
RESEARCH ARTICLE

Autophagy induction by Mycobacterium indicus

pranii promotes Mycobacterium tuberculosis

clearance from RAW 264.7 macrophages

Bindu Singh1, Mohd Saqib1, Ananya Gupta1, Pawan Kumar2, Sangeeta Bhaskar1*

1 Product Development Cell, National Institute of Immunology, New Delhi, Delhi, India, 2 Special Centre for

Molecular Medicine, Jawaharlal Nehru University, New Delhi, India

* sangeeta@nii.ac.in

Abstract

Mycobacterium indicus pranii (MIP) is a potent vaccine candidate against tuberculosis (TB)

as it has demonstrated significant protection in animal models of tuberculosis as well as in

clinical trials. Higher protective efficacy of MIP against TB as compared to BCG provoked

the efforts to gain insight into the molecular mechanisms underlying MIP mediated protec-

tion against Mycobacterium tuberculosis (M.tb). Autophagy, initially described as a cell sur-

vival mechanism during starvation, also plays a key role in host resistance to M.tb. Virulent

mycobacteria like M.tb, suppresses host autophagy response to increase its survival in mac-

rophages. Since mycobacterial species have been shown to vary widely in their autophagy-

inducing properties, in the present study, we examined the autophagy inducing efficacy of

MIP and its role in MIP-mediated protection against M.tb. MIP was found to be potent

inducer of autophagy in macrophages. Induced autophagy was responsible for reversal of

the phagosome maturation block and phagolysosome fusion inhibition in M.tb infected mac-

rophages, which ultimately lead to significantly enhanced clearance of M.tb from the macro-

phages. This is an important study which further delineated the underlying mechanisms for

significant immunotherapeutic activity observed in TB patients / animal models of tuberculo-

sis, given MIP therapy along with chemotherapy.

Introduction

Tuberculosis (TB), a chronic infectious disease, remains one of the world’s deadliest commu-

nicable diseases (WHO report 2016). Mycobacterium tuberculosis (M.tb), the causative organ-

ism of TB, is a highly successful pathogen as it has evolved number of survival strategies to

evade the host immune mechanisms [1]. Blocking of phagosome maturation and phago-lyso-

some fusion, interference with antigen presentation, resistance to reactive oxygen and nitro-

gen intermediates [2,3], alteration of host cell apoptotic pathways [4] and inhibition of

autophagy in host cells [5] are some of the strategies which enhance M.tb survival inside the

macrophages.

PLOS ONE | https://doi.org/10.1371/journal.pone.0189606 December 13, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Singh B, Saqib M, Gupta A, Kumar P,

Bhaskar S (2017) Autophagy induction by

Mycobacterium indicus pranii promotes

Mycobacterium tuberculosis clearance from RAW

264.7 macrophages. PLoS ONE 12(12): e0189606.

https://doi.org/10.1371/journal.pone.0189606

Editor: Seyed Ehtesham Hasnain, Indian Institute

of Technology Delhi, INDIA

Received: September 22, 2017

Accepted: November 29, 2017

Published: December 13, 2017

Copyright: © 2017 Singh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the Core

research grant of National Institute of Immunology.

The funder had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0189606
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189606&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189606&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189606&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189606&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189606&domain=pdf&date_stamp=2017-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189606&domain=pdf&date_stamp=2017-12-13
https://doi.org/10.1371/journal.pone.0189606
http://creativecommons.org/licenses/by/4.0/


Autophagy, a lysosomal degradation pathway which contributes to maintenance of intracel-

lular homeostasis, has been shown to be an integral part of both adaptive and innate immunity

[6]. It was initially known as stress response involved in cell survival during nutrient starvation

condition and for its role in maintaining intracellular homeostasis, by eliminating surplus or

damaged organelles and degradation of superfluous, misfolded and damaged proteins [7].

Subsequent studies showed the innate defence role of autophagy against invading pathogens

including M.tb [8–10]. One of the important survival strategies of M.tb is to evade acid hydro-

lases by inhibiting phagosome-lysosome fusion [11,12]. Autophagy induction by physiological,

pharmacological or immunological means was found to reduce intracellular M.tb survival by

targeting it for lysosomal degradation [13]. The importance of autophagy genes in restricting

intracellular growth of M.tb was confirmed by genome-wide small interfering RNA (siRNA)

screenings in which 74 target genes were knocked down using target-specific siRNAs and their

effect on M.tb survival was tested. Out of the 74 genes tested, 44 were found to be responsible

for autophagy mediated M.tb clearance [14]. Studies in autophagy-deficient mice demon-

strated that autophagy confers protection against active tuberculosis by reducing bacterial bur-

den and inflammation [5,15].

