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Topological analysis of protein co-abundance
networks identifies novel host targets important
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Abstract

Background: High-throughput methods for obtaining global measurements of transcript and protein levels in
biological samples has provided a large amount of data for identification of ‘target’ genes and proteins of interest.
These targets may be mediators of functional processes involved in disease and therefore represent key points of
control for viruses and bacterial pathogens. Genes and proteins that are the most highly differentially regulated are
generally considered to be the most important. We present topological analysis of co-abundance networks as an
alternative to differential regulation for confident identification of target proteins from two related global
proteomics studies of hepatitis C virus (HCV) infection.

Results: We analyzed global proteomics data sets from a cell culture study of HCV infection and from a clinical
study of liver biopsies from HCV-positive patients. Using lists of proteins known to be interaction partners with
pathogen proteins we show that the most differentially regulated proteins in both data sets are indeed enriched in
pathogen interactors. We then use these data sets to generate co-abundance networks that link proteins based on
similar abundance patterns in time or across patients. Analysis of these co-abundance networks using a variety of
network topology measures revealed that both degree and betweenness could be used to identify pathogen
interactors with better accuracy than differential regulation alone, though betweenness provides the best
discrimination. We found that though overall differential regulation was not correlated between the cell culture
and liver biopsy data, network topology was conserved to an extent. Finally, we identified a set of proteins that
has high betweenness topology in both networks including a protein that we have recently shown to be essential
for HCV replication in cell culture.

Conclusions: The results presented show that the network topology of protein co-abundance networks can be
used to identify proteins important for viral replication. These proteins represent targets for further experimental
investigation that will provide biological insight and potentially could be exploited for novel therapeutic
approaches to combat HCV infection.

Background
Recent advances in high-throughput methods for taking
global measurements of transcript or protein levels from
biological samples have driven the field of systems biology.
A common application of such methods is to identify
genes or proteins that are likely to be involved in the dis-
ease process being studied to direct further experimental

investigation. These ‘targets’ are potential mediators of
important aspects of the disease, or may be downstream
responses to the disease process. Targets are generally
identified from the most highly differentially expressed
genes or proteins. However, this approach can overlook
genes or proteins that are important, but may not be the
most highly differentially regulated, such as transcription
factors or other upstream mediators of critical processes
[1]. In this study we extend our previous work showing
that targets can be identified using network approaches
based on global proteomics measurements [2]. We show
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that the differential regulation of a protein is an important
factor in predicting biological significance, but that treat-
ing the data as a network and using topological measures
allows for better prediction of biologically significant tar-
gets, provides better ranking of proteins, and allows exten-
sion by integrating other kinds of relationships, for
example protein-protein interactions. Additionally we
show that network topology of proteins is more conserved
between experiments than is differential regulation. Our
work provides a framework for network analysis of global
proteomics data, and shows that this approach can identify
biologically interesting targets.
Hepatitis C virus (HCV), a single-stranded positive

RNA virus in the Flaviviridae family, is a major cause of
liver disease in chronically infected individuals. Chronic
infection causes inflammation and fibrosis of the liver
and increases the chance of developing more serious
hepatocellular carcinoma or cirrhosis in approximately
30% of infected individuals [3]. Current therapies have
limited efficacy and numerous side effects [4] and a
major challenge in translational hepatology research is
the development of new approaches that target critical
processes in the HCV life cycle and progression to dis-
ease state. Currently, study of HCV infection has been
carried out in cell culture [2], on liver biopsy samples
from infected patients [5], and in limited animal models
[6], however similarities and differences between these
different systems have not been extensively studied.
Previously we used global proteomics and lipidomics to

show that HCV can reprogram cellular metabolism and
bioenergetics in cell culture [2]. In order to identify possi-
ble targets through which HCV regulates metabolic repro-
gramming we constructed a correlation network based on
global proteomics measurements of human hepatoma
Huh7.5 cells responding to a time course of HCV infection
[2]. We used the topology of the network, specifically
proteins with high betweenness or bottlenecks, to identify
biologically important proteins. Subsequently we showed
that genetic silencing and pharmacological inhibition of
one of these predicted targets, DCI, significantly inhibited
processes critical for HCV infection [7]. These results
showed the utility of network approaches to identify key
components and interactions associated with HCV infec-
tion in cell culture experiments, but did not delineate how
the approaches could be applied to provide the best
results, nor if the approach would generalize to other pro-
teomics data sets with very different experimental designs.
While our previous studies used network analysis to

