transportation tracking can help spot potential outliers such
as product quality and quantity or goods damage. The article work in [12] describes the
use of the LOF (Local Outlier Factor) algorithm to detect traffic outliers that are data errors
or unusual traffic events in everyday situations such as accidents, traffic jams, and very
little traffic. In their work on dynamic process monitoring Yuxin Ma et al. used the LOF
algorithm to monitor unexpected changes in operating conditions in order to quickly adapt
to the prevailing conditions on the basis of a CSTR tank reactor [13]. The cited examples
of well-known and novel methods for detecting data outliers are based on quantitative or
mixed sets. So far, few methods using categorical data have been described, and most of
them were in the form of individual interviews or manual analysis using simple models,
e.g., linear and graphical presentation [14].

The methods of detecting outliers in datasets can be divided into formal and infor-
mal. Most formal tests require test statistics to test hypotheses. They usually rely on
the assumption of some well-behaved distribution and check whether the extreme target
value is out of range, e.g. extremely high air temperature in winter. Although formal
tests are quite powerful with well-behaved statistical assumptions, most real-world data
distributions may be unknown or may not follow specific distributions. There may also be
an anomaly masking problem where one anomaly is hidden by another, next to which it
appears to be a normal value. Apart from the masking problem, there is the problem of
swamping, in which normal observations are treated as anomalies because they are too
close to outliers [15]. Therefore, the anomaly detection method depends on the distribution
and type of data as well as the knowledge about the set. The topic of anomaly detection is
still being developed and described with the help of many alternative solutions combining
known and popular methods with innovative research.

Cluster-based approaches can effectively identify outliers as points that do not belong
to dataset clusters or as clusters distinguished by a small number of features [16,17]. The
methods for determining such values based on distance are applied based on a measure of
the distance between the object and its closest neighbors in the dataset. They have better
computational performance than depth-based methods, especially in large datasets, and are
effective in identifying local outliers in datasets with multiple clusters. The methods based
on neural networks can independently model the distribution of input data and distinguish
appropriate and inappropriate classes [18]. Those data objects that do not reproduce well
in the output layer are considered outliers. Such methods effectively identify outliers
and automatically reduce activation functions based on key attributes. Support vector
machine (SVM) methods can distinguish between good classes and outliers by mapping
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data into a feature space [19]. Objects distant from most of other objects or located in
relatively sparse regions of the feature space are declared as outliers. These methods
effectively identify outliers for quantitative data for which there is no need to prepare them
in advance. Model-based methods detect outliers by building a model that can represent
the statistical behavior of datasets or of the objects themselves [20,21].

Outliers are objects that differ significantly from the learned model. These methods
can deal effectively with various types of data and are often used in detecting outliers in an
online data stream or the aforementioned recurring banking transactions.

So far, a lot of papers have been published focusing on detecting outliers and good
data clusters in quantitative and mixed sets with binary categorical variables. M. Breunig,
in [22], proposed a method for detecting local outliers. According to its assumptions, a
data object is assigned the value of the local outlier factor (LOF), which is calculated from
the ratio of the local density of that object and the local density of its nearest neighbors in
the number of NPts. The objects with the highest LOF values are considered outliers. One
method that works well for small size datasets is the minimum size ellipsoid technique
described in 1984 by P. J. Rousseeuw in the article [23], which uses the smallest allowable
size of an ellipsoid to define a boundary around most data. Objects are outliers if they are
not in a densely populated boundary. A popular algorithm for processing large datasets to
detect outliers is the DBSCAN proposed by Martin Ester et al. described in [24] and its
modified version of ADBSCAN described a little later in [25]. The basic condition for using
the algorithm is to know two parameters: ε and MinPts. Epsilon (ε) is the radius of the
closest neighborhood of the data object under consideration, and MinPts is the minimum
number of data objects present in its region. Based on these parameters, the algorithm
creates clusters in the data. Objects isolated from the rest are considered outliers. Another
model-based method that isolates outliers instead of normal objects is IsolationForest . The
method is based on the construction of a forest of binary isolation trees in the number of
which is a model parameter. Then outliers are observations with the average shortest path
lengths from the root of the tree to the leaf. The algorithm was described in the article [8].
The indicated algorithms are widely used in IT systems, both to clean data sets from noise
so that they do not interfere with the system operation, and to detect unusual observations
in the data for further analysis.

The presence of outliers in qualitative data can significantly disrupt the effectiveness
of machine learning algorithms that try to find patterns in the data, such as rules, for
example, decision rules or association rules. Having two data objects, one of which is an
outlier, differs only in the dependent variable. We can get an unwanted rule determined
by the outlier. To eliminate problems such as these, algorithms are created to divide the
dataset into clusters understood as dense regions in the attribute space. Intuitively, the
cluster consists of much more tuples than expected when all the attributes are independent.
Moreover, the cluster also extends to the largest possible region. The division of the dataset
into clusters storing similar objects concerning a certain measure makes it possible to
eliminate outliers stored in very small clusters. So far, very few algorithms for processing
this type of data have been described. The five most popular methods so far to perform this
task are the following algorithms: K-modes, CLOPE, STIRR, ROCK and CACTUS. Each
of the algorithms represents a completely different approach to clustering categorical data.

The CLOPE algorithm was first proposed by Yiling Yang et al. in 2002 [26]. The authors
propose to cluster qualitative data using histograms for the frequency of occurrence of
qualitative features. High rates indicate typical data. Low rates may suggest variations
in the data. The CACTUS algorithm built based on the STIRR algorithm presents the
most advanced and computationally complex approach to data clustering [27]. CACTUS
consists of three phases: summarization, clustering, and validation. In the summary phase,
the similarities within the feature and between the features are calculated. In the clustering
phase, sets of candidate clusters are discovered based on the summary information. The
last validation phase consists of selecting the final set of clusters from among the candidate
clusters based on the set threshold of objects included in the clusters.
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Based on the examples provided, it can be seen how important a part of any data
analysis is detection of outliers is, not only to eliminate them so that they do not cause
problems in further analysis, but also to draw conclusions and the possibility of reacting
to unusual behavior of systems or tested objects. They also show the need for an in-
depth analysis of the methods of detecting anomalies in datasets that cannot be described
numerically or more simply expressed in a qualitative form. So far, no papers describing
the application of the indicated algorithms on a large scale or comparing the results due to
the type of data processed and the time of execution have been found. This has become the
direct motivation of the authors of this paper to analyze three selected clustering algorithms
K-modes, STIRR and ROCK that allow to effectively detect outliers in the qualitative data.

