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Introduction
PP2A (protein phosphatase 2A) is a large family of heterotri-
meric phosphatases that account for the majority of serine/ 
threonine phosphatase activity and has important roles in mitotic 
progression in eukaryotic cells (Shi, 2009). The PP2A complex 
consists of a structural A subunit, a catalytic C subunit, and a 
regulatory B subunit, which binds to the AC heterodimer. These 
B subunits regulate both the substrate specificity and localiza-
tion of the PP2A complexes.

Two B subunits, Cdc55 (B) and Rts1 (B’), have been iden-
tified in budding yeast. Cdc55 and Rts1 bind to the core PP2A 
subunits in a mutually exclusive manner, and cdc55 and rts1 
exhibit distinct phenotypes, suggesting that they control differ-
ent functions of PP2A (Shu et al., 1997; Zhao et al., 1997; Jiang, 
2006). Cdc55 is important for mitosis, stress response, and 
polarized growth (Healy et al., 1991; Lin and Arndt, 1995; 
Minshull et al., 1996; Evans and Stark, 1997; Wang and Burke, 
1997; Yang et al., 2000; Jiang, 2006; Queralt et al., 2006; Wang 
and Ng, 2006; Yellman and Burke, 2006; Chiroli et al., 2007). 
Cdc55 localizes to various sites, including the bud cortex, the bud 
neck, the vacuolar membrane, and in the nucleus, and recruits 

other PP2A subunits (Gentry and Hallberg, 2002). Furthermore, 
the dephosphorylation of Cdc55–PP2A substrates are cell cycle 
regulated (Queralt et al., 2006; Pal et al., 2008; Wicky et al., 
2011). Thus, it is important to understand the spatiotemporal 
regulation of Cdc55. However, little is known about the mecha-
nisms that control Cdc55 localization and/or activity.

Recent studies defined Zds1 (zillion different screens 1) 
and Zds2 proteins as regulators of Cdc55 (Yasutis et al., 2010; 
Wicky et al., 2011). Zds1 and Zds2 are paralogues and are 
widely conserved in fungi, including the fission yeast Schizo-
saccharomyces pombe (Yakura et al., 2006). As implied by their 
names, Zds1 and Zds2 have been identified as multicopy sup-
pressors of mutants involved in divergent cellular processes, in-
cluding cell cycle, transcription, and translation, cell polarity, 
and stress response (Bi and Pringle, 1996; Yu et al., 1996; 
Mizunuma et al., 1998; Schwer et al., 1998; Roy and Runge, 
1999, 2000; Griffioen et al., 2001, 2003; Sekiya-Kawasaki  
et al., 2002; Hsu et al., 2004; Estruch et al., 2005; Zanelli and 
Valentini, 2005; Yokoyama et al., 2006). However, the molecular 
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(Straight et al., 1999; Visintin et al., 1999). Phosphorylation of 
Net1/Cfi1 by Cdk1 results in Cdc14 release and activation dur-
ing anaphase (Azzam et al., 2004). Cdc55 antagonizes this 
Net1/Cfi1 phosphorylation and prevents Cdc14 release, and 
Cdc55–PP2A activity toward Net1/Cfi1 is inhibited at the onset 
of anaphase (Queralt et al., 2006). Surprisingly, Zds1/Zds2 play 
opposite roles in mitotic exit. In contrast to Cdc55, Zds1/Zds2 
are required for Net1/Cfi1 phosphorylation and optimal Cdc14 
release from the nucleolus, and zds1 zds2 shows a severe 
defect in mitotic exit (Queralt and Uhlmann, 2008). Because 
overexpression of Zds1 partially inhibits Cdc55–PP2A catalytic 
activity toward Net1 and because the mitotic exit defect of 
zds1 zds2 is fully rescued by deletion of CDC55, it is pro-
posed that Zds1/Zds2 are inhibitors of Cdc55–PP2A activity 
(Queralt and Uhlmann, 2008).

Here, we propose that Zds1/Zds2 primarily control Cdc55 
localization. Cortical and cytoplasmic localization of Cdc55 re-
quires Zds1/Zds2 because Cdc55 accumulates in the nucleus in 
the absence of Zds1/Zds2. By genetically manipulating nucleo-
cytoplasmic distribution of Cdc55, we show that Zds1/Zds2 act 
as positive regulators for cytoplasmic Cdc55–PP2A but as neg-
ative regulators for nuclear Cdc55–PP2A functions. Our analy-
sis reveals the importance of the regulation of PP2A localization 
for proper mitotic progression.

