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Alzheimer’s disease (AD) is themost common form of dementia in elderly people. It is an irreversible and progressive brain disease.
In this paper, we utilized diffusion-weighted imaging (DWI) to detect abnormal topological organization of white matter (WM)
structural networks. We compared the differences between WM connectivity characteristics at global, regional, and local levels
in 26 patients with probable AD and 16 normal control (NC) elderly subjects, using connectivity networks constructed with the
diffusion tensor imaging (DTI) model and the high angular resolution diffusion imaging (HARDI) model, respectively. At the
global level, we found that the WM structural networks of both AD and NC groups had a small-world topology; however, the AD
group showed a significant decrease in both global and local efficiency, but an increase in clustering coefficient and the average
shortest path length. We further found that the AD patients had significantly decreased nodal efficiency at the regional level, as
well as weaker connections in multiple local cortical and subcortical regions, such as precuneus, temporal lobe, hippocampus, and
thalamus. The HARDI model was found to be more advantageous than the DTI model, as it was more sensitive to the deficiencies
in AD at all of the three levels.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia in elderly people and is characterized by chronic
cortical atrophy and neurodegeneration, resulting in behav-
ioral changes, loss of memory and language function, and
general cognitive decline [1]. It is an irreversible and progres-
sive brain disease and usually diagnosed in people older than
65. Nearly 36 million people worldwide are affected by AD,
with 5.2 million alone just in the United States [2].

Tau and amyloid beta (A𝛽) in cerebrospinal fluid are
considered to be reliable biomarkers of AD [3]. However,
the invasiveness, cost, and availability associated with the
measurement of these quantities are significant drawbacks.

On the other hand, magnetic resonance imaging (MRI)
has been widely recognized as a noninvasive means for
neurodiagnosis and disease staging. Previous studies using
T1-weighted structural MRI revealed AD-induced gray mat-
ter (GM) atrophy in multiple brain regions, including the
hippocampal and entorhinal cortices [4, 5], the temporal and
cingulate gyri, the precunei, the insular cortices, the caudate
nuclei, the frontal cortices [6], the sensorimotor cortices, the
occipital poles, the cerebellum, and the medial thalami [7].

On the other hand, diffusion-weighted magnetic reso-
nance imaging (DWI) [8] can recover the local profile of
water diffusion in tissue, yielding information on white mat-
ter (WM) integrity and connectivity that is not available from
standard structural MRI. Specifically, tractography methods
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[9, 10] can be used to fit continuous streamlines through
directional diffusion data at each voxel for reconstructing
WM fiber tracts. With the obtained tractography, WM
integrity can be analyzedwith both region-of-interest- (ROI-)
based analysis, for example, tract-based spatial statistics
(TBSS) [11] and fiber clustering [12, 13], and parcellation-
based connectome analysis [14].

WM abnormalities in AD were reported in previous
studies. Liu et al. [15] performed voxelwise TBSS to compare
fractional anisotropy (FA) between the AD patients and the
healthy controls.MultipleWM tracts, such as parahippocam-
pal WM, cingulum, uncinate fasciculus, inferior and supe-
rior longitudinal fasciculus, and corpus callosum, showed
decreased FA in the AD group. Jin et al. [16] used the
tract-based clustering method to relate fornix degeneration
to cognitive decline in AD with various diffusion-derived
measures. Mean diffusivity (MD) was shown to be more sen-
sitive to the group difference among AD and normal controls
than FA did. Li et al. [17] proposed a spectral diffusional
connectivity framework to explore the connectivity deficit in
AD.The framework was based on studying eigenvalues of the
Laplacianmatrix of the diffusion tensor field at the voxel level.
The peaks of the diffusional connectivity spectra were shifted
in the AD group compared to the normal controls that did
not shift. Daianu et al. [18] found widespread breakdown in
AD in the 68-ROI based connectivity networks with multiple
connectivity metrics on the “𝑘-core” structure.

Importantly, WM tracts can be used to form the connec-
tivity networks that give comprehensive pictures of interac-
tions between different brain regions. A WM connectivity
network can be described mathematically as a graph consist-
ing of (1) a collection of nodes, representing the ROIs and
(2) a set of edges between nodes, describing the connections
(e.g., fiber counts) between ROI pairs.The characteristics of a
connectivity network can be described using metrics at three
hierarchical levels: global, regional, and local.

The stability of connectivity networks is influenced by
multiple factors, including field strength [19, 20], scanners
[21], imaging acquisition parameters [22], and tractography
parameters [23]. Zhan et al. [24] compared several trac-
tography and feature extraction methods in relation to AD
diagnostic accuracy. Among these factors, the choice of
diffusionmodels is found to be themost influential.Themost
commonly used approach, namely, diffusion tensor imaging
(DTI), is based on the Gaussian assumption of water diffu-
sion.This approach works well in regions with unidirectional
fiber bundles, but this model may fail in regions with
fiber crossings, which may introduce tractography errors in
these regions. To address this issue, advancedmodels for high
angular resolution diffusion imaging (HARDI) were pro-
posed to estimate orientation distribution functions (ODF)
[25, 26] at each voxel. By detecting the peaks (i.e., local
maxima) of the ODF, one can then infer the number of
directions contained in each voxel.

