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Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central
component of the host immune defense against various infections including
Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can
evade the autophagic defense and drive immunometabolic remodeling of host
phagocytes. Co-regulation of the autophagic and metabolic pathways may play a
pivotal role in shaping the innate immune defense and inflammation during Mtb
infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and
mammalian target of rapamycin (mTOR) kinase, function together to control the
autophagy and immunometabolism that coordinate the anti-mycobacterial immune
defense. Here, we discuss our current understanding of the interplay between
autophagy and immunometabolism in terms of combating intracellular Mtb, and how
AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We
describe several autophagy-targeting agents that promote host antimicrobial defenses by
regulating the AMPK-mTOR axis. A better understanding of the crosstalk between
immunometabolism and autophagy, both of which are involved in host defense, is
crucial for the development of innovative targeted therapies for tuberculosis.

Keywords: autophagy, immunometabolism, host defense, mycobacterial infection, AMP-activated protein kinase,
mammalian target of rapamycin
INTRODUCTION

Mycobacterium tuberculosis (Mtb) causes human tuberculosis (TB), which remains a serious
infectious disease worldwide (1). Mtb can counter host defenses by escaping phagolysosomal
fusion, indeed residing within phagosomal structures (2, 3). Autophagy, a lysosomal degradation
system that ensures homeostasis, is particularly sensitive to metabolic stress (4, 5). Autophagy is also
a principal means of autonomous cellular defense, countering the Mtb-induced arrest of
phagosomal maturation (6). Accumulating evidence suggests that immunometabolism is linked
to regulation of the immune defense against pathogenic insults (7–12). Indeed, autophagy and
immunometabolism interact extensively to control infection and inflammation (13, 14). Such
crosstalk may determine the outcome of the innate effector pathways against a variety of infectious
diseases, including TB.
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Two serine/threonine kinases, adenosine 5′-monophosphate
(AMP)-activated protein kinase (AMPK) and mammalian target
of rapamycin (mTOR) kinase, play crucial roles in the
integration of metabolic adaptation, autophagy, and
immunometabolism in immune cells (15–17). The kinases
sense intracellular metabolic status and serve as important
upstream signaling regulators of immune responses, lysosomal
activities, and host defenses during infections (15–17). Recent
studies have highlighted the fact that transcription factor EB
(TFEB) is a key mediator of the AMPK-mTOR axis (18),
activating both autophagy and lysosomal biogenesis to
promote innate immunity (19–21).

In this review, we discuss our current understanding of how
autophagy and immunometabolism have a relationship when
mounting a defense against Mtb infection. We describe recent
advances in our understanding of AMPK-mTOR kinase
signaling and pharmacological modulation of either or both
autophagy and immunometabolism.
ROLE PLAYED BY AUTOPHAGY IN
MYCOBACTERIAL INFECTION

Recent studies have highlighted the fact that a combination of
metabolic, autophagic, and immune cell activities determine the
outcome of Mtb infection (22, 23). Autophagy is a crucial host
defense pathway targeting invasive intracellular pathogens
including Mtb (24–26). In 2004, Deretic et al. found that
interferon (IFN)-g, a cytokine essential for induction of
protective immunity against TB, activated macrophage
autophagy to promote eradication of intracellular Mtb (27).
Since that time, accumulating evidence has shown that many
autophagy-activating pharmacological agents and/or small
molecules trigger autophagy, leading to acidification of
mycobacterial phagosomes by fusion with autophagosomes/
lysosomes to restrict intracellular survival of Mtb (25, 26, 28–30).

During natural infection, Mtb translocation into the cytosol
via ESX-1 triggers xenophagy pathway through p62-, NDP-52 (a
selective autophagic receptor)–, and TBK-1–dependent
pathways (31–33). In addition, the autophagy-related process
LC3-associated phagocytosis (LAP) plays a role in phagosomal
maturation and antimicrobial host defense (34, 35); however,
Mtb CpsA, a LytR-CpsA-Psr (LCP) domain-containing protein,
works to evade LAP during Mtb infection (36). The detailed
mechanisms of several types of autophagy pathways in the
context of mycobacterial infection have been extensively
described elsewhere (25, 26, 28–30). In addition, a discussion
of the Mtb effectors that induce, or allow evasion of, host
xenophagy/LAP is beyond the scope of this review.
OVERVIEW OF IMMUNOMETABOLISM
DURING MYCOBACTERIAL INFECTION