Results and discussion
Zds1 and Zds2 are required for 
cytoplasmic localization of Cdc55
We first examined subcellular localization of Zds1, Zds2, and 
Cdc55. To ensure that the proteins were expressed at the native 
level, we added a GFP sequence to the genes encoding Cdc55, 
Zds1, and Zds2 at their endogenous locus. These GFP fusion 
constructs were fully functional.

As it has been previously reported with exogenously  
expressed GST-Zds1, GST-Zds2 (Bi and Pringle, 1996), and 
Zds2-i-9×myc (Yasutis et al., 2010), both Zds1-GFP and Zds2-
GFP localized to the bud cortex of small to medium budded 
cells (Fig. 1 A and Fig. S1). We also observed bud neck localization 
of Zds1-GFP and Zds2-GFP in late mitotic cells (Fig. 1 A and 
Fig. S1), which is consistent with the previous observation of 
GST-Zds1 localization (Bi and Pringle, 1996). Similarly, Cdc55-
GFP localized to the bud cortex of small to medium budded 
cells and to the bud neck in late mitotic cells that is consistent 
with a previous study using GFP-Cdc55 (Fig. 1 B; Gentry and 
Hallberg, 2002). Zds1, Zds2, and Cdc55 also exist in the cyto-
plasm and are excluded from the vacuole (Fig. 1, A and B).

Interestingly, Zds1 and Zds2 were excluded from the  
nucleus, as judged by DAPI staining of the nucleus through-
out the cell cycle (Fig. 1 A and Fig. S1). Nuclear exclusion 
of Zds1-GFP was also observed when it was highly over
expressed under a strong GAL1 promoter. Bi and Pringle 
(1996) also reported that GST-Zds1 and GST-Zds2 are exclu-
sively cytoplasmic and that nuclear localization was hardly 
detected. These observations suggest that Zds1 and Zds2 most 
likely function at the bud cortex and in the cytoplasm but not 
in the nucleus. In contrast, Cdc55-GFP was localized also in the  

mechanism by which Zds1/Zds2 regulate such divergent pro-
cesses remains a long-standing mystery.

Accumulating evidences suggest that Zds1/Zds2 directly 
regulate Cdc55–PP2A function. In large scale proteomics stud-
ies, both Zds1 and Zds2 were affinity purified with Cdc55–PP2A 
(Gavin et al., 2002; Ho et al., 2002; Krogan et al., 2006; Collins 
et al., 2007). A more recent study revealed that the Zds2  
protein directly binds to Cdc55 in vitro via a highly conserved 
C-terminal region (Yasutis et al., 2010). Furthermore, Zds1 was 
shown to form a tight stoichiometric complex with Cdc55- 
containing PP2A (Queralt and Uhlmann, 2008; Wicky et al., 2011). 
Most importantly, association of Zds1 to PP2A is exclusively 
mediated via Cdc55 (Wicky et al., 2011). Thus, Zds1/2 is an  
attractive candidate that specifically controls Cdc55–PP2A and 
not Rts1–PP2A.

The best-characterized functions of Cdc55 and Zds1/Zds2 
are their roles in mitotic entry (Wang and Burke, 1997; McMillan 
et al., 1999b; Yang et al., 2000; Pal et al., 2008; Yasutis et al., 
2010; Wicky et al., 2011). Mitotic entry is driven by activation 
of the Cdk1 (Nurse, 1975). In budding yeast, Cdc28 (Cdk1)  
activation is prevented by the Swe1 kinase (Wee1 homologue), 
which phosphorylates Cdc28 on tyrosine 19 (Tyr-19; Booher  
et al., 1993; Lew and Reed, 1993), whereas Mih1 phosphatase 
(Cdc25 homologue) removes this inhibitory phosphorylation to 
promote mitotic entry (Russell et al., 1989). Because polarized 
growth and cell cycle are tightly coupled in budding yeast and 
activation of mitotic Cdc28 depolarizes cell polarity, mutants 
defective in mitotic entry often lead to prolonged apical bud 
growth (Lew and Reed, 1993). Both Cdc55 and Zds1/Zds2 are 
important for mitotic entry, as the cdc55 deletion or zds1 
zds2 double mutant leads to abnormally elongated cell mor-
phology as a consequence of prolonged G2 delay (Healy et al., 
1991; Bi and Pringle, 1996; Yu et al., 1996). In these mutants, 
Swe1 is stabilized (Yang et al., 2000), and Mih1 is hyperphos-
phorylated (Pal et al., 2008; Wicky et al., 2011). Furthermore, 
the hyperelongated morphology of cdc55 and zds1 zds2 is 
rescued either by deletion of SWE1 (McMillan et al., 1999a; 
Yang et al., 2000), by overexpression of MIH1 (McMillan  
et al., 1999a), or by introduction of an unphosphorylatable 
CDC28Y19F mutation (Wang and Burke, 1997; McMillan et al., 
1999a; Wicky et al., 2011). Thus, Zds1/Zds2 are thought to 
function positively with Cdc55–PP2A to promote mitotic entry 
(Yasutis et al., 2010; Wicky et al., 2011).