In this study, we investigate the global, regional, and local
changes of whole-brain connectivity networks in AD patients
in comparison to healthy elderly subjects. DTI and HARDI
models are used to construct two different sets of connectivity
networks for comparison. Such a systematic network analysis

at multiple levels on AD, to our knowledge, has not been
attempted previously.

2. Methods

2.1. Participant Recruitment. This study involved 26 patients
who were diagnosed with probable AD at the Alzheimer’s
Disease and Related Disorders Center (ADRDC) in the
tertiary hospital of Shanghai Mental Health Center (SMHC)
at Shanghai Jiao Tong University School of Medicine. 16
cognitively healthy elderly subjects from the community of
Shanghai Chang Ning district were included as the normal
control (NC) group. Subjects were enrolled via self-referral or
referral from families or physicians.The study was conducted
from May 2011 to May 2012 at ADRDC. The SMHC Institu-
tion’s Ethical Committee approved the consent form and the
study protocol. The study was carried out in accordance with
the Declaration of Helsinki. Informed consent was obtained
from all subjects and/or their legal guardians.

The ages of the AD subjects enrolled ranged from 50s to
90s. Prior to enrollment, patients provided their medical his-
tory and were given physical and neurological examinations,
laboratory tests, and both T1-weighted and fluid-attenuated
inversion recovery (FLAIR) MRI scans. Enrollment criteria
included (1) the National Institute of Neurological and Com-
municative Disorders and Stroke/Alzheimer’s Disease and
Related Disorder Association (NINCDS/ADRDA) criteria
for probable AD [27]; (2) the Diagnostic and Statistical
Manual for Mental Disorders, 4th edition (DSM-IV) criteria
for the Alzheimer’s dementia; (3) a Hachinski Ischemia Score
less than 4; (4) the systolic blood pressure between 95 and
160 and the diastolic blood pressure between 60 and 95; (5)
identification of a responsible and consistent caregiver; (6)
absence of diabetes, renal impairment, significant systemic
conditions, psychiatric disorders, seizures, or traumatic brain
injuries that could compromise their cognitive or brain
functions; (7) significant brain abnormalities on the patient’s
T1-weighted MRI; (8) clinical score requirements. In the
Chinese version of the Mini-Mental Status Exam (MMSE)
[28], there are three cut-off thresholds for AD diagnosis
according to education levels: (1) AD subjects who had not
been educated exhibited MMSE scores <18; (2) those with
elementary school education exhibitedMMSE scores <21; (3)
those with higher than middle school education exhibited
MMSE scores<25.TheClinicalDementia Rating (CDR) scale
[29] was equal or more than 1.

The NC group was cognitively functioning healthy indi-
viduals. The NC group did not have any history of cognitive
decline, neurological disorders, or uncontrolled systemic
medical disorders. Their CDR scales were equal to 0. All
subjects in the study were required to have fewer than two
lacunar ischemia strokes (of diameter <1 cm) in the brain, as
revealed by FLAIR.

The demography and clinical scores for the AD group and
the NC group are listed in Table 1. No significant differences
between the two groups were observed in age or education.
The differencewas observed in gender. However, the effects of
gender, age, education level, and brain sizewould be regressed
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Table 1: The demography and clinical scores of the subjects in the
study. The 𝑝 values are based on the two-sample 𝑡-tests except the
gender. The gender ratio was examined by the Chi-squared test.

NC (𝑛 = 16) AD (𝑛 = 26) 𝑝 value
Age (years) 70.1 ± 7.5 69.5 ± 7.1 0.81
Male/female 11/5 8/18 0.03
Education (years) 10.6 ± 3.2 10.4 ± 3.9 0.91
CDR 0.0 ± 0.0 2.0 ± 0.7 <0.001
MMSE 25.3 ± 3.6 15.2 ± 6.5 <0.001

out in our analysis. As expected, the group difference was
observed in the MMSE (𝑝 < 0.001) and CDR scores (𝑝 <
0.001).

2.2. MR Image Acquisition. MRI images were scanned with a
Siemens MAGNETOM VERIO 3T scanner at SMHC. T1-
weighted images were obtained with 128 sagittal slices using
the 3D magnetization prepared rapid acquisition gradient
echo (MPRAGE) sequencewith the following parameters: TR
= 2,530ms, TE= 3.39ms, flip angle = 7∘, and spatial resolution
= 1 × 1 × 1.3mm3, and the acquisition time was 8 minutes 7
seconds. The DWI images were acquired with 75 axial slices
by using an echo planar imaging (EPI) sequence that covered
the whole brain. The acquisition parameters were as follows:
TR = 10,000ms, TE = 91ms, and spatial resolution = 2 ×
2 × 2mm3. A total volume of 62 directions was acquired,
where two volumes were without diffusion gradient (𝑏 =
0) and the rest 60 volumes were with diffusion gradient of
𝑏 = 1,000 s/mm2. The acquisition time was 5 minutes and 42
seconds.