3. Data Clustering

The problem of clustering is one of the most studied issues in social sciences, psychol-
ogy, medicine, machine learning and data science.

The basic classification of clustering methods includes partitioning-based methods,
hierarchical methods, density-based and depth-based methods. Partitioning clustering
is a clustering method used to classify cases in a dataset into multiple groups based on
their similarity. The algorithms require the analyst to determine the number of clusters to
generate. These algorithms minimize the given clustering criterion by moving data objects
between clusters until optimal clustering is achieved. Examples of partitioning algorithms
include the K−means method described in [28] or the CLARA algorithm described in [29].
A separate group of algorithms that divides data into clusters is hierarchical algorithms.
These methods are designed to create groups of data that are significantly different from
each other, and the objects within the groups are similar to each other. Hierarchical
clustering begins with categorizing each object as a separate group. Then it repeatedly
finds two clusters that are most similar to each other and merges them into one. The
process ends when no pair of clusters can be joined because they are too far apart from
some selected measure. Representatives of a group of hierarchical algorithms can be
the ROCK algorithm described in [30], which will be presented in detail in this section.
Density-based algorithms are based on the assumption that the data cluster is a contiguous
region, which is dense due to the selected distance measure. Two objects belong to the
same cluster if their distance from each other does not exceed this measure and the cluster
density is greater than a certain value. Objects belonging to regions with low density
(with few objects belonging to a cluster) are usually considered outliers. The DBSCAN
method, presented for the first time in 1995 and described in [22], is well known and most
associated with the density-based methods of data clustering. In addition to density-based
clustering, a similar approach is presented by the depth-based algorithms described in [31].
Popular methods of data clustering also include fuzzy methods, methods using statistical
models, and machine learning models [32–35]. All data clustering methods have one thing
in common—they divide the dataset into subsets of objects similar to each other. They are
commonly used to separate normal observations from noise in the data.

In addition to typical benefits of clustering data, it has found a wide application in
the processing of datasets with categorical (or qualitative) domains, both in the process
of preparation for mining and in the modeling process itself. Here, data clustering has
been used to find outliers in qualitative datasets. The three methods described in this
chapter differ in terms of data clustering and outliers detection. Neither algorithms directly
defines the variances in the datasets but clusters the objects to determine those with the
greatest distance from the rest (they form single-element clusters or are the farthest from
the center of the clusters). The K-modes algorithm, most often used in research and real IT
systems, creates groups of clusters from objects closest to selected centroids and defines
outliers as objects farthest from the cluster center. A similar technique is used by the
STIRR algorithm, which does not directly define data clusters. Still, it assigns each object a
similarity coefficient to the rest of the set and naturally forms the dataset’s central object.
Outliers are the features with the coefficient farthest from zero. The last of the described
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algorithms, the ROCK algorithm, calculates the similarity measures between objects and
between groups of objects, creating data clusters containing objects that should not belong
to any other cluster. The easiest way to identify outliers in clusters created this way is to
select single-element clusters.

3.1. K-modes Clustering

The K-modes clustering algorithm was first proposed and made public in [36] by Z.
Huang in 1997 as an alternative to the categorical data of the popular K-means algorithm.
The modifications made to theK-means algorithm include using a simple measure of
matching dissimilarity for qualitative features, replacing the group averages with vectors
composed of the most common values at individual coordinates of the objects (modes),
and using a frequency-based method to modes update.

The K-modes algorithm begins with a random selection of k objects (centroids) selected
by the user, which are the central objects of k clusters. Then, the dissimilarity measure is
calculated for each pair of the drawn object and each other object in the dataset, and the
closest centroid is determined for each object. When all objects are assigned to individual
clusters, the centroids are then updated by creating new modes from objects present in the
cluster. The calculations are repeated until the differences in the generated clusters in the
following steps cease to exist.
What is important in this algorithm is that while we randomly select k modes from the
dataset, for each pair (mode, object) the dissimilarity measure is calculated. For each object
that is not a mode, we find the mode closest to the object. Then, we join objects with the
corresponding modes to create clusters.

As with most of categorical clusters, clusters containing a tiny number of features or a
single feature can be considered outliers. The specifics of K-modes clustering show that we
will create single-element clusters only if the initially drawn object is an outlier. That is, it
shows the least similarity with the rest of the objects.

Finding the similarity between a data object and a cluster requires n operations, which
for all k clusters is nk. Assigning objects to the appropriate k clusters and updating modes
also require nk operations. Assuming the algorithm is run I times for different starting
objects, the algorithm will have a linear complexity of O(nkI).
The K-modes algorithm is the easiest to implement and the most popular among the afore-
mentioned categorical data clustering algorithms because it is linearly scalable concerning
the size of the dataset, and it is easy to implement and handles large categories of data
efficiently. The disadvantage of the algorithm is that it selects random initial modes, leading
to unique structures clustering around objects that are undesirable from the set. A method
to prevent such situations to some extent is to draw the initial set of modes multiple times
and assign each object to the cluster with the greatest number of times. The output clusters
generated by the K-modes algorithm have a similar cardinality, which does not have to
reflect the actual data clusters on the sets having atypical distributions of variables.

3.2. STIRR Clustering

STIRR (Sieving Through Iterated Relational Reinforcement), a dynamic system described
by D. Gibson, is one of the most influential methods of clustering qualitative datasets [37].
It represents each attribute value as a weighted vertex in a graph. It iteratively assigns and
propagates weights until a fixed point is reached. Different weight groups correspond to
different clusters on the attribute.