identify targets for further experimental investigation,
they did not explore the generality and robustness of the
approach. Though promising, the approach requires ana-
lyses of the parameters used for network generation and
target identification, analysis of topological measures

beyond betweenness centrality, and application to other
similar data sets. Only by exploring these aspects can the
significance and applicability of the approach be estab-
lished. The current study had two principal aims. The
first was to evaluate these factors for network-based tar-
get identification from proteomics data and to compare
this approach with an existing method for identification
of important proteins from global proteomics data, differ-
ential regulation. This is particularly important work
because proteomics technology has recently reached a
point where it is possible to generate studies with multi-
ple global proteomics datasets of the system being stu-
died under different conditions and there have been very
few reports describing use of proteomics data in network
inference approaches. The second aim was to compare
network-based analysis of proteomics from HCV infec-
tion in cell culture experiments with similar networks
generated from liver biopsy samples to identify common
targets that have potential translational impact. These
aims represent an important and significant advance over
our previous work because we systematically compare
our network topology approach with traditional
approaches to target identification, characterize the
impact of network inference parameters on our results,
and compare the results obtained in our cell culture stu-
dies with those obtained from clinically relevant patient-
derived samples.
In order to further explore the identification of novel,

translationally relevant pathways and important proteins
involved in HCV infection and liver disease progression,
we first analyzed the topology of networks inferred from
the time course study of HCV infection in cultured
Huh7.5 cells with an emphasis on now evaluating the abil-
ity of various topological measures to predict proteins
known to be targeted by pathogens in general and HCV
proteins specifically. As described above, we further inte-
grated protein-protein interaction data in the networks
and showed that the integrated networks provide
improved discrimination of important proteins using net-
work topology. An important observation from this analy-
sis was that network topology provided better
discrimination of important proteins than differential reg-
ulation. We then reanalyzed proteomics data from a pre-
vious cross-sectional study of HCV infected patients [5]
using the same approaches. We obtained similar trends in
this analysis for identification of important proteins in
vivo. In addition we found a number of proteins that share
important topological roles in networks inferred from
both the in vitro system and the in vivo clinical samples.
We conclude that considering proteomic data as networks
highlight important in vivo proteins from examination of
in vitro systems thus, providing valuable insight into trans-
lationally relevant disease processes.
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Methods
Datasets
We used two datasets in this study that have been pre-
viously described. The first is from the Huh7.5 human
hepatoma cell line infected with a chimeric HCV geno-
type 2a virus, J6/JFH-1 [2]. Cells were inoculated with
HCV or UV-inactivated virus and samples taken at 24,
48, 72, and 96 hours post-infection. The samples were
analyzed by liquid chromatography-mass spectrometry
(LC-MS) using the accurate mass-and-time tag (AMT)
approach in combination with trypsin-catalyzed 16O/18O
labeling for quantitation [8,9]. Briefly, peptides from
time-matched mocks were individually labeled with 18O
and spiked at equal amounts into the appropriate HCV
or UV-HCV-inoculated sample. The corresponding 18O/
16O intensity data from multiple observations of the
same protein were then rolled up to compute a final
protein abundance ratio for all proteins identified in a
given sample and, to identify those proteins exhibiting
statistically significant (p < 0.05) changes in abundance
compared to the control sample [2].
The second dataset used was from HCV-infected liver

tissues from 15 patients at different stages of fibrosis [5].
This study also employed stable isotope 16O/18O trypsin
catalyzed labeling in combination with the AMT tag
approach for protein quantitation. In this case, proteins
exhibiting statistically significant (by ANOVA on fibrosis
stage groups [5]; p < 0.05) changes in abundance were
determined relative to a control sample consisting of pep-
tides generated from a pool of 8 HCV-positive patients
with minimal liver disease as previously described [5].
The list of proteins known to be physically targeted by

pathogens (interactors) was taken from supplemental
material in [10]. A list of proteins identified in a two-
hybrid screen as interacting with HCV proteins was
obtained from supplemental material in [11]. Mouse
homologs were obtained from the Mouse Genome Data-
base (MGI) [12]. A list of human genes that exhibit
positive selection was obtained from the Human PAML
Browser [13] available at http://mendel.gene.cwru.edu/
adamslab/cgi-bin/paml/pbrowser.py using a significance
threshold of p < 0.01. Protein-protein interactions were
obtained from http://cytoscape.wodaklab.org/wiki/
Data_Sets.