Mycobacterium indicus pranii (MIP) is a progenitor of M. avium complex, sharing cross-

reactive antigens with M.tb and M. leprae. Studies in mouse and guinea pig models of TB have

shown that prophylactic or therapeutic administration of MIP leads to significant reduction in

bacillary burden. MIP treated animals were found to exhibit significantly reduced TB pathol-

ogy and enhanced survival [16–18]. Recently concluded multicentric clinical trial in category-

II TB patients further confirmed its immunotherapeutic role in difficult to treat patients hav-

ing advanced disease [19].

It has been shown previously that different mycobacterial species vary widely in their autop-

hagy inducing potential [20]. Although MIP has shown potent anti-TB efficacy [16–18], and

has been uniquely placed between slow- and fast-growing mycobacteria[21]; autophagy-induc-

ing potential of MIP and its role in MIP-mediated protection against TB remained unexplored.

The present study provides evidence that MIP is a potent inducer of autophagy in macro-

phages. Induced autophagy is responsible for the reversal of phagosome maturation block and

phagolysosome fusion inhibition in M.tb infected macrophages, which ultimately leads to sig-

nificantly enhanced clearance of M.tb from the macrophages. This study enhances our under-

standing of the mechanism behind MIP mediated protection in M.tb infection.

Materials and methods

Bacterial culture

MIP and M.tb-H37Rv were cultured in Middlebrook 7H9 broth (0.05% Tween-80, 0.1% Glyc-

erol, supplemented with 10% Albumin Dextrose Catalase). GFP-expressing M.tb was prepared

by electroporating H37Rv with pSC301 plasmid (AddGene, #31851). Transformed bacilli were

selected and maintained using 7H9 broth supplemented with Hygromycin (100 μg/ml).

Macrophage culture and infection

RAW 264.7 cells were obtained from ATCC and cultured in RPMI-1640 medium supple-

mented with 10% foetal bovine serum and 1 X Penicillin-Streptomycin solution. Prior to the

day of experiment, cells were scraped, counted and seeded at a density of 5 x 105, 1 x106 and 2

x 106 cells per well in 24-, 12- and 6-well plates respectively and left overnight at 37˚C in CO2

incubator for optimal adherence. MIP culture was grown till the OD600 reaches 0.6–0.8 and

harvested by centrifuging at a speed of 1000 g for 10 min followed by washing with Phosphate

buffered saline (PBS). Single cell suspension of MIP / M.tb was prepared and OD600 was
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determined. Adhered macrophages were infected with mycobacteria (MOI of 1:10) and active

infection was allowed to proceed for 4 hrs, and after that the cells were rinsed with PBS. Mac-

rophages were harvested at the indicated time points and lysed on ice using M-2 lysis buffer

(1M Tris pH 7.4; 5M NaCl; Glycerol; 10% Triton-X-100; 0.5M EDTA; 0.5M EGTA) containing

1 X PIC (Protease Inhibitor Cocktail). Lysates were then analysed for LC3 (Microtubule-asso-

ciated proteins 1A / 1B light chain 3B) expression level by Western blot. For M.tb survival

studies, GFP expressing M.tb (with Hygromycin as selection antibiotic) was used to infect the

macrophages.

Preparation of RAW-GFP-LC3 cells

RAW 264.7 cells were transfected with pEGFP-LC3 (AddGene, #21073) using Lipofectamine-

2000 (Thermo-Fischer Scientific) as per manufacturer’s instructions. The stably transfected

cells were selected using G418 antibiotic (1 mg/ml) for 15 days. Expression of GFP-LC3 was

checked using flow-cytometry. When GFP-LC3 is recruited on autophagosomes, they appear

as punctate structures. Briefly, GFP-LC3 expressing RAW 264.7 macrophages were seeded on

sterile coverslips and allowed to adhere before being infected with MIP / M.tb and treated with

Rapamycin / Bafilomycin for 4, 8, 12, 16 and 24 hrs. Cells were fixed and visualised for puncta

formation by confocal microscopy.

Western blotting

The protein content of the cellular lysates was determined using Bicinchoninic Acid (BCA)

method. 20–40 μg of the protein samples were loaded on SDS-PAGE gel and electrophoresed.

Electrophoresed proteins were transferred on to the Polyvinylidene difluoride (PVDF) mem-

brane using wet transfer for 2.5 hrs at 60 V. The membrane was blocked for 1 hr at RT with

5% w/v non-fat dry milk in 1 X TBST (Tris-buffered saline with 0.1% Tween-20). Subse-

quently, membrane was incubated overnight at 4˚C with anti-LC3 primary antibody (Cat. No.

#12741, obtained from Cell Signalling Technologies, dilution-1:1000) in 5% w/v Bovine Serum

Albumin (BSA) in TBST. This was followed by incubation with anti-rabbit HRP antibody

(Cat. No. #7074, procured from Cell Signalling Technologies, dilution-1:5000) for 1 hr at RT.

