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Schizophrenia

Chronic mental diseases (CMD) such as schizophrenia or 
the recurrent affective disorders are the most prevalent brain 
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Chronic mental diseases (CMD) like the schizophrenias are 
progressive diseases of heterogenous but poorly understood 
biological origin. An imbalance in proteostasis is a hallmark 
of dysfunctional neurons, leading to impaired clearance and 
abnormal deposition of protein aggregates. Thus, it can be 
hypothesized that unbalanced proteostasis in such neurons 
may also lead to protein aggregates in schizophrenia. These 
protein aggregates, however, would be more subtle then in 
the classical neurodegenerative diseases and as such have 
not yet been detected. The DISC1 (Disrupted-in-schizophrenia 
1) gene is considered among the most promising candidate 
genes for CMD having been identified as linked to CMD in a 
Scottish pedigree and having since been found to associate to 
various phenotypes of CMD. We have recently demonstrated 
increased insoluble DISC1 protein in the cingular cortex in 
approximately 20% of cases of CMD within the widely used 
Stanley Medical Research Institute Consortium Collection. 
Surprisingly, in vitro, DISC1 aggregates were cell-invasive, i.e., 
purified aggresomes or recombinant DISC1 fragments where 
internalized at an efficiency comparable to that of α-synuclein. 
Intracellular DISC1 aggresomes acquired gain-of-function 
properties in recruiting otherwise soluble proteins such as the 
candidate schizophrenia protein dysbindin. Disease-associated 
DISC1 polymorphism S704C led to a higher oligomerization 
tendency of DISC1. These findings justify classification of 
DISC1-dependent brain disorders as protein conformational 
disorders which we have tentatively termed DISC1opathies. 
The notion of disturbed proteostasis and protein aggregation 
as a mechanism of mental diseases is thus emerging. The yet 
unidentified form of neuronal impairment in CMD is more 
subtle than in the classical neurodegenerative diseases without 
leading to massive cell death and as such present a different 
kind of neuronal dysfunctionality, eventually confined to 
highly selective CNS subpopulations.
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diseases, however an understanding of their neurobiology still 
remains elusive. In the absence of profound biological insight, 
CMD are diagnosed as mere clinical phenotypes by self-report-
ing of patients in a clinical interview according to internationally 
defined criteria DSM-IV and ICD-10.1

Among all CMD, schizophrenia leads to the most dramatic 
decline in cognitive abilities.2 Positive symptoms (hallucinations, 
delusions, thought broadcasting), negative symptoms (affective 
flattening, social withdrawal, avolition3) and cognitive symptoms 
with impaired processing speed, decline in attention, verbal mem-
ory recall with largely preserved long-term memory4 together char-
acterize the clinical picture of schizophrenia. The overall clinical 
conceptualization of schizophrenia has changed little since its first 
description where chronic aspects of disease course were empha-
sized in the term “dementia precox” (“premature dementia”).5 This 
definition was later extended to include also purely acute forms 
without irreversible cognitive deficits6 and the most recent editions 
of the gold standard diagnostic manuals DSM-III and DSM-IV 
did not require negative or cognitive symptoms to be present.7 On 
this background, schizophrenia with prominent negative symp-
toms, poor prognosis and chronicity has recently been re-intro-
duced as a subgroup of schizophrenia with “deficit syndrome.”8

A tentative model on how positive, negative and cognitive 
symptoms integrate into one progressive, yet unidentified disease 
process intermittently leading to acute outbursts with positive 
symptoms (“florid psychosis”) is depicted in Figure 1. There is a 
considerable body of evidence establishing that the term schizo-
phrenia comprises very different clinical courses2 and therefore, 
likely also heterogenous biological causes.