2.3. Image Preprocessing. T1-weighted images were first
resampled to be 1mm isotropic, intensity inhomogeneity
corrected [30], and skull stripped to remove nonbrain tissues
[31]. The resulting images were then tissue segmented to
separate GM, WM, and cerebrospinal fluid (CSF) with FSL
FAST (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). DWI images
were skull stripped and then corrected for eddy-current
induced distortion with FSL. FA and MD images were then
extracted from DWI data after diffusion tensor fitting.

2.4. Network Construction. Whole-brain tractography was
performed with both DTI and HARDI models. For DTI, the
diffusion tensors were fitted to the data using a weighted-
least-squares estimation algorithm and the eigenvector of
the largest eigenvalue was taken as the principal diffusion
direction [32]. Seed points were chosen as voxels with FA >
0.3. The maximum turning angle was set to 45∘ and tracking
was stopped when FA < 0.2. The allowed fiber length
was at minimum, 20mm, and at maximum, 300mm. For
HARDI, ODFs were estimated with dictionary-based spher-
ical deconvolution [26]. A maximum of three peaks were
detected from the ODF at each voxel [26]. Four seeds were
randomly sampled within each seed voxel. The criteria of
fiber tracking were the same for both methods. The resulting

tractography was manually visualized and checked in Par-
aView (Kitware, http://www.paraview.org/).

TheAutomatedAnatomical Labeling (AAL) template [33]
is a widely used high-resolution T1-weighted brain parcella-
tion based on a single adult subject, which includes 90 cortical
and subcortical brain regions for the cerebrum. The names
and abbreviations of these 90 ROIs are listed in Table 2. First,
we nonlinearly registered the AAL template to each subject’s
segmented T1-weighted image using HAMMER [34]. Then,
the T1-weighted image was rigidly aligned to the FA image.
The original 90 ROIs of the AAL template were transferred
to each individual’s DWI space using the deformation fields
and the affine transformation matrix generated during the
registration step. These ROIs were used as nodes in the
connectivity network for each subject.

Two ROIs were considered anatomically connected, if
there were fibers traversing them. In the network, the edge,
connecting the nodes representing these two ROIs, was
defined as the number of fibers connecting them. Two ROIs
were considered connected if there were no less than four
fibers between them, which has been proven effective to
reduce false-positive connections [35–37]. As a result, the
WM connectivity network, represented by a symmetric 90 ×
90matrix, was constructed for each subject.The network was
weighted and undirected.

2.5. Multilevel Network Measures. Three hierarchical levels
(global, regional, and local) of complex network measures
were used to compare the measures of connectivity networks
constructed in Section 2.4 between the AD group and the NC
group.Themeasures were calculated with the GRETNA tool-
box (https://www.nitrc.org/projects/gretna/). For a detailed
review of those measures, please see [38].

2.5.1. Global Measures. Global and local network efficiencies
are used to describe global and local characteristics of parallel
information transfer in a network. Global network efficiency
quantifies the exchange of information across the entire brain:
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Therefore, the average local network efficiency for the whole
brain is 𝐸loc = (1/𝑁)∑

𝑁

𝑖=1

𝐸𝑖loc.
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Table 2: Names and abbreviations of the 90 ROIs defined in the AAL template.

Index∗ Region Abbreviation
1, 2 Precentral gyrus PreCG
3, 4 Superior frontal gyrus (dorsal) SFGdor
5, 6 Orbitofrontal cortex (superior) ORBsupb
7, 8 Middle frontal gyrus MFG
9, 10 Orbitofrontal cortex (middle) ORBmid
11, 12 Inferior frontal gyrus (opercular) IFGoperc
13, 14 Inferior frontal gyrus (triangular) IFGtriang
15, 16 Orbitofrontal cortex (inferior) ORBinf
17, 18 Rolandic operculum ROL
19, 20 Supplementary motor area SMA
21, 22 Olfactory OLF
23, 24 Superior frontal gyrus (medial) SFGmed
25, 26 Orbitofrontal cortex (medial) ORBmed
27, 28 Rectus gyrus REC
29, 30 Insula INS
31, 32 Anterior cingulate gyrus ACG
33, 34 Middle cingulate gyrus MCG
35, 36 Posterior cingulate gyrus PCG
37, 38 Hippocampus HIP
39, 40 Parahippocampal gyrus PHG
41, 42 Amygdala AMYG
43, 44 Calcarine CAL
45, 46 Cuneus CUN
47, 48 Lingual gyrus LING
49, 50 Superior occipital gyrus SOG
51, 52 Middle occipital gyrus MOG
53, 54 Inferior occipital gyrus IOG
55, 56 Fusiform gyrus FFG
57, 58 Postcentral gyrus PoCG
59, 60 Superior parietal gyrus SPG
61, 62 Inferior parietal lobule IPL
63, 64 Supramarginal gyrus SMG
65, 66 Angular gyrus ANG
67, 68 Precuneus PCUN
69, 70 Paracentral lobule PCL
71, 72 Caudate CAU
73, 74 Putamen PUT
75, 76 Pallidum PAL
77, 78 Thalamus THA
79, 80 Heschl gyrus HES
81, 82 Superior temporal gyrus STG
83, 84 Temporal pole (superior) TPOsup
85, 86 Middle temporal gyrus MTG
87, 88 Temporal pole (middle) TPOmid
89, 90 Inferior temporal ITG
∗The odd and even indices indicate the regions in the left and right hemispheres, respectively.
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Figure 1: Directional glyphs at the intersection of the left corticospinal tract and the corpus callosum given by (a) the DTI method and (b)
the HARDI method.