The proteins on the blot were then detected using chemiluminescence method (BioRad Clarity

Western ECL substrate). LC3-II expression levels (which correlates to the number of autopha-

gosomes formed) were then quantitated using Image-J software.

DQ-BSA degradation assay

To quantify the lysosomal activity, the self-quenched reporter substrate, Dye-quenched Bovine

Serum Albumin (DQ Red BSA) was used, which upon proteolytic cleavage, produces brightly

fluorescent products. This provides a measure of the overall proteolytic/ lysosomal activity

within the cell. Briefly, RAW 264.7 macrophages were seeded on sterile coverslips and kept

overnight for adherence. The cells were then loaded with DQ Red BSA (10 μg/ml) prepared in

complete RPMI for 1 hr, followed by chasing in incomplete RPMI for 2 hrs at 37˚C. The cells

were then washed and infected with MIP / M.tb (MOI-1:10) or treated with Rapamycin for 4

hrs. Subsequently, cells were fixed with 4% Paraformaldehyde (PFA) for 10 min at RT and

visualised by confocal microscopy or analysed by flow cytometry to quantify the DQ-BSA

fluorescence.
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Analysis of phagosome maturation by immunofluorescence

Phagosome maturation in different experimental groups was analyzed by confocal micros-

copy. RAW 264.7 cells were seeded on sterile coverslips and kept for adherence overnight at

37˚C in CO2 incubator. On the day of experiment, macrophages were infected with MIP at

MOI of 10 and kept for 4 hrs at 37˚C in CO2 incubator. The cultured cells were fixed in abso-

lute methanol for 10 min at RT, followed by washing with PBS thrice. The cells were then per-

meabilized with 0.1% Triton-X-100 in PBS for 10 min at RT. Blocking was done for 2 hrs at

RT with buffer containing 3% BSA and 0.1% Triton-X-100 in PBS. Cells were washed 3 times

with PBS. This was followed by incubation with Rab5 (Cat. No. #3547) / Rab7 (Cat. No. #9367)

primary antibodies (obtained from Cell Signalling Technologies, dilution-1:100) in blocking

buffer at 4˚C for overnight. Cells were again washed and Alexa fluor 488 secondary antibody

(Cat. No. #A-21206, Life technologies; dilution-1:1000) in blocking buffer was then added and

incubated for 45 to 60 min at RT. After washing 3 times with PBS, DAPI (40,6-Diamidine-20-

phenylindole dihydrochloride) staining was done (dilution-1:500) for 5 min. Washing was

done once with PBS for 5 min. The coverslips were then dried and mounted on the slides with

anti-fade mounting media and observed by Zeiss LSM 510 Meta Confocal Microscope at 63 X

magnification.

Assessment of M.tb phagosome-lysosome fusion

RAW macrophages, plated on sterile coverslips were infected with GFP expressing M.tb

(MOI-1:10) for 4 hrs. After establishment of the M.tb infection, extracellular bacteria were

washed out and the macrophages were co-infected with MIP for 4 hrs. The cultured cells were

then fixed in 4% PFA and permeabilized with 0.1% Triton-X-100 in PBS for 10 min at RT.

Subsequently, the cells were stained with LysoTracker Red (100 nM) for 30 min at 37˚C and

washed with PBS to remove excess dye. DAPI staining was done and co-localization of GFP

expressing M.tb with LysoTracker Red was observed by confocal microscope. Fifty fields of

each group were examined and total number of green spots (GFP expressing M.tb located out-

side the lysosomes) and yellow spots (formed by co-localisation of GFP expressing M.tb with

LysoTracker Red giving a yellow fluorescence) were counted.

Evaluation of M.tb survival

RAW 264.7 cells were infected with GFP expressing M.tb H37Rv for 4 hrs at MOI 1:10. The

extracellular M.tb was washed out after the establishment of infection and the cells were co-

infected with MIP. After 4 hrs, the cells were again washed with PBS and lysed for 15 min

with 0.1% Triton-X-100 in PBS. 100 μl lysate from each group was plated in triplicates on

7H11-agar plates containing Hygromycin as the selection antibiotic for GFP expressing M.tb.

Colonies of M.tb were counted after 24–28 days of growth at 37˚C and percentage survival of

M.tb in different experimental groups was analysed.

Autophagy abrogation by RNA interference technique

RAW 264.7 macrophages were harvested and seeded at a density of 0.5 x 106 per well in 6-well

plate and kept for 24 hrs at 37˚C in CO2 incubator for optimal adherence. Prior to transfection,

50 ng of LC3 SiRNA was diluted in 500 μl of Opti-MEM and added to RNAiMax transfection

reagent. The contents were mixed well and incubated for 5 min at RT. The SiRNA-RNAiMax

mixture was then added drop-wise to the wells. Cells were incubated in CO2 incubator for 6

hrs after which, the transfection mixture was replaced with fresh complete media. Cells were
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again incubated for 24 hrs and then used for experiments. Given below is the sequence of

SiRNA used in this study:

LC3 –GCGAGUUGGUCAAGAUCAUdTdT

Statistical analysis

The difference in the variables was analyzed by one-way analysis of variance (One-way

ANOVA). P-value <0.05 was considered to be statistically significant.