Investigations into the neurobiology of schizophrenia over the 
course of the last century can, with gross simplification, be sum-
marized as follows:

(1) The search for a neuropathology in post mortem brains 
of clinically diagnosed schizphrenics has not yielded a specific 
neuropathologic signature except the slight enlargement of the 
third ventricles.9 Even though claims have been made to signs 
of subtle disturbance of cortical architecture, these studies lack 
so far unequivocal replications.9 Inconsistencies in investiga-
tions on disturbed cortical architecture in schizophrenics might 
be explained by the biological heterogeneity of the disease when 
using broad inclusion criteria, paired with low case numbers.
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bodies in the substantia nigra in Parkinson disease31 and some 
familial cases of Parkinson disease could be tracked to mutant 
α-synuclein.32 In recent years, for most of the microscopic pro-
tein aggregates, cell-to-cell transmission has been demonstrated 
in vitro or in transgenic in vivo models such as for Aβ 33 and 
tau33 in Alzheimer disease, α-synuclein34 for Parkinson disease, 
polyglutamine protein for Huntington’s disease35 or SOD1 for 
amyotrophic lateral sclerosis.36,37

The disease relevance of the cell invasiveness of protein 
aggregates is still unclear. In patients with Parkinson disease 
who received stereotactic injections of stem cell grafts to replace 
degenerated substantia nigra tissue and where the graft, upon 
autopsy many years later, was investigated by immunohistochem-
istry, aggregated α-synuclein-positive inclusions were detected in 
the graft.38 It was hypothesized that the aggregated α-synuclein-
positive inclusions had been transmitted from the surrounding 
host tissue.38

In conclusion, protein deposition and cell-to-cell transmissi-
bility can be considered as two defining characteristics of protein 
conformational disorders.39

DISC1opathies

We reasoned that the chronic progressive course of schizophre-
nia may lead to a proteostatic imbalance in affected neuronal 
circuitry with the disease-specific accumulation of insoluble 
proteins in dysfunctional neurons. We therefore tested whether 
candidate genes for schizophrenia, specifically those which had 
been shown to be mutated in familial cases of CMD were also 
found to be aberrantly aggregated or insoluble in sporadic cases 
of CMD, and in particular in those of schizophrenia.

We were particular interested in the DISC1 gene. DISC1 was 
identified in a Scottish pedigree where carriers of a balanced 

(2) The serendipitous discovery of the neuroleptics10 and the 
subsequent revelation of their mechanism of action11 has estab-
lished dopamine as a central player in psychosis (that is, the 
acute, positive symptoms of schizophrenia). Over the years, a 
wealth of evidence has reinforced this hypothesis and the current 
opinion in the field is that psychosis during schizophrenia (but 
not limited to it) is due to a presynaptic, hyperdopaminergic state 
in the striatum, while in contrast the prefrontal cortex suffers 
from hypodopaminergia12 (see ref. 13 for review).

(3) A neurodevelopmental component seems to be impor-
tant for the development of schizophrenia14 although the (as yet 
unidentified) abnormality during neurodevelopment must be 
subtle since it can remain unnoticed and become apparent only 
at adolescence or in conjunction with a second or third hit,15 such 
as, for example, an exogenous or endogenous stressor.

(4) A genetic basis for schizophrenia has long been known 
and was initially supported by sibling and twin studies with 
monozygotic twins demonstrated to have a genetic risk for 
schizophrenia of 50% compared with unrelated individu-
als.16,17 Recent genetic linkage and their subsequent confirma-
tion through association studies in various ethnic populations 
has led to the identification of candidate genes such as DISC1,18 
NRG1,19 DTNBP1 20 and others.21 Remarkably, these genetic 
studies led to the insight that diagnoses of ill individuals car-
rying the genetic markers crossed clinical diagnostic bound-
aries,22,23 i.e., gene carriers could show clinical phenotpyes of 
schizophrenia or depression, suggesting that the biological 
fundamentals of CMD and the clinical phenotyping may not 
be well aligned. The study of these candidate genes has funda-
mentally changed molecular psychiatry since it is now possible 
to model behavioral, neuropathological and biochemical pheno-
types in vivo by reverse genetic engineering of mutant candidate 
genes in animals.24,25

To summarize, our knowledge has increased on acute psy-
chotic physiology (striatal hyperdopaminergia) which can be 
symptomatically treated by administering dopamine antago-
nists, but the underlying chronic progressive process remains 
unknown; a lot of momentum is currently present in the field 
through the identification of candiate genes and the emergence 
of genetic animal models.