Although Zds1/Zds2 forms a tight complex with Cdc55 
and function together with Cdc55–PP2A for mitotic entry, it is 
not always promoting Cdc55–PP2A functions. For example, 
Cdc55 is required for spindle assembly checkpoint (Minshull  
et al., 1996; Wang and Burke, 1997; Yellman and Burke, 2006), 
but Zds1/Zds2 are not required for the spindle assembly check-
point (Wang and Burke, 1997). Furthermore, a recent paper 
demonstrated that Zds1/Zds2 is an inhibitor of Cdc55–PP2A 
during mitotic exit (Queralt and Uhlmann, 2008).

Cdc55–PP2A prevents mitotic exit by inhibition of a Cdc14 
phosphatase (Queralt et al., 2006; Wang and Ng, 2006; Yellman 
and Burke, 2006). Cdc14 promotes mitotic exit by counteract-
ing with Cdc28-dependent phosphorylation (Visintin et al., 1998). 
Cdc14 is kept inactive in the nucleolus by its inhibitor Net1/Cfi1 

http://www.jcb.org/cgi/content/full/jcb.201101134/DC1
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Thus, cortical and bud neck localization of Zds1 and Cdc55 
is interdependent.

Interestingly, Cdc55-GFP accumulated more in the nucleus 
in the zds1 zds2 cells (Fig. 1 C). In contrast, overexpression 
of ZDS1 from a strong GAL1 promoter resulted in enhance-
ment of cortical, cytoplasmic, and vacuolar membrane localiza-
tion of Cdc55-GFP and a reduction of the GFP signal from the 
nucleus (Fig. 1 C).

Quantification of mean GFP fluorescence intensity in the 
nucleus and in the cytoplasm further confirmed that Zds1/Zds2 
affect the nuclear to cytoplasmic ratio of Cdc55-GFP. In wild-type 
cells, Cdc55-GFP was more concentrated in the nucleus for cells 
both in G1 and G2 than cells in mitosis (Fig. 1 D). Reduction of 
nuclear Cdc55-GFP signal in mitosis was dependent on Zds1/
Zds2 (Fig. 1 D). Nuclear Cdc55-GFP signal was significantly  
increased not only in mitotic cells but also in G2 cells for the 
zds1 zds2 strain (Fig. 1 D), suggesting that Zds1/Zds2 pre-
vent nuclear accumulation of Cdc55 throughout the cell cycle. 

nucleus (Fig. 1 B). Nuclear localization of Cdc55-GFP was 
observed throughout the cell cycle, which is consistent with 
the previous study using GFP-Cdc55 (Gentry and Hallberg, 
2002) or 3HA-Cdc55 (Queralt et al., 2006) and with the fact 
that several Cdc55–PP2A targets, such as Esp1 and Net1, are 
localized in the nucleus or the nucleolus (Queralt et al., 2006; 
Clift et al., 2009).

To gain further insight into Zds1 and Cdc55 localiza-
tion, we examined the interdependence of their localization. 
Localization of Zds1-GFP to the bud cortex and to the bud 
neck was severely impaired in cdc55 but still remained  
excluded from the nucleus (Fig. S2). We also examined the 
localization of Zds1C800-GFP, which lacks the C-terminal 
Cdc55-binding domain (Yasutis et al., 2010). Zds1C800-
GFP localization to the bud cortex and at the bud neck was 
also defective but still excluded from nucleus (Fig. S2).  
Similarly, Cdc55-GFP failed to localize to the bud cortex  
and at the bud neck in the zds1 zds2 cells (Fig. 1 C).  

Figure 1.  Localization of Zds1 and Cdc55. (A) Cell cycle localization of endogenous Zds1-GFP. Cells were fixed with formaldehyde and stained with 
DAPI. (B) Cell cycle localization of endogenous Cdc55-GFP. In live cells, DNA was stained with Hoechst 33258. (C) Nuclear localization of Cdc55-GFP is 
affected in zds1 zds2 cells and in the cells overexpressing Zds1 (GAL1-ZDS1). (D) Nuclear accumulation of Cdc55-GFP is prevented by Zds1 and Zds2. 
The ratio of mean fluorescence intensity of nuclear (Nuc) and cytoplasmic (Cyt) Cdc55-GFP in each individual cell was plotted. Horizontal lines indicate 
means. n = 8–13 for each category. G1, unbudded cells; G2, budded with a single nucleus; M, large budded cells with dividing or divided nuclei. P-value 
was calculated by Student’s unpaired t test.