Assuming that the input set is composed of n tuples containing only qualitative data
in the number of m variables, the described algorithm will create a separate node from
each unique variable value. The unique value here is the value of a categorical variable.
This concept refers to a single value of a given variable, not to the entire subset of records
with that value. For example, for a variable with the coordinates [a, a, b, b, b], the unique
values are a and b. m nodes will identify each tuple. We will refer to the configuration as
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assigning a weight to each of the v nodes. For obvious reasons, the weights must add up to
the number 1.

There are many methods of selecting the initial weights of nodes, the most common of
which is to adjust the weight to the occurrence of values - the more occurrences, the higher
the weight will be. We can also set the weights of all values to 1 or randomly select weights
from the [0; 1] range and then normalize them. The authors of the algorithm propose to use
the Gram–Schmidt orthonormalization method as a function that normalizes weights [38].

The computational complexity will depend on the similarity of the objects and the
selected number of iterations. Assuming n is the number of objects in the dataset, d is the
number of unique values in all variables, and k is the number of user-defined iterations,
the computational complexity of the algorithm will be O(kdn). If a large k is selected and
there is no repeatability in the successively calculated weights, the order of complexity
may increase to O(dn2).

The STIRR method largely depends on the choice of parameters - the joining operator
and the iterative function that defines the dynamical system. The algorithm ends when
each unique value of the variable receives a positive or negative weight so that reporting
end clusters can involve a heavy postprocessing step. In addition, by selecting different
configurations of the initial weights, the set will be divided in different ways, which
concludes that the initial weight has a big impact on the final result. Defining outliers as
those objects whose sums of weights on individual coordinates are close to zero may turn
out to be sufficient, assuming that the set consists of two clusters. As the assigned positive
and negative weights indicate a high coexistence of values, STIRR quickly identifies values
that do not coexist with any other values and can be considered last. Due to the specificity
of the algorithm consisting in consulting unique values in a set, STIRR is very efficient
in detecting outliers in even huge datasets, the variables of which have a small variety of
occurring values. The computation time of the algorithm increases with increasing unique
values, especially if the input set contains continuous scale variables.

3.3. ROCK Clustering

ROCK (Robust Clustering Algorithm for Categorical Attributes) was first put forward
in Information Systems by S. Guha et al. as a hierarchical algorithm for categorical data
proposing an approach based on a new concept called summaries between data objects [30].
The algorithm helps overcome the difficulties of applying Euclidean measures over multi-
variate vectors with categorical values. An important element in selecting the appropriate
clusters is the determining of the function of the criterion. The best object clusterings are
those that gave the highest values. To find clustering that maximizes the criterion function,
a measure of goodness is used that determines the best cluster pair to merge at each stage of
the ROCK hierarchical clustering algorithm. The algorithm considers the neighbourhood of
individual pairs of objects. It starts by assigning each tuple to a separated cluster, and then
clusters are merged repeatedly according to the closeness between clusters. The closeness
between clusters is defined as the sum of the number of ”links” between all pairs of tuples,
where the number of ”links” is computed as the number of common neighbors between
two tuples. Let us define link(x1, x2) to be the number of common neighbors between x1
and x2. From the definition of links, it follows that if link(x1, x2) is large, then it is more
probable that x1 and x2 belong to the same cluster. Since our goal is to find a clustering
that maximizes the criterion function, we use a measure similar to the criterion function in
order to determine the best pair of clusters to merge at each step of ROCK’s hierarchical
clustering algorithm. For a pair of clusters Ci, Cj, let link[Ci, Cj] store the number of cross
links between clusters Ci and Cj, that is, ∑x1∈Ci ,x2∈Cj

link(x1, x2). Then, we define the
goodness measure g(Ci, Cj) for merging clusters Ci, Cj.

ROCK’s hierarchical clustering algorithm accepts as input the set X of n sampled
objects to be clustered (that are drawn randomly from the original dataset), and the number
of desired clusters k. The procedure begins by computing the number of links between
pairs of objects. Initially, each object is a separate cluster. For each cluster i, we build a local
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heap q[i] and maintain the heap during the execution of the algorithm. q[i] contains every
cluster j such that link[i, j] is non-zero. The clusters j in q[i] are ordered in the decreasing
order of the goodness measure with respect to i, g(i, j). In addition to the local heaps q[i]
for each cluster i, the algorithm also maintains an additional global heap Q that contains
all the clusters. Furthermore, the clusters in Q are ordered in the decreasing order of their
best goodness measures. Thus, g(j, max(q[j])) is used to order the various clusters j in Q,
where max(q[j]), the max element in q[j], is the best cluster to merge with cluster j. At
each step, the max cluster j in Q and the max cluster in q[j] are the best pair of clusters to
be merged. The while-loop iterates until only k clusters remain in the global heap Q. In
addition, it also stops clustering if the number of links between every pair of the remaining
clusters becomes zero. In each step of the while-loop, the max cluster u is extracted from
Q by extract max and q[u] is used to determine the best cluster v for it. Since clusters u
and v will be merged, entries for u and v are no longer required and can be deleted from
Q. Clusters u and v are then merged to create a cluster w containing |u| + |v| objects. The
details are described in [30]. The ROCK algorithm can successfully identify outliers that
are relatively isolated from the rest of the objects. Objects with very few or no neighbors in
clusters of one or several members will be counted as outliers.

Due to a large number of comparisons between objects to create the best-defined
clusters, the algorithm’s computational complexity is the greatest of all those described
in this paper. Assuming that mm is the maximum number of neighbors and mα is the
average number of neighbors, the computational complexity of the algorithm is O(n2 +
nmmmα + n2 log n). The overall computational complexity will depend on the number of
neighbors of each facility. In most cases, the order of complexity will be O(n2 log n). If
the maximum and an average number of neighbors are close to n, then the algorithm’s
complexity increases to the order of O(n3). ROCK belongs to the family of hierarchical
algorithms. It is unique because it assumes that an attribute value, in addition to its
frequency, must be examined based on the number of other attribute values with which it
occurs. Due to its high computational complexity, ROCK is good at detecting deviations
in small datasets, and its computational time increases as the records in the set increase.
This is because each record must be seen as a unique data cluster. Data sampling has a
huge impact on the algorithm’s results, which can be considered its basic disadvantage.
If the user does not have comprehensive knowledge about the dataset, the appropriate
selection of the θ value and the minimum number of clusters generated on the output is a
challenging task.