Proteomics data filtering and network construction
To construct association networks from proteomics data
we used a multi-step procedure that involved three
parameters for network construction as follows:

1. Proteomics data was filtered for significance.
2. Data was converted to a ratio versus control
conditions.

3. A filter was applied to remove differential abun-
dance ratios below a threshold (abundance filter).
4. Correlation values were calculated between pre-
sent values for all pairs of proteins.
5. A filter was applied to remove correlation values
with a number of comparisons below a threshold
(correspondence filter).
6. A filter was applied to remove correlation values
below a threshold (correlation filter).

Significance filtering and ratio calculation are described
above and in the original papers [2,5]. The abundance
filter (step 3) replaces all values with ratios below the
threshold with missing values in the vector of abundance
ratios for each protein. Correlation is calculated as the
Pearson correlation coefficient for all pairwise complete
observations (steps 4). Correlation values with a low
number of comparisons are removed (set to 0) according
to the correspondence filter, where a single comparison
is counted if abundance ratios are observed for the same
condition for the pair of proteins being considered.
Finally, the correlation filter is used to generate a final
adjacency matrix, which is then treated as a network for
topological analysis. Previously, the impact of the choice
of similarity threshold on construction of coexpression
networks has been investigated [14,15]. However, in this
study we have chosen reasonable values for these para-
meters by evaluating the topological enrichment of the
resulting network in proteins known to be targeted by
pathogens (see Results). For topological analysis (below)
we varied parameters for the three filters listed here to
generate multiple different networks.

Topological analysis
Topological analysis of networks was performed using
in-house scripts in the statistical language R http://www.
r-project.org/ that utilize the igraph R library http://
igraph.sourceforge.net/. We provide our code in (Addi-
tional file 1). Advanced topological analysis was per-
formed using the network analysis software UCINET 6.0
http://www.analytictech.com/ucinet/. Examples of
advanced topology metrics are reachability [16], Katz
influence [17], and Bonacich power centrality [18]. The
clustering coefficient, and degree, closeness and
betweenness centrality metrics are defined as below
[19,20].
Degree Centrality - this is a metric of the connected-

ness of a node. It is simply a count of the number of
edges that attach to a node. For a graph G with n ver-
tices, edges e the degree centrality CD(v) for vertex v is:

CD(v) =
deg(v)
n − 1
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Generally, degree centrality is the fraction of edges for
a particular protein out of all possible interactions for
that protein in the network.
Closeness Centrality - a metric defined as the average

shortest paths or geodesic distance from vertex v and all
reachable vertices (t Î V\v) where n is the number of
proteins in the graph and:

CC (v) =

∑
t∈V\vdist (v, t)

n − 1

Generally, closeness is the mean distance between a
protein and all other proteins in the network.
Betweenness Centrality - a metric that measures how

often paths between nodes must traverse a given node
(i.e., influence). Specifically, a vertex v is central if it lies
between other vertices on the shortest path between
them. That is, the vertex is “between” many others.
Where gjk is the number of paths linking vertex j and
vertex k is:

CB(v) =
∑

j�=k �=v∈V
gjk(v)

gjk

Generally, betweenness is the number of shortest
paths between all pairs of proteins in the network that
pass through a specific node.
Eigenvector Centrality - is a metric that can be

thought of as recursive degree centrality [18]. This cen-
trality can be calculated by the algorithm that starts by
assigning 1 to all of the nodes, then the scores of each
node are recomputed as weighted sum of centralities of
all nodes in a node’s neighborhood (N):

vn =
∑

j∈Nxijvj

then normalize the centrality by the largest value and
repeat until the values converge. Generally, a protein
with high eigenvector centrality is connected to other
proteins who themselves are connected to many other
proteins.
PageRank Centrality -is a type of eigenvector centrality

and measures the importance of a node by assuming
links from more central nodes contribute more to its
ranking than less central nodes [15]. Let d be a damping
factor (usually 0.85), n be the index to the node of inter-
est, vn be the node, M(vi) be the set of nodes linking to
vn and L(vj) be out-link counts from node vj:

PRvn =
1 − d

N
+ d

∑
vj∈M(vn)

PR
(
vj
)

L
(
vj
)

Generally, page rank is the importance of a protein in
the network.