Results

MIP is a potent autophagy inducer in macrophages

Since different mycobacterial species vary in their autophagy inducing potential, first we

examined the efficacy of MIP for induction of autophagy in RAW 264.7 macrophage cell line.

Cellular lysates prepared from MIP- infected RAW macrophages were probed for LC3-I / II

expression by western blotting. The LC3 protein, a specific constituent of the autophagosomal

membrane, is the only highly specific marker of the autophagosome presently [22]. It is known

to exist in two forms: LC3-I (the 18 kDa cytosolic form) and LC3-II (formed upon conjugation

of LC3-I to PE has molecular weight of 16 kDa). LC3-II is recruited to the inner as well as

outer autophagosomal membranes [23]. Quantification of LC3-II correlates with the extent of

autophagy induced.

It was observed that MIP-infected macrophages expressed 4.3 ± 0.3 fold higher levels of

LC3-II compared with uninfected cells (Fig 1A and 1B). Rapamycin was used as a positive con-

trol. During autophagy, LC3-I is recruited to the inner membrane of autophagosomes and is

Fig 1. MIP is a potent inducer of autophagy. RAW 264.7 macrophages were infected with MIP (MOI-1:10) for 4 hrs, whole

cell lysates were prepared and western blot was performed. (A) Shown is the representative blot depicting the level of lipidated

LC3-II in Control, Rapamycin treated and MIP infected macrophages. (B) Shown is the mean fold change ± range in LC3-II level

in Rapamycin treated and MIP infected cells as compared to uninfected control. (C) RAW cells expressing GFP-LC3 were

infected overnight (MOI-1:10) with MIP. Images were taken at 63 X magnification. Shown are the merged images of GFP-LC3

(green) and DAPI (blue). ***: P<0.0001.

https://doi.org/10.1371/journal.pone.0189606.g001
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converted to LC3-II. Higher level of LC3-II in MIP- infected RAW 264.7 cells suggested autop-

hagy induction in them.

To confirm the ability of MIP to induce autophagy, infected macrophages were exam-

ined for puncta formation by confocal microscopy. GFP-LC3 expressing cells were used for

this assay. Large and numerous puncta were seen in MIP-infected cells. We observed

markedly enhanced puncta formation in MIP-infected macrophages, compared with unin-

fected cells (Fig 1C). Rapamycin, used as positive control, also induced puncta formation in

macrophages.

Total autophagic flux is maintained in MIP infected macrophages

Under normal circumstances, autophagosomes fuse with lysosomes wherein their contents are

degraded by acid hydrolases. However, certain mycobacterium species including M.tb have

been shown to inhibit this step, resulting in the accumulation of autophagosomes. To examine

the fate of autophagosomes in MIP- infected RAW 264.7 macrophages, these were infected

with MIP for different time duration and their lysates were assessed for LC3-II. Bafilomycin

A1 is a known inhibitor of autophagosome-lysosome fusion and was included as a control.

Persistently higher level of LC3-II was observed in Bafilomycin A1-treated cells. Whereas, in

MIP-infected cells, level of LC3-II was found to decline with time, suggesting autophagosomal

fusion with lysosomes (Fig 2A). To further validate these findings, puncta formation in MIP-

infected macrophages was analysed at different time points. Accumulation of autophagosomes

was observed in Bafilomycin-treated cells, but not in MIP- infected cells (Fig 2B). Rapamycin

was used as an experimental control.

In the last step of autophagy, contents of autophagosomes are degraded by acid hydrolases.

To examine this step in MIP-infected macrophages, self-quenched reporter substrate, DQ Red

BSA was used which becomes fluorescent upon proteolytic cleavage. MIP-infected, DQ BSA-

loaded macrophages were examined for fluorescence signals by confocal microscopy. Higher

levels of DQ Red BSA signals were noted in MIP- infected cells, compared with uninfected

cells (Fig 2C). Percentage of DQ-BSA positive cells were also analysed by flow cytometry. Sig-

nificantly higher percentage of DQ-BSA positive cells were observed in MIP-infected macro-

phages, compared with uninfected cells (Fig 2D).

Next, we examined how MIP and M.tb differ in their autophagy-inducing properties. RAW

264.7 cells were infected with MIP and M.tb and their lysates were probed for LC3-II levels. It

was observed that both MIP and M.tb led to significant expression of LC3-II in macrophages.