4. Data Description

We have used nine qualitative datasets to compare the algorithms that detect devia-
tions in the data, each with a different structure of the variables matched to the clustering-
based algorithms supporting the detection of deviations in the qualitative datasets. The sets
have different sizes and consist of a different number of categorical explanatory variables
with a strong influence on the dependent variable. For a reliable representation of the time
complexity of the algorithms and the method of data classification in terms of deviated
observations, we have selected sets with a different number of objects and variables and a
different number of classes of the qualitative variable.

4.1. Primary Tumor Dataset

The Primary Tumor Dataset is one of three databases provided by the Institute of
Oncology, which has appeared many times in the literature on machine learning. The
collection was obtained from the University Medical Center of the Institute of Oncology in
Ljubljana and published by M. Zwitter and M. Soklic [39]. The collection concerns primary
tumors in humans. Locations of primary tumors are places in the body where the tumor
appeared for the first time, and from there began to form new tumors in other parts of
the body. Data objects are characterized by patient variables such as age, gender, skin
type, and sites of metastasize. The purpose of the dataset analysis is to determine the
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starting point at which the tumor appeared. The set contains 338 records, 18 columns and
49 unique values.

4.2. Lymphography Dataset

The dataset is part of primary cancer research in humans. Like the Primary Tumor
Dataset, the Lymphography dataset was obtained from the University Medical Center of
the Institute of Oncology in Ljubljana, and published by M. Zwitter and M. Soklic [40]. The
set contains 148 records, 19 columns and 62 unique values.

4.3. Congressional Voting Records Dataset

The voting dataset in the US Congress was designated by Jeff Schlimmer [41]. This
is the result of the 1984 United States Congress vote. Each record corresponds to one
congressman’s vote on 16 issues (e.g., education expenditure, crime). All attributes are
logical values. The dataset contains records for 168 Republicans and 267 Democrats. The
set contains 434 records, 17 columns and 34 unique values.

4.4. Car Evaluation Dataset

The car rating database was derived from a simple hierarchical decision model orig-
inally developed for the DEX demonstration by M. Bohanec, V. Rajkovic [42]. The car
rating database directly ties a car to the six input attributes: purchase, maintenance, doors,
persons, boot space, safety. Due to the known concept structure, this database can be
beneficial for testing constructive induction methods and structure discovery. The set
contains 1728 records, 7 columns and 26 unique values.

4.5. SPECT Heart Dataset

The dataset describes the diagnosis of single-proton emission computed tomography
cardiac images. Each patient falls into two categories: normal and abnormal. The database
contains 267 records and 23 binary attributes. The collection was published on the UCI
Machine Learning platform by Krzysztof J. Cios and Lukasz A. Kurgan [43].

4.6. Effects on personality due to Covid-19

The dataset describes changes in people’s behavior and feelings during the Covid 19
epidemic. Data were likely obtained from individual interviews. The dataset comes from
the Kaggle platform. The collection contains 204 records described with 17 categorical
attributes [44].

4.7. Phishing website Detector Dataset

The collection contains websites described by 30 parameters and a class label iden-
tifying them as a phishing sites. Phishing sites aim to obtain personal information by
pretending to be trusted organizations. The collection was published on the Kaggle plat-
form [45]. The original dataset contains over 11,000 records but was reduced to 1842 records
to simplify the calculation. The set describes 31 variables. Some data have been discretized
to achieve an entirely qualitative dataset.

4.8. Japanese Credit Screening Dataset

The examples represent positive and negative cases of people who have been granted
or refused a loan. The collection was generated from interviews with people in a Japanese
loan company. The collection was published on the Data World platform by Chiharu
Sano [46]. The collection consists of 690 objects and 16 attributes. Some data have been
discretized in order to achieve an entirely qualitative dataset.

4.9. Bank Data for Cash Deposit

The dataset describes the attributes of Bank customers that could encourage them to
open a long-term deposit. The collection includes data such as age, occupation, education,



Entropy 2021, 23, 869 11 of 27

and credit history. The collection was published on the Kaggle platform [47]. The original
dataset contains over thirty thousands of records, but has been reduced to 2539 records
for ease of computation. Some data have been discredited in order to achieve an entirely
qualitative dataset.

Preparation of datasets required filling the missing values with the most common
value in the variable. As objects contain text values on coordinates, the time complexity
of the algorithms increases significantly when there is a comparison of the values of two
objects due to the need to compare each letter in the text. In order to speed up the operation
of the algorithms, a function encoding text into numerical values has been used, which are
seen by the algorithms as qualitative variables. Variable codes are stored in a dictionary
structure, so we can easily decode them after the algorithm returns the result.

5. Conducted Research

The algorithms described in Section 3 have been implemented in the Python language
and tested on the sets described in Section 4. The JupyterHub environment available at the
address https://jupyter.org/hub (accessed on April 2021) was used for the implementation
and visualization of the data. JupyterHub runs in the cloud or on hardware locally and
supports a preconfigured data science environment for each user. Installation of the
environment requires the prior installation of Python on your own hardware. In this work,
we have used the Python language version 3.6 and the Anaconda package containing most
of the libraries enabling the execution of machine learning models and data mining and
visualization of results. The existing models of the Scikit− Learn library have been used
to implement the K-modes algorithm. due to the lack of implementation, the algorithms
ROCK, STIRR were implemented by the authors. We have used the Matplotlib library
and the PandasData f rame structure for data visualization. Most of the computation is
based on the Pandas data structures that hold the results. The diagram (Figure 1) shows
the sequence of steps performed to compare the algorithms detecting outliers.

The computer program described by the authors has been embedded in the JupyterHub
environment, which enables the separate execution of subroutines without the need to run
the entire program code. This type of program management is used in exceptionally large
and computationally time-consuming programs, because it enables multiple code testing
without the need to compile it completely, and is useful in data visualization “on the fly”.
The program has been divided into sections containing the following:

• Import of Python analytical libraries SciPy, Scikit− learn, NumPy, Pandas, Matplotlib
and libraries to perform operations related to time.