http://www.jcb.org/cgi/content/full/jcb.201101134/DC1
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export signal (NES; AAALALKLAGLNI; Hodel et al., 2006) to 
Cdc55-GFP, we were able to make a cdc55-NES mutant, which  
is constitutively cytoplasmic (Fig. 2 B) even in the absence of both 
Zds1/Zds2 (Fig. 2 C). We also made a cdc55-NLS mutant by the 
addition of a strong NLS of the SV40 antigen (AAAPKKKRKVG; 
Hodel et al., 2006), which is constitutively nuclear (Fig. 2 B).  
With these unique cdc55 mutants, we are now able to test our  
hypothesis that nucleocytoplasmic distribution of Cdc55 under the 
control of Zds1 is important for mitotic progression.

These observations prompted us to test whether Zds1/Zds2  
promote mitotic progression by preventing nuclear accumulation 
of Cdc55.

CDC55 mutants specifically targeted to 
the cytoplasm or the nucleus
To test whether the nucleocytoplasmic distribution of Cdc55 is 
important for proper mitotic progression, we first generated two 
novel mutants of CDC55 (Fig. 2 A). By adding a strong nuclear 

Figure 2.  Generation of nuclear and cytoplasmic 
Cdc55 mutants. (A) Schematic representation of 
Cdc55 mutants. (B) Localization of Cdc55-NLS and 
Cdc55-NES in living cells. (C) Localization of Cdc55 
and Cdc55-NES in zds1 zds2 cells. For all images in 
B and C, the DNA was stained with Hoechst 33258.
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mitotic entry. Indeed, both the abnormally elongated morphology 
(Fig. 3 B) and elevated phosphorylation of Cdc28-Y19 in zds1 
zds2 cells (Fig. 3 D) were almost fully rescued by the cdc55-
NES mutation. Furthermore, the cold-sensitive growth defect of 
zds1 zds2 was also rescued by the cdc55-NES (Fig. 3 A). 
Thus, the cytoplasmic localization of Cdc55 mediated by Zds1/
Zds2 is required and sufficient for normal mitotic entry. The 
finding that the cdc55-NES mutation bypassed the requirement 
of Zds1/Zds2 for mitotic entry suggests that the most important 
function of Zds1/Zds2 in mitotic entry is to promote Cdc55 ex-
port from the nucleus or to maintain Cdc55 in the cytoplasm.

Nuclear Cdc55 interferes with mitotic exit
It is known that Cdc55–PP2A is an inhibitor of mitotic exit 
(Queralt et al., 2006; Wang and Ng, 2006; Yellman and Burke, 
2006). Cdc55 inhibits Cdc14 release from the nucleolus, a key 
step for mitotic exit, by preventing Net1/Cfi1 phosphorylation. 
In contrast, Zds1/Zds2 were recently shown to be activators of 
mitotic exit (Queralt and Uhlmann, 2008). Because Zds1/Zds2 
and Cdc55 physically interact and the mitotic exit defect of the 
zds1 zds2 cells was suppressed by deletion of CDC55, it has 
been proposed that Zds1/Zds2 are inhibitors of Cdc55–PP2A 
activity (Fig. 4 A).

To examine the role of Cdc55 and Zds1/Zds2 proteins in 
mitotic exit, we first tested for genetic interactions using LTE1 
deletion strains. Lte1 is a nonessential component of the mitotic 
exit network and shows synthetic lethality with genes involved in 
the early anaphase release of Cdc14 (FEAR) pathway (Stegmeier 
et al., 2002). Consistent with the requirement of Zds1/Zds2 in 
the FEAR pathway, we found a synthetic lethality between 
lte1 and zds1 zds2 (Fig. 4 B). We hypothesized that this 
synthetic lethality is derived from the nuclear accumulation of 
Cdc55. Consistent with our hypothesis, cdc55-NLS showed 
synthetic lethality with lte1 (Fig. 4 B). In contrast, cdc55-NES 
showed no synthetic growth defects with lte1 (Fig. 4 B).

To further confirm that nuclear Cdc55 is preventing the 
FEAR pathway, we analyzed the timing of Cdc14 release from 
the nucleolus using spindle length as an internal marker for  
mitotic progression. Wild-type, cdc55, and cdc55-NES cells 
partially released Cdc14 in early anaphase (spindle length of  
3–7 µm) and fully released Cdc14 in late mitosis (spindle length 
>7 µm; Fig. 4 C). In contrast, Cdc14 release in early anaphase 
was significantly impaired in zds1 zds2 and cdc55-NLS cells 
(Fig. 4 C). Furthermore, Cdc14 release was partially impaired 
in the later stages of mitosis in zds1 zds2 and cdc55-NLS 
cells (Fig. 4 C). These results suggest that nuclear Cdc55 inter-
feres with mitotic exit by inhibiting the release of Cdc14 from 
the nucleolus. In support of this hypothesis, artificial exclusion 
of Cdc55 from the nucleus by the cdc55-NES mutation fully res-
cued Cdc14 release defects of the zds1 zds2 mutant (Fig. 4 C). 
Thus, exclusion of Cdc55 from the nucleus is the key function 
of Zds1/Zds2 to promote mitotic exit.