Metabolic reprogramming of innate immune cells is closely
related to various cellular functions, including the production
Frontiers in Immunology | www.frontiersin.org 2
of pro-inflammatory cytokines/chemokines, autophagy
activation, and mounting of antimicrobial responses to Mtb
infection (22, 23, 37). It is generally thought that, upon Mtb
infection, macrophages (the principal phagocytes active during
infection) undergo metabolic reprogramming into M1-type
macrophages in response to Mtb components or via Mtb
phagocytosis. In these cells, pro-inflammatory molecules are
upregulated and glycolysis is predominantly utilized to meet
their bioenergetic and metabolic requirements, while M2-type
macrophages and the non-infected/naïve cells exhibit anti-
inflammatory characteristic and derive their energy from
oxidative phosphorylation and fatty acid b-oxidation (FAO)
(23). However, Mtb is able to perturb the metabolic switch of
phagocytes that reminisce Warburg effect, a bioenergetic shift
utilizing aerobic glycolysis, to facilitate bacterial pathogenesis via
enhancement of intracellular bacterial survival and persistence
(38). To support this, a recent study showed that Mtb infection
restricts glycolysis and interleukin (IL)-1b production by
upregulating miR-21, thereby favoring intracellular Mtb
growth (39). Given the previous reports on how miR-21
inhibits autophagy in a variety of scenarios (40–42), it would
be interesting to explore whether miR-21 suppresses autophagy
to potentiate immunopathogenesis during Mtb infection.
During chronic Mtb infection, the mitochondrial metabolism
of CD8+ T cells becomes defective; mitochondrial dysfunction
increases (37). It remains to be determined whether aerobic
glycolysis is up- or down-regulated during chronic Mtb
infection. Importantly, metformin, an activator of AMPK and
autophagy, improved Mtb-specific CD8+ T cell immunity by
rescuing T cell bioenergetics (37), although autophagy was not
investigated in the context of such metformin-induced
reinvigoration. It would be useful to clarify the function and
mechanism of autophagy in the regulation of immunometabolic
remodeling, and how this impacts host defenses during the
various stages of Mtb infection.

It is also intriguing that Mtb-infected host cells exhibit
different aspects of metabolic shift depending on the virulence
of Mtb strains. A previous study revealed that genes associated
with inflammation and metabolism were downregulated in
virulent H37Rv strain when compared to attenuated H37Ra
strain infection in human alveolar macrophages (43). In other
studies,Mtb infection compromisedmetabolic reprogramming,
while infection with the BCG or dead Mtb upregulated
glycolytic flux in human monocyte-derived macrophages (44).
Multidrug-resistant Mtb strains preferentially induce IFN-b
that limits IL-1b induction, resulting reduced aerobic
glycolysis when compared to drug susceptible Mtb strains
(45). Since infections with live, virulent Mtb decelerate the
metabolic switch shifting to glycolytic pathway of host cells,
the future studies unveiling the molecular mechanisms
controlled by mTOR and/or AMPK, which are master
regulators of immunometabolism, in terms of virulence of
Mtb strains will accelerate the development of anti-
mycobacterial therapeutics.

Mtb modulates (interferes with) host cell lipid metabolism
during infection. Mtb induces numerous proteins involved in
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FAO; the lipids yield energy and act as building blocks for
membrane synthesis (46). It remains to be determined whether
FAOmay suppress the host defense againstMtb infection. Either
FAO blockade or a deficiency of the mitochondrial fatty acid
transporter carnitine palmitoyltransferase 2 reduces the burden
ofMtb both in vitro and in vivo. Mechanistically, FAO inhibition
enhances mitochondrial reactive oxygen species (mitoROS)
production, promoting NADPH oxidase activity and
xenophagy in macrophages infected with Mtb (47). The
activation of the peroxisome proliferator-activated receptor
(PPAR)-a enhances an anti-mycobacterial immune defense by
promoting lipid catabolism, and autophagy via TFEB (48).
Although PPAR-a activation promotes the transcriptional
activation of genes involved in FAO in macrophages (48), it
should be clarified whether PPAR-a–mediated FAO drives anti-
mycobacterial effects. Given the findings that blockade of FAO
contributes to the antimicrobial host defense (47), future studies
are needed to elucidate how the lipid metabolic reprogramming
is linked to host autophagy/lipophagy to further regulate host
defense against Mtb infection.