The global clustering coefficient gives an overall indica-
tion of clustering in a network. It is the average of absolute
local clustering coefficients of all nodes:
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is the proportion of edges between the nodes within the
neighborhood of node 𝑖 divided by the number of edges that
could possibly exist between them. In addition, the average
shortest path length of the network is defined as
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The human brain exhibits the “small-world” property charac-
terized by dense local clustering between neighboring nodes
and high global network efficiency with short path lengths
due to the existence of relatively few long-range connections
[39–41]. Mathematically, it can be represented by the ratio of
the normalized global clustering coefficient 𝛾 = 𝐶real/𝐶rand

to the normalized shortest path length 𝜆 = 𝐿real/𝐿rand, where
𝐶rand and 𝐿rand are the global clustering coefficient and the
normalized shortest path length of a random network. A
random network was simulated by iteratively rewiring 50%
pairs of random edges of the existing brain network for 1,000
times. Then, small-worldness can be measured as 𝜎 = 𝛾/𝜆
[42] and it should be greater than 1 if the graph demonstrates
the small-world property.

2.5.2. Regional Measures. Thenodal efficiency was computed
to represent the regional characteristics of a network. The
nodal efficiency 𝐸

𝑖
is defined as
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where 𝐿
𝑖𝑗
is the shortest path length between node 𝑖 and

node 𝑗. Therefore, 𝐸
𝑖
measures the overall information flow

between a given node 𝑖 and the rest of the nodes in the
network. The node 𝑖 is defined as a hub if 𝐸

𝑖
is at least 1

standard deviation (SD) above the average nodal efficiency
of the network.

2.5.3. Local Measures. The network edges, that is, the fiber
counts between each pair of ROIs, were directly used to
describe the local characteristics of a network.

2.6. Statistical Analysis. The nonparametric permutation test
was used to evaluate statistical differences of brain network
properties between the AD and NC groups. First, linear
regression was performed on all the network measures at
global, regional, and local levels (described in Section 2.5),
respectively, with age, gender, level of education, and intracra-
nial volume (ICV) as covariates. Then, after removing those
factors on the measures, the regressed measures were per-
muted 5,000 times to assess the statistical significance of the
differences [36]. The significance level was set as 𝑝 < 0.05,
with false discovery rate (FDR) [43] for multiple comparison
correction. To compare the performance between the DTI
andHARDImethods, the same analysis was performed to the
networks constructed by each method, respectively.

3. Results

3.1. DTI versus HARDI. We compared the DTI and HARDI
networks, in terms of their ability, to distinguish the AD
group from the NC group. Figure 1 shows that HARDI
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Figure 2: Tractography results based on a seed ROI at the brain stem with (a) the DTI method and (b) the HARDI method.
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Figure 3: The 90 × 90 connectivity matrices built with the DTI method and the HARDI method, respectively. The right panel shows the
binary difference between the left two matrices for a selected subject, where the entries with +1 denote connections detected by HARDI but
not DTI, and −1 for connections detected by DTI but not HARDI.

method can handle fiber crossings in the intersection
between the left corticospinal tract and the corpus callosum.
The DTI method, on the other hand, was not able to do so.
Figure 2 shows the tractography results based on a seed ROI
near the brain stem.TheHARDImethod was able to produce
significantly more fibers than the DTI method.

Figure 3 shows the 90 × 90 connectivity matrices (≥4
fiber connections) with both DTI and HARDI methods
from a randomly selected subject in our dataset. The binary
difference between the two matrices is also shown, where
the entries with +1 denote connections detected by HARDI
but not DTI, and −1 for connections detected by DTI
but not HARDI. For this selected subject, the meaningful
connections (≥4 fiber connections) account for 38% and 52%
out of the total connections forDTI andHARDI, respectively.
From the difference map in the right panel of Figure 3, it is
obvious that more connections can be detected with HARDI
compared to DTI.

3.2. Global Characteristics. Both the NC and the AD groups
showed small-world organization (𝜎 > 1) in their networks.

The AD networks actually showed higher small-worldness
than the NC networks did, in both DTI and HARDI cases
(𝜎AD > 𝜎NC). In both cases, the AD group, when compared
to the NC group, showed decreases in global efficiency and
local efficiency but increases in the normalized shortest path
length (𝜆) and the normalized clustering coefficient (𝛾). Also,
all results given by the HARDI method were statistically
significant (𝑝 < 0.05), while most results by the DTI method
were not, except global efficiency. Table 3 lists the values of
these measures for the AD and NC groups by both the DTI
and HARDI methods.