Disturbed Proteostasis as a Hallmark  
of Dysfunctional Neurons

Proteostasis in post-mitotic neurons is sensitive to functional 
disturbances with its dysequilibrium resulting in the accumula-
tion of aggregated or insoluble proteins in the cell.26 In extreme 
cases, this leads to massive deposition of proteins such as in 
the classical neurodegenerative diseases, where extracellular or 
intracellular proteins are deposited.27,28 Remarkably, the same 
proteins that are mutant in familial forms of these diseases have 
also been seen to be deposited in sporadic forms, i.e., those cases 
where protein aggregation cannot simply be explained by aber-
rant folding due to a mutation.27 For example, Aβ is deposited 
in Alzheimer disease,29 and familial APP mutations lead to early 
onset Alzheimer disease30 or α-synuclein is deposited in Lewy 

Figure 1. Schematic drawing of the hypothesized  flow of the pro-
gressive schizophrenia disease process. A yet unidentified chronic 
dysfunctionality progresses through a process that does not involve 
massive neuronal cell death but reflect an unidentified mechanism 
of permanent neuronal silencing, eventually confined to a selected 
neuronal population. While progressing, the lesion leads intermittently 
to acute symptoms.
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DISC1 has been called a scaffold protein interacting with 
more than 200 proteins63,64 and localized in the postsynaptic 
density of the synapse,65 but it has also been detected at the cen-
trosome, in cilia, the cytoskeleton, as well as in mitochondria and 
the nucleus (reviewed in refs. 64 and 66).

When we investigated post mortem brains of patients 
with CMD (15 each with schizophrenia, bipolar disorder, 
major depressive disorder or normal controls from the Stanley 
Medical Research Institute’s Consortium Collection;67 www.
stanleyresearch.org/dnn/Default.aspx?tabid=196), we found 
in approximately 20% of patients increased sarkosyl-insoluble, 
i.e., aggregated DISC1 in the cingular cortex (BA23) but not in 
normal controls68 or control patients with neurodegenerative dis-
eases like Alzheimer disease, dementia with Lewy bodies, fronto-
temproal dementia and others69 where insoluble DISC1 was not 
detectable. The protocol used had been developed and validated 
using the smallest so far detected protein deposits, polyglutamine 
proteins.68,70 Interestingly, we observed the presence of insoluble 
DISC1 in post mortem brains of patients across clinical diag-
nostic boundaries corroborating the phenotypical heterogeneity 
of DISC1 mutation carriers in the Scottish pedigree40,71 and the 
various clinical phenotypes genetically associating with DISC1 
(see above).

Overexpressing DISC1 in neuroblastoma cells led to the 
emergence of aggresomes (Fig. 2A), that when purified and co-
incubated with indicator recipient cells were taken up at low 
efficiency.69 A highly purified recombinant DISC1 fragment 
expressed in E. coli demonstrated cell-invasiveness at an effi-
ciency comparable to that of synthetic, oligomeric α-synuclein69 
(Fig. 2B and C). Inoculation of the same recombinant DISC1 
fragment into the brains of rats also led to efficient uptake into 
primary neurons in vitro and in vivo (Pum, et al., manuscript in 
submission).

These findings, the increased presence of aggregated, sarkosyl-
insoluble DISC1 in brain disease and its cell-invasiveness sug-
gest that DISC1-dependent brain disorders should be classified 
as protein conformational disorders, which we have tentatively 
termed DISC1opathies59 in analogy to other proteinopathies.

translocation mutation (1;11)(q42.1;q14.3) segregated with a 
range of chronic mental disease phenotypes such as schizophre-
nia, recurrent depression, bipolar disease, alcoholism and adoles-
cent conduct disorder with approximately 70% penetrance.18,40,41 
The translocation mutation leads to direct disruption of two 
previously unknown genes, termed DISC1 and DISC2, the latter  
most likely being a non-coding RNA with the potential for regu-
lating DISC1 expression.42 The translocation bisects the DISC1 
gene after amino acid 597. Experimental analysis of the putative 
C-terminally shortened protein from residues 1–597 shows that it 
can act as dominant negative mutant in several biological readout 
systems where this mutation has been modeled,43 including in in 
vivo mouse models44-46 (see below).