Recent studies showed that de novo fatty acid synthesis (FAS)
is crucial in terms of the T cell immune defense during Mtb
Frontiers in Immunology | www.frontiersin.org 3
infection, whereas FAS does not affect the innate immune
responses (49). An elevated level of oxidized low-density
lipoprotein (oxLDL) promotes macrophage (lysosomal)
cholesterol accumulation, which leads to lysosomal
dysfunction, thus impairing the control of intracellular Mtb
(50). These data may explain the link between diabetes
mellitus (DM) and TB through oxLDL (50). DM patients
usually exhibit elevated oxLDL levels and are susceptible to TB,
presumably and partly due to lysosomal dysfunction (50). In
accordance with these findings, simvastatin, which reduces
plasma cholesterol levels, shows protective functions against
Mtb infection in several different ways (51). It inhibits
intracellular Mtb growth in human peripheral blood
mononuclear cells, increases the proportion of natural killer T
cells, promotes production of IL-1b and IL-12p70, and activates
monocyte autophagy (51). In addition, statin, the cholesterol-
lowering drug, inhibits intracellular Mtb growth in human
macrophages through activation of autophagy and phagosomal
maturation (52). Although the precise mechanisms that induce
autophagy by statins have not been fully elucidated, these
findings strongly suggest that inhibitors of cholesterol synthesis
and/or oxLDLs may have potential therapeutic value for TB and
FIGURE 1 | Immunometabolic pathway during mycobacterial infection. Mtb intervene in host cell lipid metabolism for its own intracellular survival. During the
metabolic reprogramming process, innate immune responses are induced to regulate the host defense system. For example, Mtb infection in macrophages restricts
aerobic glycolysis and IL-1b production through upregulation of miR-21. Moreover, Mtb utilizes lipid synthesis and FAO process to obtain energy and building blocks
for membrane synthesis. Inhibition of FAO leads to the enhancement of mitoROS, which promote xenophagy in macrophages infected with Mtb. However, there are
also controversial results that FAO is promoted by PPAR-a, which mediates anti-mycobacterial immune defense through lysosomal biogenesis and autophagy
activation, via TFEB. The elevation of oxLDL promotes the macrophage lysosomal dysfunction, which contributes to impaired control of intracellular Mtb and host
defense. Simvastatin, an oral HMG-CoA reductase inhibitor, decreases plasma cholesterol levels and exhibits host protection against Mtb through autophagy
induction in monocytes.
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DM comorbidity. Figure 1 summarizes immunometabolic
regulation in macrophages during infection with Mtb, which
further modulate host immunometabolism.
AMPK-MTOR AXIS CO-REGULATES
AUTOPHAGY AND IMMUNOMETABOLISM

Both the AMPK and mTOR kinases are key metabolic and
autophagic sensors. AMPK regulates energy metabolism and
mitochondrial function (53, 54) as well as numerous biological
pathways including autophagy, inflammation, and the host
defense (17, 55–57). The AMPK pathway primarily activates
mitochondrial metabolism, oxidative phosphorylation, and
lipolysis and attenuates FAS and cholesterol biosynthesis (58,
59). AMPK enhances autophagy via ULK1 complex activation
and mTOR complex 1 (mTORC1) inhibition (60, 61). By
contrast, mTOR kinases (mTORC1 and mTORC2) suppress
autophagy when energy levels are high (60). Both mTORC1
and AMPK function to integrate metabolic and autophagic
signaling (60, 62), and are thus primary therapeutic targets for
Frontiers in Immunology | www.frontiersin.org 4
pulmonary TB (63, 64). The schematic overview of AMPK-
mTOR axis regulating autophagy and immunometabolism is
summarized in Figure 2.
AMPK REGULATES AUTOPHAGY AND
METABOLISM OF THE INNATE HOST
DEFENSE SYSTEM