• Implemented algorithms: STIRR (stirr) with threshold parameter denoting the per-
centage of expected outliers, ROCK (rock) with parameters: k denoting the expected
number of clusters and theta being a parameter of a function that returns an estimated
number of neighbors between objects in clusters and K-modes (k_modes) with k pa-
rameter denoting the expected number of clusters and threshold parameter denoting
the percentage of expected outliers.

• Data preparation functions: (fill_empty) – function that completes missing fields with
the most common value in a column and removes columns that contain more than
60 % empty values, (variable_coding) function encoding text values into numerical
values, taking a list of columns whose values will be encoded and returning an
encoded dataset and a dictionary enabling data decoding, an analogous function
decoding encoded text variables (variable_encoding).

• Uploading all datasets.
• Reads the selected Car Evaluation Dataset and lists several records.
• Calculation of descriptive statistics for the Car Evaluation Dataset.
• Encoding text variables for the selected Car Evaluation Dataset to visualize the result.
• Loading and preparation of other datasets.
• Execution of STIRR, ROCK and K-modes algorithms on datasets. Presentation of the

graph of time dependence on the choice of the algorithm and the input set.

https://jupyter.org/hub


Entropy 2021, 23, 869 12 of 27

• Presentation of graphs of the dependence of the execution time on the number of
variables, the number of records and data diversity.

• Listing the numbers of individual clusters obtained by the ROCK, K-modes algorithms
and the numbers of the two resulting clusters obtained by the STIRR algorithm.

• Listing the weights assigned to the values in the STIRR algorithm based on the Car
Evaluation Dataset to present the results.

• Showing the Car Evaluation Dataset with assigned cluster numbers for the ROCK and
K-modes algorithms, sums of weights for each coordinate for the STIRR algorithm and
for all algorithms, flags that indicate whether a record has been classified as an outlier.
If the flag is −1, the object is an outlier, if it is 1, the object is considered normal.

• Presentation of the matrix of similarities and differences in classifying values as
outliers for the STIRR, ROCK and K-modes algorithms compared in pairs.

• Identification of common outliers generated by the STIRR, ROCK, and K-modes algorithms.

Full analysis of the results will be discussed in the next section.

Figure 1. Scheme of the program comparing algorithms clustering data and detecting outliers.

The source of the software was placed in the GitHub repository https://github.com/
wlazarz/outliers (accesed on May 2021). The repository contains the implementation of

https://github.com/wlazarz/outliers
https://github.com/wlazarz/outliers
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three clustering algorithms for data that has only quality domains: K-modes, STIRR (Siev-
ing Through Iterated Relational Reinforcement) and ROCK (Robust Clustering Algorithm
for Categorical Attributes).

6. The Results of the Experiments

This section covers the results of the three algorithms described in the previous
sections: STIRR, ROCK, and K-modes. An important element of data preprocessing was
their proper preparation, which is described in the Section 6.1. Then, the algorithms were
compared in terms of their time complexity and conclusions were drawn about the desired
structures of the input datasets for individual algorithms. In the following, the authors
describe the process of generating clusters and determining outliers together with the
visualization of results, and summarize the deprecated deviations.

6.1. Data Preprocessing

The first step in the project was to load datasets and prepare them properly before
starting clustering. In all datasets, we completed empty fields with the most common
value on a given variable. Categorical variables were encoded into numeric variables on
Primary Tumor Dataset, Lymphography Dataset, Congressional Voting Records Dataset and Car
Evaluation Dataset. Despite reducing the dataset to a numerical form, algorithms working
on qualitative sets treat numbers as categories of variables. The process of numerically
encoding the test values was intended to reduce the long execution time of the algorithms
resulting from the need to compare each sign of the test value. Tables 1 and 2 show the
encoding of Car Evaluation Dataset.

Table 1. Part of Car Evaluation Dataset before encoding categorical variables.

Class Buying Maint Doors Persons Lug_BOOT Safety

vhigh vhigh 2 2 small low unacc

vhigh vhigh 2 2 small med unacc

vhigh vhigh 2 2 small high unacc

vhigh vhigh 2 2 med low unacc

vhigh vhigh 2 2 med med unacc

vhigh vhigh 2 2 med high unacc

vhigh vhigh 2 2 big low unacc

vhigh vhigh 2 2 big med unaccs

vhigh vhigh 2 2 big high unacc

vhigh vhigh 2 4 small low unacc

6.2. Time Complexities of Clustering Algorithms

Based on the sets described in Section 4, we performed an analysis of the time complex-
ity of the algorithms described in the work. The execution time of the algorithms is given
in seconds. The study was conducted in the JupyterHub environment installed locally on
MacBookPro hardware with IntelCorei7 quad-core processor and 16 GB RAM. As datasets
are characterized by a different number of objects and variables and represent different
types of data, the number of records, columns, and avoided values for each dataset is
described on the lower axis to facilitate the analysis of time complexity (Figure 2).
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Table 2. Part of Car Evaluation Dataset after encoding categorical variables.

Class Buying Maint Doors Persons Lug_BOOT Safety

4 8 12 15 16 20 22

4 8 12 15 16 21 22

4 8 12 15 16 19 22

4 8 12 15 17 20 22

4 8 12 15 17 21 22

4 8 12 15 17 19 22

4 8 12 15 18 20 22

4 8 12 15 18 21 26

4 8 12 15 18 19 22

4 8 12 15 16 20 22

Figure 2. Comparison of the time complexity of the STIRR, ROCK and K-modes algorithms.