Genetic association studies in many independent populations 
of various ethnic backgrounds have demonstrated the DISC1 
gene to be associated with a multitude of clinical disease phe-
notypes including schizophrenia,47-53 bipolar disorder,54,55 depres-
sion56 or autism57 (reviewed in refs. 42 and 58).

These genetic data suggest a role for DISC1 as a general 
vulnerability factor for adaptive behavior59 but not to a single 
and specific clinical phenotype. The genetic data have also 
received solid support from reverse genetics, i.e., studies mod-
eling the deletion mutation by genetic engineering in mice. 
Three independently engineered animal models expressing the 
C-terminally deleted DISC1 transgene corresponding to the 
mutation in the original Scottish pedigree showed enlarged lat-
eral ventricles,44-46 reduced neurite outgrowth,46,60 reduced par-
valbumin-positive interneurons in inner cortical layers,45,46 and 
deficient prepulse inhibition (PPI) as prominent schizophrenia 
endophenotypes.45,46 Other strong evidence for a role of DISC1 
in controling behavior comes from studies of a mouse with point 
mutations in mouse DISC1 61 and a DISC1 knockout mouse.62 
DISC1 knockout mice displayed a variety of subtle behavioral 
phenotypes including increased methamphetamine-induced 
hyperactivity, reduced PPI, and deficits in anxiety-specific 
parameters.62

Thus, DISC1 is currently considered to be a top gene involved 
in CMD and a key player in behavioral control.

Figure 2. Laser scanning confocal microscopy of DISC1 aggregates in neuroblastoma cells. (A) Mouse neuroblastoma cells (CAD cells) permanently 
transfected with monomeric red fluorescent protein (mRFP) transiently transfected with untagged, full length DISC1, stained with α-DISC1 mAB 14F269 
and a secondary FITC-labeled antibody. Bar 10 μm. (B) Human SHSY5Y cells permanently transfected with green fluorescent protein fused to human 
DISC1 (598–854), incubated with recombinant human DISC1 (598–854) expressed and purified from E. coli and labeled with Dylight® (red) as described 
by Ottis et al.69 Bar 10 μm. (C) Human SHSY5Y cells permanently transfected with green fluorescent protein fused to human DISC1 (598–854), and 
incubated with synthetic α-synuclein labeled with Dylight® (red) as described by Ottis et al.69 Bar, 10 μm.



© 2012 Landes Bioscience.

Do not distribute.

www.landesbioscience.com	 Prion	 137

neuronal subpopulations. Alternatively, it cannot be excluded 
that the DISC1 aggregates purified biochemically are too small 
to be detected by simple light microscopy using standard anti-
bodies (see Fig. 3). So far, there is neither positive nor negative 
evidence for increased β-sheet structures and/or amyloid in insol-
uble DISC1 identified in post mortem brains. It remains to be 
shown whether there is transmission of DISC1 aggregates in vivo 
in a significant manner, and whether cell-to-cell transmission is 
related to the pathomechanism of some CMD subtypes.

Are DISC1 aggregates infectious? The term “infectious” 
should not be used synonymous with “cell invasiveness.” An 
infectious protein cycle, like that for prions (PrPSc), requires the 
protein (1) to be taken up, (2) to recruit or convert fresh substrate 
(i.e., non aggregated protein), (3) to break the protein aggregate 
up into seeds and (4) to release the material in way that it can be 
taken up efficiently. For leading to cellular pathology, this cycle 
does not have to be complete and even a protein aggregate unable 
to go through a full replication cycle can harm, for example, by 
invading a cell and recruiting otherwise soluble proteins, as we 
have shown for DISC1 agresomes recruiting soluble dysbindin.69

The fact that only in 20% of cases with CMD (or 13% of cases 
with schizophrenia) increased insoluble DISC1 was detected in 
BA23 is consistent with the notion that CMD and the schizo-
phrenias are heterogenous in their biological origin and thus 
DISC1opathies constitute only a fraction of CMD cases. The 
strength of the DISC1opathy concept is that it is a first step to 
defining a distinct subgroup of cases within CMD irrespective of 
their clinical phenotype, enabling a molecular analysis of major 