AMPK: A Linker of Autophagy
and Immunometabolism
AMPK activation by 5-aminoimidazole-4-carboxamide
ribonucleotide (AICAR) or metformin counters Mtb infection (65–
67). However, our understanding of the immunometabolic
regulation of AMPK-mediated autophagic activators is incomplete
in the contextwith host defense againstMtb infection. Recent studies
have shown that certainmetabolites stimulate the innate host defense
via AMPK activation. In Mtb-infected Kupffer cells, both ornithine
and imidazole inhibited intracellular Mtb growth; ornithine, but not
imidazole, enhanced autophagy via AMPK activation (68). Future
studies will identify how AMPK-activating metabolites restrict Mtb
FIGURE 2 | AMPK-mTOR axis in the co-regulation of autophagy and immunometabolism. AMPK pathway primarily activates mitochondrial metabolism and
oxidative phosphorylation, and induces autophagy through the activation of ULK1 and inhibition of mTOR pathway. AMPK activation by AICAR, metformin, ornithine
or GABA exhibits antimicrobial effects against Mtb infection in macrophages. ESRRA is one of the AMPK-downstream signaling molecule which functions as an
important transcription factor of ATGs and energy metabolism. Upon lysosomal damage, cytosolic lectin LGALS9 dissociates deubiquitinase USP9X from TAK1 and
promotes K63-mediated ubiquitination of TAK1, thus leading to the activation of AMPK pathway. Whereas, the mTOR pathway activation promotes aerobic
glycolysis and contributes Mtb to escape from autophagic degradation in host cells by blocking ULK1 complex formation. Meanwhile, mTOR signaling is closely
related to HIF-1a expression in the regulation of immunometabolism during infection and aerobic glycolysis in both normal and cancer cells. Several anticancer
drugs, such as ibrutinib and everolimus, induce autophagy and repress Mtb growth via inhibition of mTOR pathway in macrophages. In addition, succinate, an
intermediate of TCA cycle, stimulates IL-1b production via HIF-1a activation in LPS-exposed macrophages.
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growth. Themetabolite and neurotransmitter gamma-aminobutyric
acid (GABA) also activates AMPK, contributing to peripheral
GABAergic host defenses by enhancing autophagy and
phagosomal maturation during Mtb infection (69). GABA-
mediated antibacterial autophagy requires the intracellular calcium
influx that triggers AMPK signaling and transcriptional activation of
autophagy-related genes (ATGs) including GABA type A receptor-
associated protein-like 1 (GABARAPL1; an Atg8 homolog) (69).

AMPK and hypoxia-inducible factor (HIF)-1a are master
regulators in the context of cancer-related aerobic glycolysis and
oxidative phosphorylation.While AMPK negatively regulates both
aerobic glycolysis and cellular biosynthesis, HIF-1a favors the
growth advantage of cancer cells with reduced AMPK signaling
(70). During Mtb infection, HIF-1a induces metabolic shift to
aerobic glycolysis that amplifies macrophage activation and
essentially mediates IFN-g–dependent control of intracellular Mtb
growth (71, 72). Future studies are recommended how the balance
of AMPK signaling and HIF-1a pathway interplay to regulate host
defense, and coordinates immunometabolismand autophagy in the
context of Mtb infection.

Downstream Signals of the
AMPK Pathway
Although the cited studies strongly suggest that AMPK pathway
contributes to antimicrobial host defenses by activating autophagy,
we do not yet fully understand how AMPK connects with
downstream signaling molecules when co-regulating autophagy
and immunometabolism. Recent studies found that estrogen-
related receptor a (ESRRA) served as an AMPK-downstream
signaling molecule, regulating transcriptional and post-
translational modification of autophagy proteins (73). The
transcription factor ESRRA affects mitochondrial biogenesis,
energy metabolism (74), and immunometabolic remodeling
(toward oxidative phosphorylation) during the development of
innate immune responses (75). It would be interesting to explore
whether ESRRA regulation of immunometabolism is linked to
xenophagy during Mtb infection. Moreover, glucocorticoid
signaling can also activate AMPK downstream pathways, which
result in the induction of autophagy/mitophagy in skeletal muscle
cells (76). Given the findings that GLP-1-directed glucocorticoid
action reverses metabolic inflammation and obesity in obese mice
(77), it would be interesting to investigate whether glucocorticoid
signaling links host autophagy to metabolic reprogramming and
how it regulates host defense against Mtb infection. Future
mechanistic studies will close the gaps in our understanding of
the mechanisms underlying AMPK-mediated orchestration of
autophagy, immunometabolism, and host defense. These efforts
will facilitate the development of novel therapeutics for TB through
targeting AMPK pathway.