3.3. Regional Characteristics. An ROI is defined as a network
hub, if its nodal efficiency is 1 SD greater than themean nodal
efficiency of the network. For the HARDI case, we identified
20 hub nodes in the NC group, including 6 association
cortical regions, 13 paralimbic cortical regions, and 1 primary
cortical region. Only 16 hub nodes were identified in the
AD group, including 5 association regions and 11 paralimbic
regions. In both groups, 12 ROIs were identified as hubs
in common, including the bilateral superior frontal gyri,
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Table 3: The comparison of the global connectivity characteristics between the AD and the NC groups with the DTI and HARDI models,
respectively.

𝐸glob 𝐸loc 𝛾 𝜆 𝜎

DTI
AD 524 ± 93 674 ± 134 1.46 ± 0.18 1.20 ± 0.06 1.22 ± 0.11
NC 617 ± 114 748 ± 121 1.39 ± 0.12 1.16 ± 0.04 1.20 ± 0.07
Difference −93 −74 0.07 0.03 0.02
𝑝 value 0.03 0.12 0.12 0.07 0.20

HARDI
AD 426 ± 100 578 ± 126 1.66 ± 0.24 1.27 ± 0.08 1.31 ± 0.16
NC 543 ± 134 674 ± 144 1.53 ± 0.19 1.22 ± 0.06 1.25 ± 0.11
Difference −116 −95 0.14 0.05 0.06
𝑝 value 0.01 0.05 0.03 0.03 0.04

dorsolateral (SFGdor), the bilateral supplementary motor
areas (SMA), the bilateral median cingulate gyri (MCG), the
bilateral precunei (PCUN), the bilateral putamina (PUT),
and the bilateral thalami (THA). In addition, 4 ROIs, such
as the left insula (INS.L), the right caudate nucleus (CAU.R),
and the bilateral pallida (PAL), were identified as the hubs in
the AD group but not in the NC group. 8 ROIs, such as the
right medial superior frontal gyrus (SFGmed.R), the bilateral
posterior cingulate gyri (PCG), the right calcarine cortex
(CAL.R), the right cuneus (CUN.R), the bilateral superior
occipital gyri (SOG), and the left middle occipital gyrus
(MOG.L), were identified as the hubs in theNC group but not
in theADgroup. For theDTI case,most of the hubs identified
in the HARDI case were also detected.The AD group had the
exact 16 hubs as in the HARDI case, while the NC group only
had 19 hubs. The right calcarine cortex (CAL.R) and the left
middle occipital gyrus (MOG.L) were only identified in the
HARDI case for the NC group, while the left medial superior
frontal gyrus (SFGmed.L) was only identified in theDTI case.
The hub distributions in the AD and NC groups are shown in
Figure 4 for both methods.

In both DTI and HARDI cases, when compared to the
NC group, the AD group showed reduced nodal efficiency
(𝑝 < 0.05, FDR corrected) in the bilateral superior occipital
gyri (SOG), the right middle occipital gyrus (MOG.R), the
right rectus gyrus (REC.R), the left posterior cingulate gyrus
(PCG.L), the right parahippocampal gyrus (PHG.R), the
right middle temporal pole (TPOmid.R), the right inferior
occipital gyrus (IOG.R), the right fusiform gyrus (FFG.R),
the right precuneus (PCUN.R), and the bilateral cunei
(CUN). Besides all of the regions shown above, the right
posterior cingulate gyrus (PCG.R), the right calcarine cortex
(CAL.R), and the left precuneus (PCUN.L) showed the
significantly reduced nodal efficiency only in the HARDI
case, while the leftmiddle temporal pole (TPOmid.L) showed
the reduced efficiency only in the DTI. The comparison
between the ROIs that had the reduced efficiency in the two
groups for the DTI and HARDI cases is shown in Figure 5.

3.4. Local Characteristics. We utilized the fiber counts
between a pair of ROIs to measure the strength of their

connection. After performing the permutation test [36] on
each connection, the axial and the sagittal views of those
significantly different connections (𝑝 < 0.05) between
the AD group and the NC group, with the DTI and
HARDI method, are illustrated in Figure 6. Additionally, the
connectogram, a circular representation tool called Circos
(http://www.cpan.org/ports/) [44], was used to demonstrate
those connections with the two models in Figure 7. In
both figures, the stronger connections (higher fiber counts
between a pair of ROIs) in the AD group are shown in blue,
and the weaker connections (lower fiber counts between a
pair of ROIs) are in red. Particularly, the thicker the line in
Figure 7, the greater the difference in the connection between
the two groups. The identified differences in connections
spread over the entire brain. A large portion of these dif-
ferences was located in the limbic system and subcortical
regions. It is obvious that the HARDI model was able to
detect noticeablymore pairs of different connections between
the groups (30 pairs in HARDI versus 20 pairs in DTI).
For example, the connections through the left supplementary
motor area (SMA.L), the right lingual gyrus (LING.R), the
left superior parietal gyrus (SPG.L), the bilateral thalami
(THA), the left middle temporal gyrus (MTG.L), and the left
hippocampus (HIP.L) were only shown in the HARDI case.