These findings were in agreement with previous studies demonstrating the autophagosome

formation in M.tb infected cells (Fig 3A). Consistent with these findings, marked puncta for-

mation was observed in both MIP- and M.tb-infected macrophages (Fig 3B). Analysis of

autophagosome-lysosome fusion using DQ Red BSA dye revealed that autophagosomes in M.

tb-infected cells failed to fuse with lysosomes (Fig 3C).

MIP-induced autophagy promotes maturation of M.tb containing

phagosomes

One of the important survival mechanisms of M.tb within the host is to inhibit phagosome

maturation. Previous studies have shown that induction of autophagy in M.tb infected cells

promotes the phagosome maturation and fusion with lysosome. Given potent autophagy

inducing efficacy of MIP, we examined the effect of MIP-stimulation on phagosomal matu-

ration. For this, MIP- infected cells were immunostained for Rab5 (a marker for early pha-

gosomes) and Rab7 (a marker present on late phagosomes) at different time points after

infection. It was observed that Rab5 to Rab7 conversion took place efficiently in MIP-
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infected macrophages. However, conversion of Rab5 to Rab7 was found to be inhibited in

M.tb-infected cells (Fig 4B and 4C).

To investigate whether MIP co-infection in M.tb-infected cells promotes phagosome matu-

ration, RAW 264.7 cells were first infected with M.tb H37Rv, washed with PBS to remove

extracellular M.tb-H37Rv, and co-infected with MIP. Efficient conversion of Rab5 to Rab7 in

these cells showed that MIP promoted the maturation of M.tb containing phagosomes (Fig

4D). To confirm the role of autophagy in MIP-induced Rab5 to Rab7 conversion in M.tb co-

infected cells; macrophages were pre-treated with 3-Methyl Adenine (3-MA, an autophagy

inhibitor) were infected with M.tb followed by MIP stimulation with subsequent immunos-

taining for Rab5 and Rab7. It was observed that pre-treatment of cells with 3-MA markedly

inhibited the Rab5 conversion to Rab7 (Fig 4E). These results showed that MIP alleviates the

inhibitory effect of M.tb on phagosome maturation through autophagy.

MIP-induced autophagy promotes phagosome-lysosome fusion in M.tb-

infected macrophages

Effect of MIP on M.tb-mediated inhibition of phagosome-lysosome was examined. For this,

RAW 264.7 cells were infected with GFP-expressing M.tb. After treatement with MIP, these

Fig 2. Total autophagic flux is maintained in MIP infected macrophages. RAW 264.7 macrophages were

infected with MIP or treated with Rapamycin (1 μM) / Bafilomycin A1 (100 nM) and lysates were prepared at 4,

8, 12, 16 and 24 hrs and western blot was performed. Bafilomycin A1 was taken as positive control for fusion

inhibition. (A) Western blot depicting the level of LC3-II in MIP infected and Rapamycin / Bafilomycin A1

treated cells. (B) RAW GFP-LC3 cells were treated with Rapamycin / Bafilomycin A1 or infected with MIP for

4, 8, 12, 16 and 24 hrs and imaging was done by confocal microscopy. Shown are the representative merged

images of GFP-LC3 (green) and DAPI (blue) portraying LC3 puncta formation in various groups. (C) RAW

264.7 cells loaded with DQ-BSA were infected with MIP for 4 hrs and imaged at 63 X magnification. Merged

images of DQ-BSA Red (red) and DAPI (blue), depicting the proteolysis of DQ-BSA are shown here. (D)

DQ-BSA-loaded cells were infected with MIP for 4 hrs, and the percentage of DQ-BSA positive cells was

determined by flow cytometry. **: P<0.001.

https://doi.org/10.1371/journal.pone.0189606.g002
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cells were stained with LysoTracker Red and examined for localisation of bacilli within the

lysosomes (co-localised GFP-expressing M.tb and LysoTracker Red would result in yellow

fluorescence signal). In ‘only M.tb’ infected cells, most of the signals observed were green indi-

cating the localization of M.tb within the phagosomes, which did not fuse with lysosomes (Fig

5A). However, marked yellow signals were observed in the ‘M.tb + MIP’ group which sug-

gested fusion of M.tb containing phagosomes with lysosomes in these cells (Fig 5B). Localisa-

tion of GFP-expressing M.tb within lysosomes was quantified and it was found to be 62.8 ± 5%

in ‘M.tb + MIP’ group and 15.1 ± 1.2% in ‘only M.tb’ group (Fig B and C in S1 File).

To confirm the role of autophagy in MIP-mediated phagosome-lysosome fusion in M.tb-

infected RAW 264.7 cells, the above experiments were repeated in the presence of 3-MA.