Upstream Signals of the AMPK Pathway
How is AMPK activated by Mtb infection? Recent studies have
provided some answers. Several stimuli (including Mtb
infection) trigger lysosomal membrane breaches detected by
the cytosolic lectin LGALS9/galectin-9 (78). Lysosomal damage
signals transduced by LGALS9 trigger dissociation of USP9X
Frontiers in Immunology | www.frontiersin.org 5
from the TAK1 complex, thus promoting K63-mediated
ubiquitination of TAK1 (78). TAK1 (an upstream kinase)
activates AMPK, autophagy, and antimicrobial responses to
Mtb infection (79). Thus, the galectin and ubiquitin systems
co-operate to activate AMPK-induced autophagy after lysosomal
damage (79, 80). The cited studies did not explore the effects of
LGALS9 on immunometabolism during lysosomal damage, but
recent works on tumor-associated macrophages found that
LGALS9 interacts with CD206 on M2 macrophages, driving
angiogenesis and the production of chemokines including
monocyte chemoattractant protein (MCP)-1 (81). It will be
interesting to investigate immunometabolic regulation of
LGALS9-AMPK pathways in the context of Mtb infection.
THE MTOR PATHWAY LINKS
AUTOPHAGY AND IMMUNOMETABOLISM

Earlier studies found that Mtb and components thereof activate
mTOR and Akt pathway signaling by host phagocytes (65, 82, 83).
The Akt/mTOR pathway triggers gene expression and enzyme
activity, promoting aerobic glycolysis in both normal and cancer
cells (84, 85). Akt/mTOR signaling is closely linked to HIF-1a
expression in the context of immunometabolic regulation during
infection (86), and cancer-related aerobic glycolysis and tumor
progression (87). In activated CD4+ T cells, pro-inflammatory
tumor necrosis factor (TNF)-a production is mediated through
glycolytic activity via the mTOR and HIF-1a pathways (88). In
lipopolysaccharide (LPS)-exposed macrophages, the tricarboxylic
acid (TCA) cycle intermediate succinate stimulates IL-1b
production via HIF-1a activation (89). Recent studies highlight
that HIF-1a is required for canonical and noncanonical autophagy
to impact antifungal immunity (90, 91). However, it remains
elucidated whether Akt/mTOR/HIF-1a signaling coordinates
aerobic glycolysis and autophagy pathway to regulate host
defense against Mtb infection.

The ability of Mtb to activate the Akt/mTOR pathway blocks
ULK1 complex formation by phosphorylating it, which is one of
the main components required for the autophagosome
generation, allowing the bacterium to escape autophagic
degradation by host cells (64). Several drugs/agents inhibit
mTOR pathway activation, thereby promoting antimicrobial
effects during Mtb infection. For example, the anti-chronic
lymphocytic leukemia drug ibrutinib inhibited Mtb growth
both in vitro and in vivo, activating autophagy via inhibition of
the BTK/Akt/mTOR pathway (92). The effects of ibrutinib on
M2 polarization and immunosuppression of nurse-like cells have
been described; these cells are a subset of tumor-associated
macrophages found in patients with chronic lymphocytic
leukemia (93). However, it is not known whether ibrutinib-
mediated autophagy activation changes the energy metabolism
of host macrophages. The anticancer drug everolimus inhibits
mTOR, activates autophagy, and exhibits antimicrobial effects
during Mtb infection (64, 94). It is well known that everolimus
shifts macrophage polarization toward the M2 phenotype and
November 2020 | Volume 11 | Article 603951
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downregulates the production of pro-inflammatory cytokines,
thus improving the experimental outcomes of autoimmune
neuritis (95). These data strongly suggest that mTOR
inhibition activates antibacterial autophagy and anti-
inflammatory M2-type macrophages. Indeed, mitochondrial
oxidative phosphorylation and FAO are closely related to the
shift to M2-like macrophages (96, 97). Thus, the mTOR-HIF-1a-
mediated interplay between autophagy and immunometabolism
is highly complex and require extensive molecular dissection to
delineate host defensive mechanisms. An open question is
whether mTOR/HIF-1a axis is a common defensive pathway
through promoting glycolysis, or plays a unique protective or
detrimental function directed at distinct stages of Mtb infection.
TFEB: A POTENTIAL COORDINATOR OF
AUTOPHAGY AND METABOLISM DURING
INFECTION