Zds1/Zds2 promote mitotic entry via 
Cdc55 function in the cytoplasm
In this study, we show that Zds1/Zds2 proteins promote cyto
plasmic functions of Cdc55–PP2A (Fig. 5). In the absence of 

Cytoplasmic Cdc55 and Zds1/Zds2 
promote mitotic entry
In our strain background (BY4741), all the cdc55, zds1, 
zds2, or zds1 zds2 strains were viable. However, cdc55 
and zds1 zds2 strains exhibited severe growth defects at a 
lowered temperature (Fig. 3 A) as it has been previously de-
scribed in the other genetic background (Bi and Pringle, 1996; 
Minshull et al., 1996). The cold-sensitive growth of these mu-
tants likely reflects defective mitotic entry, as the cold-sensitive 
growth defect of cdc55 is rescued by a CDC28Y19F mutation 
(Wang and Burke, 1997). Consistent with their positive roles in 
mitotic entry, both cdc55 and zds1 zds2 exhibited abnor-
mally elongated bud morphology at all the temperatures tested 
(Fig. 3 B and Fig. S3 B). In agreement with a similar domain 
analysis on Zds2 (Yasutis et al., 2010), we also found that a 
conserved Cdc55-binding region of Zds1 was important for 
Zds1 functions. In a zds2 background, Zds1 mutants lacking 
the Cdc55-binding domain (zds1C800 and zds1C400) ex-
hibited growth defects at a low temperature and a hyperelon-
gated morphology similar to zds1 (Fig. S3 C). Furthermore, 
overexpression of the Cdc55-binding domain of Zds1 (aa 801– 
913) was sufficient to rescue the cold sensitivity and elongated 
morphology of zds1 zds2 cells (Fig. S3 D). Thus, Zds1 
function in mitotic entry is likely mediated via Cdc55 binding.

cdc55-NES mutant cells did not display abnormal mor-
phology. However, cdc55-NLS mutant cells displayed a highly 
elongated morphology like cdc55 or zds1 zds2 mutants 
(Fig. 3 B). To confirm that the elongated morphology is caused 
by a delay in mitotic entry, we deleted SWE1 from these strains. 
Consistent with the idea that Zds1/Zds2 and Cdc55 promote mi-
totic entry via prevention of the inhibitory phosphorylation of 
Cdc28 by Swe1 (Fig. 3 C), deletion of SWE1 was sufficient to 
suppress the elongated morphology of cdc55, zds1 zds2, 
and cdc55-NLS cells (Fig. 3 B).

Next, we confirmed that the elongated morphology of 
cdc55 and zds1 zds2 mutants was indeed caused by abnor-
mal phosphorylation of Cdc28 at Tyr-19 (Minshull et al., 1996; 
Yang et al., 2000; Pal et al., 2008). We synchronized the cells in 
G2/M by nocodazole (a microtubule-destabilizing drug) treat-
ment for 3 h and monitored phosphorylation status of Cdc28 by 
Western blotting using a phosphospecific antibody specific to 
Cdc28-Y19. As expected, the levels of Cdc28-Y19 phosphory-
lation were high in the cells lacking the Cdc28 phosphatase 
mih1 and were absent in the swe1 cells (Fig. 3 D). Mutants 
that showed the elongated morphology (cdc55, zds1 zds2, 
and cdc55-NLS) have significantly elevated levels of Cdc28-
Y19 phosphorylation, suggesting a prolonged delay in G2, and 
this phosphorylation was fully eliminated by deleting SWE1 in 
these strains (Fig. 3 D). These morphological and biochemical 
data are consistent with the idea that both Cdc55 and Zds1/Zds2 
function together to inactivate Swe1 for mitotic entry.