It is easy to notice that in most cases, the STIRR algorithm worked the longest, which
justifies its very high computational complexity, and it is extremely dependent on the
number of d denoting the number of unique values for individual variables. Simple
calculations show that unfortunatelly O(dn2) complexity of STIRR (in pesimistic case)
is higher than square logarithmic O(n2 + nmmmα + n2 log n) computational complexity
of the ROCK algorithm (assuming that mm is the maximum number of neighbors and
mα is the average number of neighbors in the cluster) in cases where d is greater than
1 + mαmm

n + log n, which is presumably the case for the first three sets. In these cases,
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the number of unique values in the set is at least 8% of the multiple of the record set.
We can observe another situation by analyzing the time complexity of the algorithms
on the car dataset. In this case, the time complexity of the ROCK algorithm is several
times higher than the time complexity of the STIRR algorithm. This effect can be caused
by a small number of unique values (26) compared to a large number of records in the
dataset. As an estimate, if the mm and mα values are greater than 9% of the set, then d
will reduce the computational complexity of the STIRR algorithm. It results from the
equation 26 < 1 + mαmm

1728 + log 1728 which holds if mmmα > 24336. In the case of the ROCK
algorithm, the computational complexity increases with the size of the dataset, in contrast
to the STIRR algorithm, whose complexity increases with the number of unique values
in the set. This behavior of the algorithm is intuitive, knowing that the STIRR algorithm
focuses on a hypergraph that stores unique values of individual categorical variables.
The K-modes algorithm has an average linear or near-square complexity when diagnosed
with many clusters. It is the least complex of the three described algorithms, which is
also reflected in Figure 2. Regardless of the number of records, variables, and values, the
execution time for the K-modes algorithm is the lowest for each dataset. More detailed
information on the ratio of the time complexity of the algorithm to the number of data and
the values of the variables can be found on the set of four graphs (Figure 3).

Figure 3. Dependence of the time complexity of the STIRR, ROCK, and K-modes algorithms on the
number of records and unique values.

We can observe that the complexity of the ROCK algorithm increases very quickly with
the increase in amount of data (here, the product of the number of records and variables).
In contrast, the time complexity of the STIRR algorithm increases with the increase of
unique values for individual variables, which will confirm the previous considerations.

6.3. Detected Clusters

Algorithms working on qualitative datasets required the indication of individual
parameters for the dataset. In the case of the K-modes algorithm, the parameter was the
number of generated clusters. The ROCK algorithm parameters were the minimum number
of generated clusters and the parameter of the function returning the estimated number of
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neighbors between objects in the clusters. Implementing the ROCK algorithm became a
tough challenge due to a very high computational complexity and unusual parameters.
The algorithm was initially tested on a dataset containing 13,000 records. To properly select
the θ parameter and the final number of clusters, the algorithm was tested for all θ from
the [0.5; 0.95] range in steps of 0.01 and the number of clusters in the [2; 80] range. Due
to the need to calculate all connections between the objects, the algorithm initially had to
perform 170 million operations. The test lasted over a day. Ultimately, we selected the nine
smaller sets described in Section 4 to present the results. We selected the ROCK algorithm
parameters on a trial and error basis. The number of outliers was approximately 5% of
the set, assuming that single-member clusters would be classified as outliers and stored
in one common cluster with the 0 number. To reliably test the differences in the results
of the ROCK, STIRR and K-modes algorithms, the threshold of outliers for the last two
algorithms was also set to a number corresponding to the number of outliers generated by
the ROCK algorithm (e.g., if the ROCK algorithm-generated five single-element clusters,
the other two algorithms will return five outliers in the dataset). The division of the
dataset into clusters performed by all three algorithms and the number of outliers found is
shown in Figures 4–6, assuming that the algorithm parameters are selected individually
for the dataset.

Figure 4. Distribution of clusters and outliers generated by ROCK.



Entropy 2021, 23, 869 17 of 27

Figure 5. Distribution of clusters and outliers generated by STIRR.

Figure 6. Distribution of clusters and outliers generated by K-modes.

While the Robust Clustering (ROCK) algorithm analyzes the similarities not only
between objects, but also between clusters that should be merged into a single cluster,
the STIRR and K-modes algorithms arrange objects from a dataset between clusters so
that each cluster contains a similar amount of data and only focuses on the similarities
between individual objects in the data. As mentioned earlier, the definition of an outlier
generated by the ROCK algorithm, taken from S. Guha, R. Rastogi and K. Shim, indicates
one-element classes. The more difficult task was to mark the anomalies using the other two
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algorithms based on qualitative data. For this reason, the detection of outliers by these two
algorithms was performed separately after we completed cluster generation. As suggested
by the authors, in the case of the STIRR algorithm, the records with the sums of weights
on individual coordinates close to zero were considered as outliers. The records marked as
anomalies by the K-modes algorithm are the ones from the farthest neighborhood of the
centroid in which the cluster the object is located.

All datasets used in work were taken from the UCI Machine Learning Repository
database and represent real data collected during research on real data objects with dif-
ferent distributions, possibly containing a small number of deviations, which results in
differentiated sizes of clusters generated by the ROCK algorithm. This is not the case
for the other two algorithms due to their implementation; algorithms distribute objects
between clusters so that the number of objects in the clusters is similar. The descriptions
of the clusters and the anomalies detected by the three indicated algorithms (Figure 4–6)
show that the set with the strongest links between the objects is the Car Evaluation Dataset,
for which all algorithms indicated less than 1% outliers. When analyzing the distribution
of variables in the car set (Figure 7), we can observe fluctuations only in the sa f ety variable.
All datasets processed by the ROCK algorithm have created a single, power-dominant clus-
ter containing most of the records in the set. Such a mapping of sets in clusters results from
numerous connections between groups of records that are naturally similar to each other.

Figure 7. Variable histograms in Car Evaluation Dataset.

The STIRR algorithm is unique because of its implementation concerning the rest
of the algorithms for clustering qualitative data. The algorithm determines the weight
for each unique value in a set of qualitative data concerning the number of connections
between the value and other values that coexist in the set. The determined numerical
weights are normalized with the Gram–Schmidt orthonormalization to reach values in the
range [−1;+1]. In a further step, the algorithm calculates the weight of each data object,
which is the sum of the weights of the values on the individual coordinates of the object.
Object weights naturally divide the dataset into two clusters: a cluster containing objects
whose sum of weights is a negative number and a cluster that contains objects whose sum
of weights is a positive number. As mentioned, the outliers of the user-selected number,
in this case, are the records whose sums of weights are closest to zero. Figure 8 shows
the weights assigned to the unique values of each variable of the Car Evaluation Dataset,
presented in the form of a double-key dictionary, where the first key coordinate is the
variable’s value and the second is the variable’s name. In this case, the middle value of
(“acc”, ”safety”) has the lowest weight among the values of the set variables, which means
that it has the least coexistence with the values of other variables.
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Figure 8. Variable class weights generated by the STIRR algorithm.

