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Abstract
Molecular evolutionary analyses require computationally intensive steps such as aligning multiple sequences, optimizing
substitution models, inferring evolutionary trees, testing phylogenies by bootstrap analysis, and estimating divergence
times. With the rise of large genomic data sets, phylogenomics is imposing a big carbon footprint on the environment
with consequences for the planet’s health. Electronic waste and energy usage are large environmental issues. Fortunately,
innovative methods and heuristics are available to shrink the carbon footprint, presenting researchers with opportunities
to lower the environmental costs and greener evolutionary computing. Green computing will also enable greater scien-
tific rigor and encourage broader participation in big data analytics.
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Many biological disciplines apply computational approaches
to investigate evolutionary questions involving the origins of
genes, evolutionary relationships of organisms, positive and
negative selection, the evolution of biodiversity, and geno-
type–phenotype connections across the tree of life. The im-
portance of these questions is reflected by the escalating use
of software for molecular evolutionary analyses (fig. 1).
Paradoxically, the means by which we explore the tree of
life actually negatively impact that evolving tree of life, be-
cause computing has environmental costs. A computers’ en-
ergy usage manifests into carbon dioxide emissions. Many
scientists are seriously assessing the environmental cost of
data analysis and the carbon footprint left by molecular evo-
lutionary studies (Tao et al. 2019; Kumar and Sharma 2021;
�Alvarez-Carretero et al. 2022; Grealey et al. 2022). In particular,
Grealey et al. (2022) have recently assessed the energy utili-
zation and the associated carbon footprint of bioinformatics,
including phylogenetic analysis and genome assembly.

Strategies are being developed to achieve energy savings in
a quest for greener computing in the sciences and a healthier
global ecology with health benefits to the general public
(Jones 2018; Portegies Zwart 2020; Stevens et al. 2020;
Strubell et al. 2020; Bender et al. 2021; Lannelongue,
Grealey, Bateman, et al. 2021; Grealey et al. 2022). For exam-
ple, cloud computing avoids idle time, as partial CPU and
memory use in standalone computers wastes energy (Shehabi
et al. 2016; Jones 2018). However, speeding up research com-
puting through faster processors and parallelization demands
extra energy and, thus, emits more greenhouse gases. Using
idle GPUs to assist CPUs can also result in greener computing,
but this approach depends on appropriate software imple-
mentations (Grealey et al. 2022). Interestingly, energy produc-
tion has a much smaller carbon footprint in some countries
(e.g., Norway and Switzerland), making them better locations

for cloud computing (Lannelongue, Grealey, and Inouye
2021).

Substantial reduction in energy costs can also be achieved
by complementary means, which is the focus of this perspec-
tive. Here, I highlight conceptual and technical advances that
can organically reduce computational time and memory of
phylogenomics. I suggest that researchers choose methods,
algorithms, and software practices that demand fewer com-
pute cycles and less computer memory. These choices will
diminish the carbon footprint of computational molecular
evolution and be aligned with ecologically sound bioinfor-
matic practices. These and future developments of
resource-thrifty and accurate methods will amplify the im-
pact of general strategies for greener computing.

Carbon Footprints of Phylogenetic and
Phylogenomic Analyses
A standard protocol in molecular phylogeny is first to assem-
ble a set of sequences and subject them to alignment proce-
dures to establish base-by-base homology across sequences
from different species and genes (Kumar and Filipski 2007).
The resulting multiple sequence alignments (MSAs) become
ready for molecular phylogenetics after proper postprocess-
ing, including manual curation (Yang and Rannala 2012; Kapli
et al. 2020).

Selecting the Optimal Model
In analyzing MSA, the usual first step is to estimate the sub-
stitution model that best describes the overall pattern of base
changes. This analysis requires evaluating several models of
nucleotide (or amino acid) substitution as well as models of
rate variation across sites. Maximum likelihood (ML) tests of
several nested and non-nested models under the Bayesian
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information criterion are frequently used. Model selection has
a substantial carbon footprint for phylogenomic data sets.