TFEB is a member of the MiT-TFE family of basic helix-loop-
helix leucine-zipper transcription factors and a key regulator of
lysosome biogenesis and autophagy (21, 98). Nuclear
translocation of TFEB is required for the transcriptional
activation of genes encoding autophagosomes and lysosomes;
such translocation is regulated by mTOR-dependent
phosphorylation of TFEB on Ser(211) (99). Emerging evidence
suggests that TFEB is involved in mitochondrial quality control,
maintaining metabolic homeostasis and mitochondrial
biogenesis (100, 101). TFEB is also required for the expression
of genes of mitochondrial biogenesis, FAO, and oxidative
phosphorylation (102).

Several studies have suggested that the TFEB signaling axis is a
promising target for autophagy-based host-directed therapeutics
against Mtb. Activation of the adopted orphan nuclear receptor
subfamily 1, groupD,member 1 (NR1D1) by the agonist GSK4112
enhanced the autophagosomal and antimycobacterial functions of
macrophages viaTFEB activation (103). Recent studies have shown
that SIRT3 is essential for development of anti-mycobacterial
responses; SIRT3 activates PPAR-a–mediated TFEB nuclear
Frontiers in Immunology | www.frontiersin.org 6
translocation (104). Indeed, TFEB transcriptional activity is
directly regulated by PPAR-a, a nuclear receptor involved in the
regulationofmetabolism, inflammation, andhost defenses (48, 105,
106). However, the cited studies did not directly examine the role of
TFEB in the regulation of immunometabolism in the context of
mycobacterial infection. NR1D1 is a key integrator of metabolism
with the circadian clock and inhibits pro-inflammatory M1
macrophages and NLRP3 inflammasome activation (107). SIRT3
and PPAR-a play crucial roles in mitochondrial quality control,
oxidativephosphorylation, andFAOinvariouscell types (108, 109).
Thus, TFEB, and its upstream signalingmolecules, may orchestrate
immunometabolism, autophagy, and the inflammatory response
during Mtb infection.

A recent study found that immunity-related GTPase M
(IRGM) and GABARAP interacted with TFEB to affect the
mTOR pathway, further activating lysosomal biogenesis (110).
Thus, a complicated upstream signaling network involving
ATG8 proteins, IRGM, and tripartite motif family (TRIM) may
perturb mTOR signaling to enhance TFEB nuclear translocation,
activate lysosomal biogenesis, and trigger autophagic maturation
during Mtb infection. Indeed, AMPK-mediated, lysosomal
catabolic activity is mediated by MCOLN1/mucolipin 1, the
lysosomal calcium channel (111), and TFEB (18, 112). Notably,
the MCOLN1-TFEB pathway is essential for the host defense
mediated by the disaccharide trehalose during co-infection with
TB and human immunodeficiency virus (HIV) (113). Trehalose
eliminates the HIV-induced impairment of xenophagic flux by
enhancing nuclear translocation and activation of TFEB and
MCOLN1/mucolipin 1 (113). As trehalose-mediated TFEB
activation usefully inhibits atherogenic lipid accumulation by
enhancing lysosomal autophagy (114, 115), it is possible that
TFEB-mediated regulation of lipid metabolism is associated with
the trehalose-induced antimicrobial activities in macrophages
against Mtb (either alone or during co-infection with HIV).
Future studies should address the immunometabolic regulation
of TFEB in terms of activation of lysosomal biogenesis during
Mtb infection. The pharamacological agents that facilitate host
defense against Mtb infection discussed in the paper are
summarized in Table 1.
TABLE 1 | Pharmacological agents that facilitate host defense against Mtb infection by regulating autophagy and immunometabolism.