Data clustering algorithms do not have natural definitions of outliers and do not
return points considered as variances in the data. The problem of marking objects that
differ the most from the others due to the calculations characteristic of the algorithm was
solved by generating an additional column for the dataset containing the values −1 or
1, where −1 means that the object was considered an outlier and 1 means that we knew
the object to be normal. Table 3 shows a part of the output dataset Car Evaluation Dataset
and the cluster numbers generated by the ROCK and K-modes algorithms, with the sum
of weights on each coordinate generated by the STIRR algorithm and values of 1 or −1
assigned to objects.

Table 3. Part of Car Evaluation Dataset with cluster numbers and flags for outliers or normal values.
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0 vhigh vhigh 2 2 small low unacc 1 −0.010227 1 1 −1 1

1 vhigh vhigh 2 2 small med unacc 1 −0.083789 1 1 1 1

2 vhigh vhigh 2 2 small high unacc 1 −0.081094 1 1 1 1

3 vhigh vhigh 2 2 med low unacc 1 −0.97961 1 1 1 1

4 vhigh vhigh 2 2 med med unacc 1 −1,053172 1 1 1 1

... ... ... ... ... ... ... ... ... ... ... ... ... ...

1723 low low 5 more more med med good 32 −0.832199 0 1 1 −1

1724 low low 5 more more med high vgood 41 −0.829112 0 1 1 1

1725 low low 5 more more big low unacc 0 0.367165 0 −1 1 1

1726 low low 5 more more big med good 32 0.293237 0 1 1 1

1727 low low 5 more more big high vgood 41 0.296325 0 1 1 1

6.4. Detected Outliers

In order to compare the algorithms for detecting outliers based on clustering, objects
classified as outliers and normal were found by each couple of pairs of algorithms (Table 4).
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Table 4. Comparison of commonly classified outliers and normal values by the STIRR, ROCK and K−modes algorithms
assuming 5% outliers.

Comparison STIRR&ROCK STIRR&K-modes ROCK&K-modes Dataset

−1 and −1 0 0 17 primary-tumor

1 and 1 300 300 312 primary-tumor

different result 39 39 10 primary-tumor

−1 and −1 6 0 5 lymphography

1 and 1 34 136 35 lymphography

different result 108 12 108 lymphography

−1 and −1 2 1 7 house-votes

1 and 1 398 399 407 house-votes

different result 34 34 20 house-votes

−1 and −1 0 1 2 car

1 and 1 1613 1524 1582 car

different result 115 203 144 car

−1 and −1 3 2 8 alpha_bank

1 and 1 2376 2393 2477 alpha_bank

different result 160 144 54 alpha_bank

−1 and −1 0 1 3 covid

1 and 1 187 180 185 covid

different result 17 23 16 covid

−1 and −1 1 1 19 japanese_credit

1 and 1 619 621 635 japanese_credit

different result 70 68 36 japanese_credit

−1 and −1 2 6 52 phishing

1 and 1 1684 1665 1735 phishing

different result 156 171 55 phishing

−1 and −1 0 1 5 SPECT

1 and 1 243 245 243 SPECT

different result 24 21 19 SPECT

It is easy to see that we can only find a common outlier in the house votes dataset. In
most of the cases, the analyzed algorithms returned completely different results. The large
differences in the selection of outliers are certainly the result of a significantly different
nature of cluster detection by each of the algorithms. The ROCK algorithm is the most
rigorous in detecting outliers. It focuses on inter-object and inter-cluster connections,
tying them together until well-defined clusters are obtained with the number of common
neighbors below a certain threshold. Thus, single-member clusters contain distant objects
from every other cluster and every data object. The STIRR method represents a completely
different approach.

The acronym stands for Sieving Through Iterated Relational Reinforcement and provides
an easy explanation for method of iterating through relationships between unique values in
a dataset until the best set of weights assigned to values is discovered. Outliers determined
by the STIRR algorithm are objects whose values on individual variables show little
coexistence with other values in the dataset. The last algorithm, K-modes, due to the
inoculated randomness during the selection of the initial set of cluster centroids, will
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consider those outliers whose distance from the centroids in the clusters to which they
belong is the greatest. Due to a very different approach to determining good clusters, and
therefore detecting outliers by the three described algorithms, the anomaly classification
result will also be different for each algorithm.

Due to the lack of correlations between the classification results, the experiment was
performed assuming that the algorithms should generate 10% of outliers. The results of
this study are shown in Table 5.

Table 5. Comparison of commonly classified outliers and normal values by the STIRR, ROCK and K-modes algorithms
assuming 10% outliers.

Comparison STIRR&ROCK STIRR&K-modes ROCK&K-modes Dataset

−1 and −1 4 1 1 primary-tumor

1 and 1 254 284 263 primary-tumor

different result 81 54 75 primary-tumor

−1 and −1 3 1 1 lymphography

1 and 1 116 120 115 lymphography

different result 29 27 32 lymphography

−1 and −1 7 5 22 house-votes

1 and 1 367 360 389 house-votes

different result 60 69 23 house-votes

−1 and −1 16 12 30 car

1 and 1 1370 1335 1325 car

different result 342 381 373 car

−1 and −1 30 43 249 alpha_bank

1 and 1 1904 1807 1842 alpha_bank

different result 605 689 448 alpha_bank

−1 and −1 1 2 6 covid

1 and 1 160 171 170 covid

different result 43 31 28 covid

−1 and −1 7 9 43 japanese_credit

1 and 1 566 521 562 japanese_credit

different result 117 160 85 japanese_credit

−1 and −1 18 17 35 phishing

1 and 1 1492 1512 1530 phishing

different result 332 313 277 phishing

−1 and −1 0 2 5 SPECT

1 and 1 230 228 212 SPECT

different result 37 37 50 SPECT

This time the result is more satisfactory. Appropriate operations were performed
to read that the number of objects marked as anomalies by all three algorithms was
two. An intersection operation was performed to determine the objects identified as
anomalies in the dataset by all three algorithms. This time, we found common outliers in
the car (Table 6), house votes (Table 7), and japanese credit (Table 8), spect (Table 9), alpha bank
(Table 10), phishing (Table 11) datasets.
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Table 6. Data objects belonging to the car dataset classified as outliers by all algorithms: STIRR, ROCK, and K-modes
assuming there is 10% of outliers in the set.
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7 vhigh vhigh 2 2 big med unaccs 0 0.10832 48 −1 −1 −1