For example, an MSA of 1.3 million base pairs from 37
mammalian species took 106 CPU hours and 9.3 gigabytes
(GB) of peak memory in ModelFinder to select the optimal
model (Kalyaanamoorthy et al. 2017). According to the Green
Algorithms (GA) resource (Lannelongue, Grealey, and Inouye
2021), this analysis would require 1.6 kilowatt-hours (kWh) of
energy and have a carbon footprint of 0.62 kgCO2e. GA sug-
gests that a tree will take 20 days to scrub the environment of
the greenhouse gasses emitted (table 1a1)! We can save more
than 90% of the energy and, thus, emit less than 10% of the
greenhouse gas by usingModelTest-NG (Darriba et al. 2020)
and jModelTest (Posada 2008) that will produce similar
results (table 1a). Recent machine-learning approaches also
promise to provide green alternatives (Abadi et al. 2020;
Burgstaller-Muehlbacher et al. 2021). Also, a machine-
learning method for detecting autocorrelated evolutionary
rates in a phylogeny (CorrTest; Tao et al. 2019) requires a
small fraction of the energy used by a comparable Bayes fac-
tor analysis (table 1b).

Building a Molecular Phylogeny
Using an MSA and the best-fit substitution model, we can
make a phylogeny representing the evolutionary histories of
genes and species. ML and minimum evolution (ME) are two
widely used model-based optimality principles for recon-
structing phylogenetic trees (Nei and Kumar 2000). The
neighbor-joining method (Saitou and Nei 1987), based on
the ME principle and used in thousands of studies, has a
negligible carbon footprint (table 1c3) compared with pop-
ular heuristic searches under the ML optimality criterion (ta-
ble 1c1). Another approach that combines optimality criteria
(FastTree) has an intermediate environmental impact
(table 1c2). The accuracy of phylogenies produced by

different techniques is comparable for many applications
(Rosenberg and Kumar 2001; Price et al. 2010; Yoshida and
Nei 2016), so researchers have many excellent options for
reducing the environmental impact of their analyses.

Confidence Limits on Inferred Phylogenetic Groupings
Statistical evaluation of the robustness of inferred phyloge-
netic relationships is essential in evolutionary biology.
Felsenstein’s (1985) bootstrap resampling has been the pre-
ferred approach, but it is computationally intensive, requiring
the inference of hundreds of phylogenetic trees for pseudo-
MSAs generated by sampling sites with replacement from the
full data set. This analysis has a rather large carbon footprint
(table 1d1), as does its Bayesian alternative that produces
posterior probabilities for inferred evolutionary relationships
(table 1d5). Many approximate energy-efficient methods are
now available for phylogenomic data sets, including the tech-
nique Little Bootstraps (Sharma and Kumar 2021) for long
sequences, and ultrafast bootstrapping (Minh et al. 2013) and
Rapid bootstrapping (Stamatakis et al. 2008) for data sets
containing large numbers of sequences. These approximate
methods have much smaller carbon footprints than standard
approaches (table 1d). Combining different techniques
(Sharma and Kumar 2021) can save more than 99% in
time, memory, and energy in testing the robustness of in-
ferred phylogenies (table 1d4).

From Phylogenies to Timetrees
Another common phylogenetic analysis is the estimation of
divergence times corresponding to speciations, gene duplica-
tions, and the evolution of new strains. Relaxed clock meth-
ods have revolutionized this practice (Kumar and Hedges
2016; Tao et al. 2020). Bayesian and RelTime methods pro-
duce estimates of similar quality (e.g., Barba-Montoya et al.
2020; Mello et al. 2021), but their energy requirements are
dramatically different (table 1e). There is also a large differ-
ence in the carbon footprints imposed by slow and fast
Bayesian implementations (table 1e). Consequently, research-
ers have a large spectrum of more environmentally friendly
alternatives for molecular dating methods.

Green Software Implementations
Ultimately, efficient software implementation is the key to
realizing the potential of all conceptional, methodological,
and algorithmic innovations. The software design and re-
source utilization dictate energy consumption, so implemen-
tations that use less computer memory and time have a lower
carbon footprint. Availability of software versions that can
run on the cloud will also reduce carbon footprints.
Another emerging area of improvement lies in creating stop-
ping rules that can detect when further computing will not
change the outcome significantly. For example, adaptive rules
are being developed to automatically determine the number
of bootstrap replicates needed for reliable confidence limits
(Stamatakis 2014; Sharma and Kumar 2021). In the future,
smarter software will avoid overcomputing, decreasing the
carbon footprints of big data analyses.