Drugs/agents Mechanisms Effects References

Simvastatin HMG-CoA reductase
inhibition

Inhibits plasma cholesterol levels and intracellular Mtb growth; Increases natural killer T cells, production
of IL-1b and IL-12p70, and monocyte autophagy

(51)

AICAR AMPK activation Induces autophagy, phagosomal maturation, and antimicrobial responses against Mtb infection (65)
Metformin AMPK activation Inhibits intracellular Mtb growth and TB immunopathology; Enhances efficacy of conventional anti-TB

drugs
(66, 67)

Ornithine AMPK activation Inhibits intracellular Mtb growth through AMPK-mediated autophagy (68)
GABA AMPK activation Enhances autophagy and phagosomal maturation during Mtb infection (69)
Ibrutinib BTK/Akt/mTOR pathway

inhibition
Activates autophagy via inhibition of the BTK/Akt/mTOR pathway; Inhibits Mtb growth both in vitro and
in vivo

(92)

Everolimus mTOR inhibition Inhibits mTOR pathway; Activates autophagy and antimicrobial effects during Mtb infection (64, 94)
GSK4112 TFEB activation via

NR1D1 stimulation
Enhances autophagosomal and antimycobacterial functions via TFEB activation (103)

Trehalose MCOLN1-TFEB pathway
activation

Kills intracellular Mtb or NTMs by activating TFEB nuclear translocation via MCOLN1 (113)
November 2020 | Volume 11 | A
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gamma-aminobutyric acid; BTK, Bruton’s tyrosine kinase; mTOR, mammalian target of rapamycin; TFEB, transcription factor EB; MCOLN1, mucolipin 1.
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CONCLUSION

Mtb infection triggers immunometabolic remodeling of host cells.
Activation of autophagy in response to metabolic and infectious
stresses further shapes immunometabolism; this determines the
outcome of the host defense. We have begun to understand how
autophagy and immunometabolism interact within various cell
types during Mtb infection. During Mtb infection, macrophage
metabolic shift to aerobic glycolysis appears to contribute
antimicrobial host defense through activation of M1 macrophage-
mediated inflammation. However, Mtb has evolved several
strategies to evade from host glycolytic flux. Modulation of lipid
metabolism may activate or inhibit host antimicrobial defense in
different contexts, via connectionswith autophagy.Coordinationof
autophagy and immunometabolic remodeling may play important
roles in terms of both the effector mechanisms in play and
minimization of pathological inflammation during TB infection.
However, the regulators of, and mechanisms whereby, autophagy
and immunometabolism combine to mount an efficient defense
duringMtb infection remain poorly known. In addition, the in vivo
relationships between autophagy and immunometabolism are
difficult to predict from in vitro data on individual cell types.

AMPK activation and mTOR inhibition may be of
therapeutic utility against human TB. The AMPK signaling is
well-known for its activity to enhance antibacterial autophagy
against Mtb infection. However, it also promotes mitochondrial
function and oxidative phosphorylation, but not aerobic
glycolysis, and shifts macrophages toward the M2 type,
potentially supporting microbial growth within host cells. In
addition, mTOR-HIF-a pathway activation promotes aerobic
glycolysis and inflammation, inducing granuloma formation and
the host innate defense early during infection. However,
uncontrolled activation of inflammation may trigger extensive
immunopathology and neutrophil-mediated inflammation,
negatively influencing the TB-infected host. Thus, the balanced
activation of AMPK-mTOR axis may contribute to the control
and/or clearance of intracellular Mtb and promotes host
protective immune responses during infection.
Frontiers in Immunology | www.frontiersin.org 7
Activation of TFEB, a key transcriptional factor of autophagy/
lysosomal biogenesis, is regulated by the AMPK-mTOR axis. Future
studies are warranted to elucidate whether and how TFEB-
mediated lipid metabolism and autophagy activation are
interconnected together in the context of host defense against
Mtb infection. Although much remains to be learned about the
interplay between autophagy and immunometabolism by which
TFEBmediates its antimicrobial effects, its potential as a therapeutic
target against TB will fuel further investigations into its
coordination mechanisms. Our extensive knowledge of linking
autophagy with immunometabolism that drive protective anti-TB
immunity will help further development of novel host-directed
therapeutics against Mtb infection.
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