Treatment of cells with 3-MA resulted in comparable yellow fluorescent signals in ‘only M.tb’

and ‘M.tb + MIP’ group (Fig 5B; Fig B and C in S1 File). These results were further confirmed

by knocking down LC3 by RNA interference (Fig A in S1 File). A significant reduction in yel-

low fluorescent signal was observed in ‘M.tb + MIP’ co-infected macrophages with abrogated

LC3 (% co-localisation dropped to 21.8 ± 3.4% from 61.2 ± 2.8%) (Fig 5C–5E; Fig A and B in

S2 File). These results confirmed that MIP promotes phagosome-lysosome fusion in M.tb-

infected macrophages by inducing autophagy in them.

MIP-induced autophagy enhances M.tb clearance from infected

macrophages

Above findings provide evidence that MIP induced autophagy overcomes the mycobacterial

block of phagosome maturation and targets the M.tb containing phagosomes to the lysosomes.

Fig 3. M.tb induces autophagosome formation but inhibits its fusion with lysosome and proteolysis.

RAW 264.7 macrophages were infected with MIP/ M.tb H37Rv or treated with Bafilomycin A1 (100 nM) and

lysates were prepared at 4 and 24 hrs followed by western blot. (A) Representative blot depicting LC3-II levels

in MIP/ M.tb H37Rv infected and Bafilomycin A1 treated cells. (B) RAW GFP-LC3 cells were treated with

Bafilomycin A1 or infected with MIP / M.tb H37Rv for 4 and 24 hrs and imaged by confocal microscopy.

Shown are the representative merged images of GFP-LC3 (green) and DAPI (blue). (C) RAW 264.7 cells

loaded with DQ-BSA were infected with MIP / M.tb H37Rv for 4 hrs and imaged at 63 X magnification. Shown

here are the merged images of DQ-BSA Red (red) and DAPI (blue), depicting the proteolysis.

https://doi.org/10.1371/journal.pone.0189606.g003
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Fig 4. MIP promotes maturation of M.tb containing phagosomes via autophagy. Immunofluorescence

images of macrophages stained for Rab5 (marker for early phagosomes) and Rab7 (marker present on late

phagosomes). (A) Uninfected RAW 264.7 cells (B) RAW 264.7 macrophages infected with MIP and (C) with

M.tb H37Rv (D) Co-infected with M.tb and MIP (E) treated with 3-MA (5 mM) for 1 hr to inhibit autophagy

followed by M.tb and MIP infection. The cells were fixed and permeabilized followed by staining with Rab5 to

Rab7 at different time points. Rab5 to Rab7 conversion was observed in MIP infected macrophages (4B)

while M.tb was seen to inhibit the conversion process (4C). When M.tb infected cells were re-infected with

MIP, it was seen that MIP promotes maturation of M.tb containing phagosomes (4D). Upon autophagy

inhibition with 3-MA, maturation of M.tb containing phagosomes was inhibited even in the presence of MIP

(4E).

https://doi.org/10.1371/journal.pone.0189606.g004
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Final concluding step was to investigate if MIP induced autophagy can affect M.tb survival in

infected macrophages. The effect of autophagy induction by MIP on M.tb viability was ana-

lysed by direct scoring of colony-forming units of M.tb.

Macrophages were infected with GFP expressing M.tb followed by MIP infection. The cells

were lysed and plated on 7H11-agar plates containing Hygromycin as selection antibiotic for

GFP-expressing M.tb. The number of viable M.tb in the group which was co-infected with

MIP was significantly less as compared to control group (only M.tb infected macrophages).

The percentage of viable M.tb in MIP co-infected macrophages reduced to 31 ± 5.4% from

100% in ‘alone M.tb’ infected group. The reduction in the number of viable M.tb in MIP co-

infected group was comparable to that of Rapamycin treated group (33 ± 2.3%) (Fig 6A).

Next, to confirm the role of MIP induced autophagy in clearance of M.tb, autophagy inhibi-

tor (3-MA) was used along with MIP in M.tb infected macrophages. We found that, inhibition

of autophagy by the pharmacological inhibitor, prevented clearance of M.tb. In this group, the

percentage of viable M.tb increased to 71.6 ± 9.1 from 23.8 ± 6.3 (M.tb + MIP co-infected

group) (Fig 6C).

Fig 5. MIP induced autophagy results in enhanced phago-lysosome fusion in M.tb infected

macrophages. RAW 264.7 cells were co-infected with GFP expressing M.tb and MIP followed by

LysoTracker-Red staining to stain the lysosomes. Slides were prepared and visualised by confocal

microscopy to examine the co-localisation of GFP expressing M.tb within the lysosomes. 50 fields of each

group were examined and green spots (M.tb located outside the lysosomes) and yellow spots (formed by co-

localisation of GFP expressing M.tb with LysoTracker-Red giving a yellow fluorescence) were counted. (A)

Confocal images showing co-localisation of GFP expressing M.tb within the lysosomes in different groups. (B)

Graphical representation of the percentage of GFP expressing M.tb present within the lysosomes. (C)