4. Discussion

This study investigates the impact of AD on the topological
characteristics of the WM connectivity network at three
hierarchical levels, global, regional, and local level, through
tractography data reconstructed using DTI and HARDI
methods, respectively. The main findings are as follows: (1)
the global and average local network efficiency are reduced
in AD, with increased shortest path length; (2) the number
of regional hubs and nodal efficiency decreases in AD; (3)
the local connections weaken in AD; (4) the HARDI method
has an advantage over the DTI method in identifying more
abnormal network characteristics at all the three levels.

At the global level, consistent with the previous studies
[41, 45, 46], our results indicate that the WM connectivity
networks of both AD and NC have the small-world topology.
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the center of an ROI. Refer to Table 2 for the label of each ROI.

Although the AD networks show a slightly elevated small-
world attribute, most global measures are lower in AD, com-
pared to those in NC. AD patients show significant decreases
in global efficiency and average local efficiency, but increases
in normalized shortest path length. Global efficiency and
average local efficiency are known to reflect the overall ability
of information transfer between different nodes in a network.
They are comprehensive indices for the capability of parallel
information processing. The reductions in those measures
can be attributed to the degeneration ofWM, which indicates
that connections between cortical regions are abnormal. The
less strength of connections between cortical regions is due

to the damaged WM integrity, resulting in longer pathways
that connect different regions in the brain. The breakdown
in the optimal brain balance between the local specialization
and the global integration causes information processing
to malfunction in AD. Similarly to previous studies [47],
we have also found that the normalized weighted shortest
path length increases in the AD group. Shortest path length
ensures interregional effective communication, or prompt
transfer of information between regions, which constitutes
the basis of cognitive processes [48]. The WM damage can
lead to an increase in shortest path length. Therefore, it is
likely that, in people with AD, information may flash in a
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certain brain region but fail to transmit to other regions effec-
tively to form stable memories. The normalized clustering
coefficient is a ratio of local information transfer capability
in a network to that of a random network. In AD, its increase
reflects the reinforcement of information transfer capability.
Likewise, previous studies have also found a greater clustering
coefficient and a longer absolute path length in AD, which
may indicate that the organization of the cortical network is
least optimal in AD [49].

At the regional level, several hubs identified in NC are
not shown in AD, such as precuneus (PCUN) and posterior
cingulate gyrus (PCG). These two regions also demonstrate
reduced connectivity in functionalmagnetic resonance imag-
ing (fMRI) studies in patients with amnesic mild cognitive
impairment (aMCI), a stage with high risk in developing
AD [50], which may suggest that these two regions maintain
pivotal roles in both structural and functional default mode
networks in AD [51].

The AD networks also show decreased nodal efficiency
in many cortical regions, mainly located in the bilateral
cunei (CUN), the right precuneus (PCUN.R), the bilateral
posterior cingulate gyri (PCG), the right temporal pole,
middle (TPOmid.R), and the right parahippocampal gyrus
(PHG.R). The cuneus (CUN), the precuneus (PCUN), and
the posterior cingulate gyrus (PCG) are thought to be
involved in the episodic memory information transmission
and malfunction in AD [52]. Although the degeneration of
the posterior cingulate gyrus was originally interpreted as
not being a direct consequence of degeneration in the medial
temporal lobe, recent studies have revealed that this area has
atrophy and metabolic abnormalities in incipient AD [52–
54]. In a study that examined the cingulum tract in AD, both
the anterior and posterior regions were affected [55]. The
posterior cingulate region is a key “hub” affected in AD. The

temporal pole, middle (TPOmid), and the parahippocampal
gyrus (PHG) are involved in semantic memory processing
and recognition [56] and show atrophy and neuronal loss
in AD [57, 58]. Notably, the decreased efficiency in the
temporal lobes was observed to bemainly located in the right
hemisphere. Together, the reduced nodal efficiency suggests
that possible WM degeneration in these brain regions may
negatively affect information transmission and functional
integration in AD patients.

At the local level, weaker connection (lower fiber counts)
happens predominantly in the area of the bilateral precunei
(PCUN), the right cuneus (CUN.R), the left middle temporal
gyrus (MTG.L), and left hippocampal gyrus (HIP.L). These
areas, which are mostly associated with linguistic integration,
emotion, and semantic memory [56, 59], are affected in AD
patients [57, 58]. It is worth noting that precuneus, cuneus,
and temporal lobe also show reduced nodal efficiency at the
regional level. In addition to the typicallywell-known affected
regions in AD, the right amygdala (AMYG.R) and the right
middle frontal gyrus (MFG.R) show weaker connections
as well. These regions are the structures mostly involved
in emotional processing, perceptions, psychological states,
and behavioral responses [60]. Weaker connections can
also be identified at the right thalamus (THA.R), which is
known to have a significantly reduced volume in AD [61].
Interestingly, a few regions show increased local connection
in the AD group than in the NC group, for example, the
connection between the left insula (INS.L) and left inferior
parietal lobule (IPL.L). It is possible that this may result from
the compensation to weak connections in the neighboring
regions.