The observation that the cdc55-NLS (nuclear), but not 
cdc55-NES (cytoplasmic), mutant was defective in mitotic entry 
suggests that the cytoplasmic localization of Cdc55 is important 
for mitotic entry. To test this hypothesis, we examined whether 
cdc55-NES can bypass the requirement of Zds1/Zds2 not only 
for cytoplasmic localization of Cdc55 (Fig. 2 C) but also for  

http://www.jcb.org/cgi/content/full/jcb.201101134/DC1
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Figure 3.  Zds1/Zds2 and cytoplasmic Cdc55 promote mitotic entry. (A) Serial dilutions of indicated strains spotted on YPD (yeast peptone dextrose) 
at different temperatures. (B) Representative images of cells with the indicated genotypes in the presence (top row) or absence (bottom row) of SWE1 
except for cdc55-NES zds1 zds2. Cells were grown in YPD media at 24°C. (C) Our model of mitotic entry regulation by Zds1/Zds2 and cytoplasmic 
Cdc55. (D) Cytoplasmic Cdc55 is required for dephosphorylation of Cdc28-Y19. Cells were treated with 15 µg/ml nocodazole for 3 h to prevent mitotic 
progression before cell lysate extraction for Western blotting. Antiphospho–Cdc2-Y15 and antitubulin (loading control) antibodies were used for detection.  
P, phosphorylation. WT, wild type.

Zds1/Zds2, Cdc55 accumulates in the nucleus, resulting in defec-
tive mitotic entry. Reduction of cytoplasmic Cdc55 is likely the 
reason for the G2 delay because the cdc55-NLS mutant, whose 
gene product is dominantly nuclear, phenocopies zds1 zds2.  

The G2 delay is not caused by the nuclear accumulation of Cdc55 
because the elongated bud morphology of cdc55-NLS was res-
cued by an extra copy of CDC55 (Fig. S2). In contrast, the cdc55-
NES mutant, whose gene product is dominantly cytoplasmic, is 
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deletion of SWE1. Dephosphorylation of Mih1 is regulated by 
Cdc55 (Pal et al., 2008; Wicky et al., 2011). Therefore, Mih1 is 
also a target of Zds1/Zds2–Cdc55–PP2A. However, mih1 cells 
have a relatively milder defect in mitotic entry (Russell et al., 
1989; Pal et al., 2008) compared with the cdc55 or the zds1 
zds2, suggesting that Mih1 is not the only target. It is impor-
tant to mention that both Swe1 and Mih1 are regulated by nucleo-
cytoplasmic transport, and a swe1 mutant defective in nuclear 
export is a more potent inhibitor of mitotic entry (Keaton et al., 
2008). Thus, we speculate that Swe1 inactivation by Zds1/
Zds2–Cdc55–PP2A takes place in the cytoplasm, which is also 

fully competent in mitotic entry and can even rescue the mitotic 
entry defects of zds1 zds2 cells. Our data suggest that the pri-
mary function of Zds1/Zds2 during the cell cycle is to keep 
Cdc55–PP2A in the cytoplasm because not only the mitotic entry 
defect but also the cold-sensitive growth defect of the zds1 
zds2 cells was rescued by the cdc55-NES. This bypass effect 
also suggests that Zds1/Zds2 is not required for the catalytic  
activity or substrate specificity of Cdc55–PP2A in the cytoplasm.

Our genetic data suggest that the critical target of Cdc55 
in mitotic entry is Swe1 because mitotic entry defects of cdc55, 
zds1 zds2, and cdc55-NLS are almost fully rescued by  

Figure 4.  Nuclear Cdc55 prevents mitotic exit by inhibiting Cdc14 release from the nucleolus. (A) Model of Cdc14 release controlled by Cdc55 and 
Zds1/Zds2 proteins. (B) Nuclear Cdc55 is toxic to lte1 mutant cells. Serial dilutions of the indicated strains containing a complementing LTE1 plasmid 
(with a URA3 marker) were grown on YPD plates or plates containing 5-fluoroorotic acid (5-FOA) to counter the select LTE1 plasmid at 30°C for 3 d (top). 
cdc55-NES and lte1 are not synthetically lethal. Serial dilutions of the indicated strains were spotted on YPD at 24°C (bottom). (C) Quantification of 
Cdc14 release during anaphase. Mitotic cells were categorized into short spindle (0–3 µm), medium (med) spindle (3–7 µm), and long spindle (>7 µm). In 
each category, Cdc14 release status was classified as partial release or full release. Error bars are SEM. n = 133 (wild type), 33 (cdc55), 122 (cdc55-NES),  
123 (cdc55-NLS), 107 (zds1 zds2), and 65 (zds1 zds2 cdc55-NES). Examples of wild-type Cdc14 localization during anaphase are on the top right, 
and an example of a midanaphase cdc55-NLS cell is shown on the bottom right. Cdc14 and tubulin were visualized by indirect immunofluorescence 
microscopy using the anti-Cdc14 antibody and -tubulin antibody. DNA was stained with DAPI. MEN, mitotic exit network.
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sufficient for inhibiting Cdc55–PP2A in the nucleus. Second, 
nuclear-accumulated Cdc55-NLS dominantly inhibits mitotic 
exit even in the presence of Zds1/Zds2, suggesting that nuclear 
Cdc55–PP2A activity is not effectively inhibited by Zds1/Zds2. 
Third, the nuclear Cdc55 signal is significantly reduced during 
mitosis in a Zds1/Zds2-dependent manner. It is important to 
mention that reduction of Cdc55 intensity from the nucleus  
was underestimated in our assay because it was impossible to  
exclude contaminating strong cytoplasmic signals from other  
focal planes with our standard fluorescent microscope. Our  
genetic data are also consistent with our hypothesis that nuclear 
exclusion of Cdc55 is the key function of Zds1/Zds2 because 
zds1 zds2 defects in Cdc14 release are fully rescued by the 
cdc55-NES mutation.