566 high high 2 more big high acc 0 0.043724 8 −1 −1 −1

970 med vhigh 5more more big med acc 0 0.081686 4 −1 −1 −1

Table 7. Data objects belonging to the house votes dataset classified as outliers by all algorithms: STIRR, ROCK, and K-modes
assuming there is 10% of outliers in the set.
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Table 8. Data objects belonging to the japanese credit dataset classified as outliers by all algorithms: STIRR, ROCK, and
K-modes assuming there there is 10% of outliers in the set.
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Table 10. Data objects belonging to the alpha bank dataset classified as outliers by all algorithms: STIRR, ROCK, and
K-modes assuming there there is 10% of outliers in the set.
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When analyzing Table 11, we can see that the outliers are not characterized by the very
high absolute weights that were calculated by STIRR algorithm, but they are large enough
to be considered as anomalies. We also found these objects in the ROCK single-element
clusters and 10% of the objects farthest from the cluster centroids generated by the K-modes
algorithm. Thus, with little risk, the anomaly detection result can be based on commonly
detected outliers by several algorithms, assuming that the percentage of outliers in the set
is greater than it should be, and then select objects that have been classified as anomalies by
all the algorithms. Then we can be sure that the set has been tested in terms of differences
between the attributes, attribute groups, objects, and groups of objects. Therefore, we can
design the anomaly search process in a qualitative set in two steps. Initially, all algorithms
for the small anomaly threshold can search for common anomalies. If the process does not
return results, one can increase the threshold and see if there are common outliers in the set
this time. If the threshold exceeds approximately 15% of the set, we can find no outliers.
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7. Evaluation of the Proposed Methods

The analysis of the results allows us to conclude that if we care about the speed of
calculations or have a huge set of data, a good choice will be to use the K-modes algorithm.
This algorithm is recommended to be used in datasets that we know are divided into a
small number of large clusters. Then the initially drawn centroids will have less influence
on the quality of clustering.

When we know that the dataset contains obvious outliers, i.e., those that differ by most
of the coordinate values from the rest of the objects, it is worth using the STIRR algorithm.
This algorithm looks for relationships between the values of individual variables. Still,
it does not pay much attention to whether a given value repeatedly occurs, which could
indicate the existence of a specific data cluster based on a small number of variables.

In most cases, the most reasonable approach is to use the ROCK method because it
performs an exhaustive analysis of the dataset in search of outliers – it approaches objects,
variables individually, and looks for relationships between objects and variables. The
main disadvantage of this algorithm is a very high computational complexity, which in
extreme cases may amount to the cube value of the number of objects in the set. For this
reason, the algorithm is a good choice if we have small datasets, up to 1000 records. An
additional difficulty is the selection of the distance between the clusters and the minimum
number of clusters. The algorithm’s execution time and the clustering quality are improved
by knowing an estimated number of clusters in the set and how far the elements should
be apart from each other to not be in a common cluster. If we do not have exhaustive
knowledge about the dataset, it is worth running the algorithm many times and analyzing
the generated clusters to assess the quality of the parameters.

8. Conclusions

This work focused on the search for outliers in sets of qualitative data due to the type
and number of variables. Section 3 describes relatively novel approaches to clustering
qualitative data. The results are presented on the basis of nine datasets characterized by a
different structure. In the multitude of solutions related to the clustering of quantitative
data, clustering of data containing only qualitative variables are large and still have a small
number of research solutions. Research into anomaly detection and impact observations
has placed emphasis on quantitative datasets, and the methods of working with large
categorical databases have been left to a small number of alternative techniques.

The authors have attempted to compare the effectiveness of cluster detection and
anomaly detection in qualitative datasets, between which there is no clear comparison so far.
The algorithms based on quantitative data generally have better mathematical properties
enabling a simple data visualization, which may be sufficient to match a technique to
the dataset we have. This does not apply to qualitative datasets, so determining which
algorithm works better on the data we have and detecting the most natural groups is
difficult. The performance of algorithms is usually defined in terms of their scalability and
cluster generation time. If the dataset under analysis changes each day and the daily data
clustering technique is part of the data mining process, any changes to the data will affect
the results. Then extreme variations in daily data are undesirable and will disrupt cluster
generation. The stability of qualitative clustering algorithms is an insufficiently researched
issue and still raises a lot of interest in the world of Data Science.

We can draw a basic conclusion from the research that the data structure has a large
impact on the time complexity of the algorithm. The algorithm should be properly selected
for the dataset. Each algorithm classifies outliers differently, and the results will differ from
one another. With a high probability, the objects classified as outliers by each algorithm
can be considered noise in the set and removed before further exploration on the set. The
algorithms based on clustering categorical data are relatively new methods of detecting
outliers in data, having no implementation in commonly used programming languages.
The quality of the created clusters is measured by the user’s knowledge and the examination
of the results because the user sets the basic parameters of clustering, which require a very
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large knowledge of the data. The clustering techniques used in categorical data are based
on the coexistence of data objects or the number of their neighbors and are therefore not
suitable for detecting clusters in quantified or mixed data. The discussed STIRR, ROCK,
and K-modes algorithms introduce different methods to solve this problem and provide
different solutions in terms of their performance with respect to the time needed to execute
the algorithms when the number of records and dimensions change.
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