Overall, the HARDI method outperforms the DTI
method in terms of differentiating AD and NC at all three
levels. At the global level, the HARDI method has more
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statistical power in distinguishing the groups for all the
measures, according to the 𝑝 values in Table 3. The group
differences of all the measures are statistically significant in
the HARDI case, while most of them are not statistically
significant in the DTI case. At the regional level, the HARDI
method detects more regions with reduced nodal efficiency.
These include the bilateral posterior cingulate gyri (PCG) and
the bilateral precunei (PCUN), while the results of the DTI
method only show the unilateral deficiency of these regions.
The results from theHARDImethod aremore consistentwith
the pathology of AD, as the bilateral posterior cingulate gyri
and precunei are both associated with memory processing
and affected inAD [62, 63]. At the local level, the twomethods
show the greatest difference. The HARDI method is able to
identify 50% more of the weaker connections in AD than
the DTI method (30 pairs versus 20 pairs). This may be

because the HARDI method is able to find the correct tract
directions at the fiber crossing regions and can find more
connections in the NC group. Specifically, the left superior
parietal gyrus (SPG.L), the right thalamus (THA.R), and
the left middle temporal gyrus (MTG.L), especially the left
hippocampus (HIP.L) and the left cuneus (CUN.L), are only
found using the HARDI method. During the early onset of
AD, the superior parietal gyrus and the middle temporal
gyrus undergo neuronal loss [64]. Besides the neocortical
atrophy, subcortical structures, such as the thalamus, also
suffer atrophy and may contribute to cognitive decline and
emotion disorder in AD [65].

Fiber count is one of the most commonly used measures
in evaluating connectivity characteristics. For example, Den-
nis et al. [66] computed graph theory metrics based on the
fiber count to track changes in both structural connectivity



Neural Plasticity 11

PreCG
(1)

SFG
dor(3)

O
RBsupb(5)

M
FG

(7)

O
RBm

id(9)

IFG
operc(1

1)

IFGtriang(1
3)

ORBinf(1
5)

ROL(17)

SM
A(1

9)

OLF(2
1)

SFGmed(2
3)

ORBmed(2
5)

REC(27)
INS(29)

ACG(31
)

M
CG(33

)
PC

G(
3
5
)

H
IP

(3
7
)

PH
G

(3
9
)

A
M

YG
(4
1

)

CAL(43)

CUN(45)

LING(47)

SOG(49
)

MOG(51
)

IO
G(53

)

FFG(55
)

PoCG(57)

SPG(59)

IPL(61)

SMG(63)

ANG(65)

PCUN(67)

PCL(69)

CA
U

(7
1

)
PU

T(
7
3

)
PA

L(
7
5

)
TH

A
(7
7

)

HES(79)STG(81)TPOsup(83)MTG(85)TPOmid(87)
ITG(89)

Pr
eC

G
(2

)
SF

G
do

r(4
)

O
RB

su
pb

(6)
M

FG
(8

)
O

RB
m

id
(1
0
)

IF
Gop

er
c(1
2
)

IF
Gt

ria
ng

(14
)

ORB
in

f(1
6
)

ROL(18)

SM
A(20

)
OLF

(22
)

SF
Gmed

(24
)

ORBmed(26
)

REC(28
)

INS(30)

ACG(3
2)

M
CG(3

4)

PCG(3
6)

H
IP(3

8)

PH
G

(4
0)

AM
YG

(4
2)

CAL(44)CUN(46)
LING(48)

SOG(50)
MOG(5

2)

IOG(5
4)

FFG(5
6)

PoCG(58)
SPG(60)
IPL(62)SMG(64)ANG(66)PCUN(68)

PCL(70)

CAU
(7
2)

PU
T(7

4)
PA

L(7
6)

TH
A

(7
8)

HES(80)

STG(82)

TPOsup(84)

MTG(86)

TPOmid(88)

ITG(90)

FRO

INS
TEM

PA
R

OCC

LIM

SBC

FRO
IN

S

TE
M

PA
R

OCC

LIM

SBC
DTI
(a)

PreCG
(1)

SFG
dor(3)

O
RBsupb(5)

M
FG

(7)

O
RBm

id(9)

IFG
operc(1

1)

IFGtriang(1
3)

ORBinf(1
5)

ROL(17)

SM
A(1

9)

OLF(2
1)

SFGmed(2
3)

ORBmed(2
5)

REC(27)
INS(29)

ACG(31
)

M
CG(33

)
PC

G(
3
5
)