It may be argued that for a true pro-
teinopathy like the synucleinopathies, 
tauopathies or other protein confor-
mational diseases, demonstration of 
aggregates in tissue sections by immu-
nohistochemistry and cell death in close 
proximity to those are mandatory, both 
of which have not been demonstrated for 
DISC1, so far. However, we think that 
coining the term DISC1opathy is justified 
for two reasons: (1) The definition of the 
term prion has been continously widened 
since the inclusion of non-pathogenic 
yeast prions, prions with proven physi-
ological functions,72,73 to now comprise 
even so far considered non-transmissi-
ble diseases like Alzheimer disease or 
Parkinson disease.74,75 DISC1opathies are 
characterized by the smallest so far known 
protein aggregates associated to a progres-
sive brain condition and are at the extreme 
of a continuum of protein conformational 
disorders (see Fig. 3). (2) The second rea-
son is pragmatic: the absence of an intelli-
gible biology in the field of schizophrenia 
research has hindered scientific progress 
for a century. While heterogeneity of the 
biological origins of schizophrenia has 
always been assumed, now, the category of DISC1-dependent 
brain disorders (DISC1opathies) offers the opportunity of defin-
ing a brain disease subcategory as an entity that can be further 
characterized to molecular detail. Thus the term helps defining a 
long-sought, biology-based diagnostic entity and thereby enlight-
ens a medical field where diagnostics has so far been restricted to 
clinical phenotyping.

What does the cell-invasiveness of DISC1 aggregates mean? 
First of all, cell invasiveness of protein aggregates may be less rare 
than initially thought. Within the last few years, cell-invasiveness 
has been demonstrated for all major protein deposits of the clas-
sical neurodegenerative diseases like Aβ,76,77 tau,33 α-synuclein,34 
polyglutamine protein35 or SOD1.36,37 But the in vivo ability of 
the aggregates to promote aggregation of soluble forms of itself 
seems to be a very inefficient process, and so far confined to trans-
genic animals prone to develop spontaneous aggregation of the 
transgenetically expressed protein at a later stage in their lives.33,76 
It is therefore unclear whether cell-to-cell transmission can 
account for the observed progression of tau or α-synuclein depo-
sition in the course of human clinical Alzheimer or Parkinson 
disease, respectively.78,79 So far, a similar neuropathological pro-
gression of protein deposits has not been reported for schizo-
phrenia and confirmation of the presence of DISC1 aggregates 
or inclusions in vivo by immunohistochemistry complementing 
the biochemically purified insoluble DISC1 is still lacking but 
efforts to visualize DISC1 aggregates by immunohistochemistry 
are underway. We anticipate that the inclusions are likely to be 
subtle, and also restricted to specific subregions of the brain or 

Figure 3. Schematic drawing of the size continuum of protein aggregates in chronic brain dis-
eases. The largest aggregates visible without specific immunostaining are the extracellular Aβ and 
prion plaques, followed by intracellular Lewy bodies. Polyglutamine proteins are visible only after 
specific immunostaining. At a submicroscopic level at the bottom of this inverted pyramid are 
DISC1 aggregates detectable only after biochemical purification.
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protein misassembly contribute to mental disease mech-
anisms and are a convergence point of disease pathways, 
as demonstrated, for example, for the DISC1 and dys-
bindin pathways.69

Genetic studies associating DISC1 to behavioral phe-
notypes have included three coding polymorphisms that 
were identified in human DISC1: R/Q264, F/L607 and 
S/C704 42 with the C704 allele being associated with 
both major depression87 and schizophrenia.53 DISC1 
polymorphisms were also associated with reduced gray 
matter volume in the cingular cortex, decreased frac-
tional anisotropy in healthy individuals56 and seemed 
to influence cognitive decline during normal aging.55 
DISC1 allele C704 was also shown to lead to altered 
protein interactions.88