Representative images depicting the co-localisation of GFP expressing M.tb within the lysosomes of RAW

264.7 cells with basal level of autophagy. (D) Representative images showing the co-localisation of GFP

expressing M.tb within the lysosomes of RAW 264.7 cells in which LC3 was knocked down using RNA

interference technique. (E) Graphical representation of the percentage of GFP expressing M.tb present within

the lysosomes after autophagy abrogation. ***: P<0.0001.

https://doi.org/10.1371/journal.pone.0189606.g005
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To further confirm the role of MIP induced autophagy in M.tb clearance, autophagy was

abrogated using SiRNA against LC3 protein. In the groups where autophagy was inhibited by

loss of LC3 protein, M.tb clearance from the macrophages was significantly reduced even in

the presence of MIP (Fig 6D). In conclusion, these results delineate the underlying mechanism

of MIP immunotherapy in M.tb infected host. MIP induced autophagy could be playing major

role besides other mechanisms (viz. induction of Th1 and Th17 immune response) in reduc-

tion of M.tb load when MIP immunotherapy is given by aerosol route in infected lungs.

Discussion

The host-mycobacterial interaction is a complex phenomenon, which lead to different out-

comes ranging from clearance of bacteria from the host cells to cause latent infection.

Although a multitude of factors are involved, the process of autophagy is widely recognized in

determining the course of infection. Autophagy plays an integral role in both innate and adap-

tive immunity to various pathogens [24]. It is well established that in eukaryotic cells, autop-

hagy is one of the most powerful and efficient ways of elimination of intracellular pathogens,

including M.tb [8,25]. In order to prevent their clearance from the host cells and to establish

persistent infection, these microbes have evolved various strategies to evade the autophagic

machinery of these cells [25–27]. In this study, behaviour of MIP in the context of autophagy

was investigated, which is placed in between the saprophytic and pathogenic mycobacterial

Fig 6. Autophagy induction by MIP enhances clearance of M.tb from infected macrophages. (A) RAW

264.7 macrophages were infected with either GFP expressing M.tb or co-infected with GFP expressing M.tb

and MIP for 4 hrs followed by lysis. 100 μl of lysate from each group was plated in triplicates on 7H11-agar

plates containing Hygromycin. Shown is the mean M.tb CFU count of 4 independent experiments. (B)

Macrophages were infected with either M.tb or co-infected M.tb and MIP for 4, 8, 12, 24 hrs and lysed followed

by plating in triplicates on 7H11-agar plates containing Hygromycin. Shown is the mean M.tb CFU count of 3

independent experiments. (C) RAW macrophages were treated with 3-MA for 1 hr to inhibit autophagy

followed by M.tb and MIP infection. Graph showing CFU count of M.tb upon autophagy inhibition. (D)

Autophagy was abrogated using SiRNA against LC3 and the same assay was performed. It was observed

that when autophagy was abrogated by loss of LC3 protein, survival of M.tb was increased. This concludes

that MIP induced autophagy plays an important role in M.tb clearance. ***: P<0.0001, **: P<0.001.

https://doi.org/10.1371/journal.pone.0189606.g006
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species. MIP possesses a unique immunological significance. Owing to its established immu-

nomodulatory potential in human diseases including TB and leprosy, MIP is treated as the

potential vaccine candidate for both of these diseases. Previously, our group has shown immu-

notherapeutic efficacy of MIP given by aerosol route in M.tb infected animals [16,17]. The

present study was done to gain insight into the mechanisms by which MIP decreases M.tb load

in the infected animals.

Literature suggests that autophagy induction varies with mycobacterial species. Species

including M. smegmatis and M. fortuitum are known to induce high autophagy responses

whereas BCG, M. kanasii, and H37Ra induce low autophagic response in macrophages [20].

M.tb induces significantly high autophagosome formation but inhibits autophagic pathway at

the stage of acidification of autophagosomes [11] and their fusion with lysosomes [28,29]. In

this study, we found that MIP, a mycobacterial species which has been uniquely placed in

between slow and fast growers [21], is a potent inducer of autophagy in macrophages. It was

able to induce significantly high amount of autophagy as well as maintained the autophagic

flux. The autophagy induced was significantly higher as compared to control and comparable

to that induced by Rapamycin (Fig 1A and 1B). Interestingly, it was noticed that M.tb H37Rv

was able to induce autophagy to the same/ greater extent as MIP, but, the fusion of autophago-

somes with the lysosomes was inhibited in M.tb infected macrophages while MIP allowed the

fusion process. This was depicted by the consistent LC3-II level observed at different time

points in MIP infected macrophages while there was accumulation of LC3-II in M.tb infected

macrophages with increasing time (Fig 3A). This observation was consistent with published

reports which suggest that virulent strains of M.tb impair autophagy at the level of autophago-

some-lysosome fusion [30]. Host cells possess degradation mechanisms to antagonize invading

pathogens whereas, virulent bacteria like M.tb modulates these systems to escape degradation

by host cells. In this study, it was observed by DQ-BSA degradation assay that lysosomal prote-

olysis in MIP infected macrophages was significantly higher than M.tb infected cells (Fig 3C).