H
IP

(3
7
)

PH
G

(3
9
)

A
M

YG
(4
1

)

CAL(43)

CUN(45)

LING(47)

SOG(49
)

MOG(51
)

IO
G(53

)

FFG(55
)

PoCG(57)

SPG(59)

IPL(61)

SMG(63)

ANG(65)

PCUN(67)

PCL(69)

CA
U

(7
1

)
PU

T(
7
3

)
PA

L(
7
5

)
TH

A
(7
7

)

HES(79)STG(81)TPOsup(83)MTG(85)TPOmid(87)
ITG(89)

Pr
eC

G
(2

)
SF

G
do

r(4
)

O
RB

su
pb

(6)
M

FG
(8

)
O

RB
m

id
(1
0
)

IF
Gop

er
c(1
2
)

IF
Gt

ria
ng

(14
)

ORB
in

f(1
6
)

ROL(18)

SM
A(20

)
OLF

(22
)

SF
Gmed

(24
)

ORBmed(26
)

REC(28
)

INS(30)
ACG(3

2)

M
CG(3

4)

PCG(3
6)

H
IP(3

8)

PH
G

(4
0)

A
M

YG
(4
2)

CAL(44)CUN(46)
LING(48)

SOG(50)
MOG(5

2)

IOG(5
4)

FFG(5
6)

PoCG(58)
SPG(60)
IPL(62)SMG(64)ANG(66)PCUN(68)

PCL(70)

CAU
(7
2)

PU
T(7

4)
PA

L(7
6)

TH
A

(7
8)

HES(80)

STG(82)

TPOsup(84)

MTG(86)

TPOmid(88)

ITG(90)

FRO
INS

TEM

PA
R

OCC

LIM

SBC

FRO

IN
S

TE
M

PA
R

OCC

LIM

SBC
HARDI
(b)

Figure 7: Connectograms showing significantly different connections (𝑝 < 0.05) based on the fiber counts between the AD group and the
NC group, given (a) the DTI method and (b) the HARDI method. The thickness of each line indicates the extent of the difference between
the corresponding connections in the two groups. The stronger connections (higher fiber counts between a pair of ROIs) in the AD group
are shown in blue, while the weaker connections (lower fiber counts between a pair of ROIs) are in red. Refer to Table 2 for the label of each
ROI.

and network efficiency in young healthy individuals, while
Zhan et al. [67] developed a machine learning framework to
classify different stages of AD with fiber counts as features.
However, sometimes, fiber countmay not be a suitable feature
in connectivity studies. For instance, in [68, 69], the networks
constructedwith themean FA,MD, and fiber length provided
better performance in identifying high-risk autistic infants
than fiber count. Therefore, we will consider incorporating
other network measures in our future work since they may
provide additional insights into connectivity breakdown,
especially for the case that the fiber count based networks
cannot reveal the progression of AD.

The conventional statistical analysis on network prop-
erties is often performed in a univariate manner, that is,
pairwise comparison between groups. This might overlook
the interaction among sets of connections in group differ-
ence. On the other hand, instead of doing simple pairwise
comparison, a classification framework is able to consider all
individual connection features, as well as their relationships,
for selecting the most discriminative features for classifica-
tion [68–70]. Ensemble learning algorithm, such as random
forest, is one of this type of classification algorithms that can
be applied to identify discriminative connectivity patterns in
a multivariate manner for AD orMCI classification.This will
be our future work.

We do acknowledge that there are some limitations in this
study. Firstly, the sample size of our study is quite small. In
the future, more participants need to be recruited to increase
the statistic power of the results. Secondly, the lack of gold

standard for regional parcellationmakes the definition of ROI
not very precise, especially on the boundary. Registration
error may also play a role in this issue.Therefore, it may affect
the accuracy in the analysis of connectivity networks [71,
72]. Thirdly, the underlying biological relationship between
the network properties and the AD progression is currently
unclear. Studying the intermediate stage, for example, MCI,
may be beneficial for further understanding of the relation-
ship [73, 74]. In the future work, we will include participants
from this stage to perform a more comprehensive study on
this topic.

5. Conclusion

In summary, we performed a systematic study on the WM
connectivity comparison at three hierarchical levels (global,
regional, and local) between the two groups: the AD group
and the NC group. The analysis was conducted using trac-
tography data generated using two diffusion models (DTI
and HARDI) to evaluate the influence of tractography on
the network analysis. Globally, both the AD group and the
NC group demonstrate the small-world topology. However,
many global measures, such as global efficiency, average
local efficiency, and normalized shortest path length, were
suboptimal in the AD group. Regionally, the AD group had
the reduced number of hubs and significantly decreased
nodal efficiency in the precuneus and the temporal lobe
(the well-known atrophic regions in AD). Locally, weaker
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connections exist in these regions, as well as regions in the
limbic system and the subcortex, such as hippocampus and
thalamus.The HARDI method outperforms the DTI method
at all three levels since the advanced model in the HARDI
method can more accurately reflect the underlying complex
fiber configurations.
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