Accordingly, a relation between DISC1 misassembly 
and behavioral phenotypes was supported by findings 
that the disease-associated polymorphism C704 was 
associated with an increased oligomerization propen-
sity of a recombinant, C-terminal DISC1 fragment in 
a cell-free in vitro system;89 these findings were recently 
corroborated by using full length recombinant DISC1.90 
Residue 704 lies in a C-terminal dimerization domain 
of DISC1 and it could be demonstrated that a well-con-
certed orchestration of the dimerization and oligomer-

ization domains is required for orderly DISC1 assembly.89

DISC1 interacts with other brain-disease relevant pathways, 
for example with the reelin pathway via LIS1 91 or NDEL1/cdc42 
92 (see Fig. 4). Furthermore, there is functional complementation 
of Alzheimer disease amyloid precursor protein (APP) deficiency 
by DISC1 acting downstream of DAB1.81 Schizophrenia candi-
date gene neuregulin 1 is, like APP, the substrate of β-secretase 
(BACE) and regulates DISC1 expression in a BACE-dependent 
manner.93 Thus there is evidence on the convergence of several 
schizophrenia candidate genes and APP as a gene relevant for a 
neurodegenerative disease into one pathway.

Disturbed proteostasis seems to affect some proteins more 
than others,86 among them DISC1. The heterogeneity of CMD 
in general or within schizophrenia as one clinical diagnostic 
entity suggests the existence of multiple biological causes, and 
therefore it is likely that proteins other than and independent of 
DISC1 may also emerge as insoluble or misassembled in CMD.

To summarize, we propose that DISC1opathies are novel 
protein conformational disorders involved in chronic conditions 
of behavioral maladaptation and mental diseases. They fulfill 
two basic criteria of protein conformational disorders which are 
disease-associated protein deposition and cell-invasiveness of 
protein aggregates. Disease-associated polymorphisms influence 
DISC1 oligomerization propensity and the presence of DISC1 
aggresomes changes DISC1’s cellular interactions leading to loss 
and gain of molecular interactions. DISC1opathies are the first 
protein conformational disorders described in the realm of men-
tal diseases emphasizing the importance of investigating protein 
aggregation in these disorders. Establishing subgroups of CMD 
with similar underlying biology, here DISC1-dependent disor-
ders, is also the first step to a biological classification of CMD.

disease pathways in this subgroup. There are likely other sub-
groups involving different pathways, and they should definetely 
also be sought, but the diligent analysis of only one pathway, here 
the DISC1 pathway (see Fig. 4), is already going to significantly 
advance our understanding of how subtle protein insolubility can 
lead to maladaptive behavior.

Similarly, the fact that increased insoluble DISC1 was pres-
ent in brains of patients with different clinical diagnoses is con-
sistent with the notion that disease-associated biology crosses 
clinical diagnostic boundaries.22,23 If diagnoses serve to define 
medical conditions amenable to similar therapeutic regimens, the 
DISC1opathy concept may group those CMD cases that might 
receive a future drug efficiently targeting the DISC1 pathway to 
correct maladaptive behavior.

The question remains how DISC1 aggregates influence cell 
physiology. DISC1 has been described as participating in many 
diverse biological functions64,80 and it is currently difficult to say 
whether all of these functions or just a subset of them are essential 
for the final control over adaptive behavior. A role of DISC1 in 
corticogenesis has been demonstrated43 consistent with the neu-
rodevelopemental hypothesis of schizophrenia and this function 
was dependent on the DISC1-NDEL1 interaction43,81 making 
this interaction a prime candidate for disease-relevant experimen-
tal readouts. Other important DISC1 interactors are GSK-3β,82 
PDE4,83 BBS,84,85 but many more are known.58,63,64

DISC1 aggregation leads to both loss and gain of protein 
interactions: DISC1 aggresomes lost interaction with NDEL1 68 
and gained function by segregating dysbindin69 in neuroblastoma 
cell models. It can be expected that cellular DISC1 aggregates 
would also co-segregate with many other proteins as is the case 
with other aggresomes.86 These observations support the notion 
that abnormal protein-protein interactions from aggresomes and 

Figure 4. Schematic drawing of interactions of the DISC1 pathway. Extracellular 
proteins in circles, membrane proteins in boxes; direct functional connections in 
solid arrows, indirect functional connections (over several or unknown steps) in 
broken line arrows. The proteins depicted are an incomplete selection.
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