M.tb promotes its survival in infected host cells by blocking the maturation of the phago-

somes in which it resides; which in turn results in the failure of bacilli to reach lysosomes

[12,31–33]. Reports have suggested that autophagy acts as an immune effector mechanism,

resulting in phagosomal maturation that mediates mycobacteria clearance [13]. Our study

revealed that MIP induced autophagy overcomes the phagosome maturation block imposed

by M.tb (Fig 4). Another crucial observation was that while M.tb failed to reach the lysosomes

in ‘only Mtb’ infected macrophages; whereas, MIP co-infection resulted in significantly

increased fusion of M.tb containing phagosomes with lysosomes. This was illustrated by

increased co-localisation of GFP-expressing M.tb with the lysosomes and this enhanced co-

localisation was attributed to the autophagy induced by MIP in M.tb infected macrophages

(Fig 5). Autophagy is known to activate the host immune effector response against M.tb

infection. M.tb is a successful intracellular pathogen that has evolved successful strategies for

evading the host defenses by arresting phagosome maturation and inhibiting later stages of

autophagic pathway in infected host cells. In this study, we have observed that MIP overcomes

the autophagic pathway inhibition. One of the possible reason by which MIP overcomes this

block might be due to generation of strong Th1 type of response along with higher expression

of IFN-γ, TNF-α in the lungs of M.tb infected animals [17]. Recent studies have provided

insight into the role of these cytokines in autophagy activation, thereby promoting antimyco-

bacterial immune defenses. IFN-γ has been reported to be involved in the autophagic control

of M.tb [34]. Apart from this, Mannose-lipoarabinomannan (LAM) of M.tb is known to cause

phagosome maturation arrest [35]. Parallel studies done in our lab have shown that LAM iso-

lated from MIP possesses immuno-stimulatory properties (data not shown). Therefore, possi-

bly MIP cell wall components including LAM might be contributing towards overcoming the
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phagolysosome fusion block in M.tb and MIP co-infected macrophages. Furthermore, as MIP

does not inhibit phagolysosome fusion; this is an important factor in maintaining the total

autophagic flux in M.tb and MIP co-infected macrophages.

The activation of autophagy pathway, induced by physiological, pharmacological or immu-

nological means, results in the elimination of intracellular M.tb by targeting it to the lysosomes

[13,36]. Our results provide evidence that MIP could efficiently reduce the survival of M.tb

inside the macrophages by inducing autophagy. This was confirmed by using pharmacological

inhibitors of autophagy as well as by LC3 knock down. In autophagy deficient macrophages,

even in the presence of MIP, the survival of M.tb was similar to control group i.e. ‘only M.tb

infected macrophages’ (Fig 6).

This study enhances our understanding of the mechanism behind MIP mediated protection

in M.tb infection. To the best of our knowledge, our work is the first to examine the impact of

MIP infection on autophagic process in macrophages and its role in M.tb clearance. In conclu-

sion, this study provides evidence that MIP induces significant amount of autophagy without

any added influence of inducing agents. The autophagy induced by MIP in macrophages

resulted in clearance of M.tb from the infected cells.

Additional studies to dissect how MIP interacts with the host autophagy machinery, are

needed to be done. Understanding the interactions of MIP within the host cells will allow us to

delineate the molecular pathways involved in MIP induced autophagy.
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S1 File. Fig A: Confirmation of LC3 knock down upon SiRNA transfection in RAW 264.7

macrophages. Macrophages were transfected with two different concentrations of LC3

SiRNA, for 24 hrs and 48 hrs. Density values given at the bottom of the blot shows the fold

change with respect to untransfected control. Fig B: Percentage co-localisation of M.tb

containing phagosomes with lysosomes was enhanced in MIP co-infected macrophages.
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MIP, Mycobacterium indicus pranii; 3-MA, 3-Methyl Adenine. Fig C: Mean percentage ±
SEM of GFP expressing M.tb present within / outside lysosomes. (n = 3).

(TIF)

S2 File. Fig A: Percentage of M.tb co-localisation in MIP co-infected macrophages with or

without autophagy abrogation. Total number of GFP expressing M.tb, present within the

lysosomes were counted and percentage was calculated. Data for one set of experiment is

shown here. Fig B: Mean percentage co-localisation ± SEM of GFP expressing M.tb with

the lysosomes with or without autophagy abrogation. (n = 3) # Control groups with basal

level of autophagy, $ Groups in which autophagy was abrogated using LC3 SiRNA.
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