All these lines of evidence suggest that either cytoplasmic 
Cdc55 or nuclear exclusion of Cdc55 is important for mitotic 
exit. We favor the latter hypothesis because deletion of CDC55 
is sufficient for rescuing the mitotic exit defects of zds1 zds2 
(Queralt and Uhlmann, 2008), and overexpression of CDC55 
prevents mitotic exit and is toxic to mitotic exit network  
mutants (Wang and Ng, 2006).

Evolutional conservation of  
PP2A regulation
Recent studies revealed that the PP2A–B55 (a counterpart of 
PP2A–Cdc55) complex is the major regulator of mitotic entry and 
exit in animal cells (Mochida et al., 2009; Schmitz et al., 2010). In 
the Xenopus laevis egg and in HeLa cells, PP2A–B55 activity is 
directly inhibited by Arpp19 and -endosulfine during mitosis 
(Gharbi-Ayachi et al., 2010; Mochida et al., 2010). Budding yeast 
Igo1/Igo2 share sequence homology to Arpp19 and -endosulfine 
(Dulubova et al., 2001; Talarek et al., 2010), suggesting a possible 
conservation of PP2A inhibition during mitosis.

On the other hand, Zds1 is highly conserved in fungi, in-
cluding pathogenic Candida albicans and Cryptococcus neofor-
mans, but no obvious homologue was found in higher eukaryotes. 
Considering the fact that a key function of Zds1/Zds2 is to regu-
late the nucleocytoplasmic distribution of Cdc55–PP2A, it is pos-
sible that Zds1/Zds2 has uniquely evolved in fungi, which undergo 
“closed mitosis,” but is not required in higher eukaryotes, which 
undergo “open mitosis.” Alternatively, it is also possible that func-
tional counterparts to the zillion different screens protein family 
exist in higher eukaryotes but are not easily recognizable by 
their primary sequences, such as the case for Cdk inhibitors.

Materials and methods
Yeast genetics
All yeast strains used in this study were isogenic or congenic to BY4741 
(MATa leu20 his31 met150 ura30, obtained from Thermo Fisher 
Scientific). Standard yeast genetics was used to generate the strains. Yeast 
strains are listed in Table S1. PY3295 and SY strains were gifts from  
D. Pellman (Dana-Farber Cancer Institute, Boston, MA). D. Lew (Duke Uni-
versity, Durham, NC) provided a SWE1 gene knockout plasmid. Gene de-
letions or modifications were performed with PCR-mediated one-step gene 
replacement using pFA6a vectors provided by J. Pringle (Stanford Univer-
sity, Stanford, CA; Longtine et al., 1998) and confirmed by PCR. For tag-
ging CDC55, ZDS1, and ZDS2 with GFP, a flexible amino acid linker 
(GGSGGS) was introduced between the target protein and GFP. For gen-
eration of the cdc55-NES and cdc55-NLS mutants, the NES sequence 

consistent with the fact that Swe1-inactivating kinases are also 
in the cytoplasm (McMillan et al., 1999a; Shulewitz et al., 1999; 
Asano et al., 2005).

The role and significance of the bud tip and the bud neck 
localization of Zds1/Zds2 and Cdc55 remain an area of interest 
for future research. Zds1/Zds2 interact with cell polarity pro-
teins of the Cdc42- and the Rho1-signaling pathways both 
physically and genetically (Bi and Pringle, 1996; Drees et al., 
2001; Sekiya-Kawasaki et al., 2002), we speculate that Zds1/Zds2 
also have direct roles in cell polarity beyond controlling Cdk1 
activity. Alternatively, cell polarity factors might influence cell 
cycle progression via Zds1/Zds2–Cdc55 regulation.