FIG. 1. The use of computational methods in molecular evolution has
been increasing quickly, as seen in the annual counts of new research
articles citing the use of major software packages for molecular evo-
lutionary and phylogenetic analyses. Citation counts for software
packages were obtained from Google Scholar (last accessed January
25, 2022) for 2005–2020. See supplementary material, Supplementary
Material online for more details on software versions included.
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Benefits beyond Environmental
Sustainability
Computationally efficient analyses will also enhance the
rigor of scientific research, reducing the resources required
to assess the robustness of inferences to subsetting of data,
choice of substitution models and strategies, and combin-
ing multigene data sets. Computationally efficient and eco-
nomical computing will encourage researchers to evaluate
the reproducibility of published results. The currently high
computational demands of reproducibility studies put
efforts to reproduce research results out of the reach of
researchers lacking access to high-performance computing
infrastructure.

Greener computing is also a key to addressing equity,
diversity, and sustainability in scientific research and edu-
cation. Green computing requires fewer compute cycles
and less computer memory. It reduces the expense of com-
putational hardware and the cost of on-demand calcula-
tions. Economical computing makes computational
research accessible to a broader community, as the re-
search funding for scientific investigations is limited.
Greener computing, therefore, will uniquely address eco-
nomic disparities among researchers due to their local
constraints. Greener alternatives for molecular phyloge-
netic analysis will increase participation by researchers
worldwide in molecular evolutionary research and the ge-
nomic revolution in biology.

Concluding Remarks
In the Anthropocene, where massive planetary changes are
taking place because of human activity, computing is often
thought of as a “clean” practice, when in fact, it can be quite
the opposite. All branches of biology need to re-evaluate their
practices in keeping with the underlying goal of studying life
in the first place. For computational analyses, with the routine
assembly of big data sets, analytical practices of the past ham-
per research by the need for excessive computing time and
memory. These obstacles hinder both rigorous scientific
investigations and wider participation in molecular phyloge-
netics. Large carbon footprints of many currently popular
approaches have negative impacts on the environment, hu-
man health, and the sustainability of scientific computing.
Fortunately, many accurate and resource-thrifty methods
and algorithms are available for molecular phylogenetics.
Applying these methods synergistically with computer hard-
ware optimizations will help us achieve greater scientific rigor
and broader participation while minimizing financial and en-
vironmental costs. I see a bright future for green computing in
which conceptual and technical advances will further dimin-
ish the carbon footprints of increasingly complex phyloge-
nomic analyses.

Supplementary Material
Supplementary information is available at Molecular Biology
and Evolution online.

Table 1. Carbon Footprints (gram CO2e) of Molecular Phylogenetic Analyses and Software for an MSA of 37 Mammalian Species and 1.3 Million
Sites.

Computer Resources Environmental Impact

Time Memory Energy C-footprint Trees
Function Method/Tool (h) (peak, MB) (kWh) (g) (days)

(a) Optimal substitution model selection
a1. ModelFinder 106.0 9,300 1.64 617 20.1
a2. jModelTest 8.8 3,700 0.12 44 1.5
a3. ModelTest-NG 8.0 3,700 0.11 41 1.2

(b) Clock rate model selection
b1. Bayes factor 2,500.0 46,000 51.00 19,220 540.0
b2. CorrTest 0.2 4,000 <0.01 1 <0.1

(c) Phylogeny inference
c1. Maximum likelihood 8.1 4,000 0.11 41 1.2
c2. FastTree 0.7 700 0.01 3 0.1
c3. Neighbor-joining 0.1 8 <0.01 <1 <0.1

(d) Statistical tests of phylogenies (ML)
d1. Standard bootstrap 980.0 3,100 13.00 4,850 159.0
d2. Rapid bootstrap 98.0 3,700 1.00 493 16.2
d3. Little bootstrap 18.9 100 0.23 86 2.7
d4. Little1ultrafast-

bootstraps
0.9 200 0.01 4 0.1

d5. Bayesian 857.9 22,000 17.00 6,490 210.0
(e) Relaxed clock dating

e1. Bayesian (slow) 2,309.5 23,000 46.00 17,460 570.0
e3. Bayesian (fast) 29.5 909 0.36 135 4.5
e3. RelTime 0.1 8 <0.01 <1 <0.1

NOTE.—The C-footprint (Carbon footprint) is the amount (g) of CO2 released in the production of energy (kilowatt-hours, kWh) needed to power computers in the USA,
estimated using the Green Algorithms website (Lannelongue, Grealey, and Inouye 2021). Tree days are calculated based on the information that a mature tree can scrub�917 g
of CO2e per day (Grealey et al. 2022). The Supplementary Material online provides details on software used and the options applied.
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