Zds1/Zds2 promote mitotic exit by nuclear 
exclusion of Cdc55
It was proposed that Zds1/Zds2, together with the separase 
Esp1, inhibit Cdc55–PP2A catalytic activity to promote Cdc14 
release in anaphase (Queralt and Uhlmann, 2008). Given the 
fact that Esp1, Cdc55, and its substrate Net1 are all in the nu-
cleus and/or nucleolus, the Zds1/Zds2-mediated inhibition of 
Cdc55–PP2A must occur within the nucleus. Our genetic data 
are generally consistent with Queralt and Uhlmann (2008), and 
we do not exclude the possibility that Zds1/Zds2 directly inhibit 
Cdc55–PP2A activity specific to Net1, but the following evi-
dence supports our hypothesis that Zds1/Zds2 promotes mitotic 
exit primarily by excluding Cdc55 from the nucleus (Fig. 5).

First, the majority of Zds1/Zds2 is in the cytoplasm. Given 
that Zds1 forms a stoichiometric complex with Cdc55–PP2A, it 
is unlikely that a minor fraction of Zds1/Zds2 in the nucleus is 

Figure 5.  Summary and model of Zds1/Zds2–Cdc55–PP2A regulation of 
mitosis. (A) Summary table of Cdc55 localization and mitotic entry and 
exit defects. (B) A model of the regulation of mitosis by Cdc55 and Zds1/
Zds2 proteins. When bound to Zds1/Zds2, Cdc55 functions in the cyto-
plasm to promote mitotic entry by activating the Cdk. Exclusion of Cdc55 
from the nucleus by Zds1/Zds2 proteins is also required for mitotic exit by 
preventing Cdc14 release. In the absence of Zds1/Zds2, Cdc55 remains 
in the nucleus, leading to a delay in mitotic entry and mitotic exit. See 
Results and discussion for more details. WT, wild type.

http://www.jcb.org/cgi/content/full/jcb.201101134/DC1
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(AAALALKLAGLNI) and SV40 NLS sequence (AAAPKKKRKVG) were  
directly introduced after the GFP sequence of CDC55-GFP by PCR-mediated 
one-step gene replacement (Longtine et al., 1998).

Biochemistry
Protein extracts were prepared as previously described (von der Haar, 
2007). In brief, cells were treated with the solution containing 0.1 N 
NaOH, 0.05 M EDTA, 2% SDS, and 2% -mercaptoethanol and immedi-
ately boiled for 10 min. The samples were neutralized with acetic acid, 
and SDS sample buffer (Boston Bioproducts) was added. Rabbit antiphos-
pho–Cdc2-Y15 antibody (Cell Signaling Technology) and mouse anti-GFP 
antibody (Millipore) were purchased from the commercial source. Rabbit 
anti-Rho1 antibody was custom made. Rabbit antitubulin antibody is a gift 
from B. Goode (Brandeis University, Waltham, MA). HRP-conjugated second-
ary antibodies were obtained from Millipore, and proteins were detected 
by an enhanced chemiluminescence system (ECL Plus; GE Healthcare).

Fluorescence microscopy
Fluorescence images were acquired with a fluorescence microscope (Eclipse 
E600; Nikon) equipped with a charge-coupled device camera (DC350F; 
Andor) with 100×, NA of 1.45, or 60×, NA 1.4, oil objectives. The images 
were captured and analyzed with NIS-Elements software (Nikon), and the 
figures were processed and assembled in Photoshop (Adobe).

For indirect immunofluorescence methods, we fixed the cells with 
4% formaldehyde for 10 min at room temperature, and the cell walls were 
digested with Zymolyase 20T (Zymo Research). The mitotic spindle was  
immunostained with the YOL1/34 rat monoclonal antibody (AbD Serotec) 
followed by an FITC-conjugated anti–rat antibody (Jackson ImmunoResearch 
Laboratories, Inc.). Cdc14 was immunostained with sc-12045 polyclonal anti-
body (Santa Cruz Biotechnology, Inc.) followed by a CY3-conjugated anti–
goat antibody (Rockland Immunochemicals, Inc.). DAPI was used to 
visualize the nucleus in fixed cells. For live-cell imaging, all strains were 
grown in synthetic media at room temperature. We used Hoechst 33258 
(AnaSpec) at a 2-µM concentration in PBS to stain the nucleus. For quantify-
ing the nucleocytoplasmic ratio of Cdc55-GFP, mean nuclear fluorescence 
intensity and mean cytoplasmic fluorescence intensity were calculated with 
NIS-Elements software.

Online supplemental material
Fig. S1 shows that Zds2, like Zds1, is excluded from the nucleus. Fig. S2 
shows that cortical and bud neck localization of Zds1 and Cdc55 are  
interdependent. Fig. S3 shows that the conserved Cdc55-binding region of 
Zds1 is important for Zds1 function in mitotic entry. Table S1 contains the 
list of yeast strains used in this study. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.201101134/DC1.
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