Clustering coefficient - a statistic describing the overlap
in the network topology. The clustering coefficient CCv

is the probability that any two nodes are linked together
if they have a neighbor in common. Let vertex j and
vertex t be in the neighborhood of vertex v and e(j, t) is
an edge the graph. For undirected graphs, the clustering
coefficient of vertex v is defined as:

CCv =
2

∣∣{e
(
j, t

)}∣∣
kv (kv − 1)

Generally, the clustering coefficient is defined as the
percentage of neighboring proteins that interact with
each other

Functional enrichment analysis
Enrichment of a population (for example, the top 20% of
proteins in terms of betweenness) for a particular func-
tional label was calculated using the hypergeometric
test. Functional labels were defined by the list of patho-
gen or HCV targets, or positively selected genes. In all
cases the background for significance was the total list
of proteins determined to be significantly differentially
regulated not including the population in question. Sig-
nificance levels are indicated in the text but in general a
p-value of 0.05 or below was considered to be signifi-
cant. Where indicated, multiple hypothesis correction
was applied to p-values using the Bonferroni correction.

Results and discussion
Highly abundant proteins are more likely to be targeted
by pathogens
We first investigated whether differential abundance rela-
tive to control (differential regulation) could be used to
identify proteins with more importance for infection.
Importance was assessed by testing for enrichment in pro-
teins known to be physical interaction partners with pro-
teins from multiple pathogens [10] and also for those
specific to HCV [11]. Using the proteomics data from a
time course infection of human hepatoma cells (Huh7.5)
previously described [2], a total of 2378 observed signifi-
cant (p-value < 0.05) proteins were ranked based on the
change in differential regulation relative to uninfected cells
at each time point (24, 48, 72, or 96 hours post-infection).
We assessed the enrichment of the top 20% (475 proteins)
in the pathogen interactor or HCV interactor lists (Addi-
tional file 2: Table S1) using the Fisher’s exact test. Figure
1A shows that highly differentially regulated proteins are
more likely to be targets of pathogen interactions. Based
on previous observations we also assessed the tendency of
more differentially regulated proteins to exhibit positive
evolutionary selection. However, we found neither group
to be more subject to positive evolutionary selection (data
not shown). Additional file 2: Table S1 provides details of
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this analysis. This shows that pathogens target more differ-
entially regulated proteins in general, and that proteins dif-
ferentially regulated early in infection are preferentially
targeted by HCV.
Analysis of patient samples should provide a more direct
assessment of the validity of potential clinical targets,
compared to in vitro experimental models. We exam-
ined data from a previous study analyzing liver biopsy
samples from 15 patients at five stages of fibrosis [5] to
compare our observations in cell culture. We compared
proteins from the 15 infected patients against a pool of
8 HCV-positive control patient samples. Significance
was assessed using ANOVA resulting in 210 signifi-
cantly changing proteins, and 193 of these proteins were
associated with a gene symbol and could be used for

enrichment calculations with the pathogen interactor
lists. Our results are presented in Figure 1B and show
that the most differentially regulated proteins (top 20%)
are enriched in proteins that are pathogen interactors in
fibrosis stages 1 and 4, however, these differences are
not statistically significant due to the smaller number of
significant proteins identified.

Network topology identification of HCV targeted proteins
Previously we reported that topological analysis of net-
works inferred from proteomics data could be used to
identify proteins that are targets of interaction by HCV
proteins [2]. Additionally, another paper has described
the importance of protein-protein interaction network
topology in identification of interaction targets of patho-
gens [10] and a recent study of the interaction networks
surrounding HCV-specific interaction targets also high-
lighted network topology [21]. We wanted to determine
if our previous results could be improved upon by opti-
mizing the parameters in network inference and
employing different topological measures. Accordingly
we inferred protein association networks using different
parameters (see Methods). Briefly networks were con-
structed by filtering differential regulation data using an
abundance filter, j, and constructing a correlation matrix
where only pairs of proteins with k or more valid com-
parisons were retained (correspondence filter). A miss-
ing value, where no protein is observed, in the
abundance profile of either protein considered, does not
count toward valid comparisons. The correlations were
then filtered to retain only correlation values at or
above a threshold of r (correlation filter). Topological
measures (degree, betweenness centrality, closeness and
clustering coefficient) were calculated for all proteins in
the resulting networks. The top proteins as ranked by
each measure, were assessed by statistical enrichment in
either known pathogen interactors [10] or specific HCV
interacting proteins [11] versus the remainder of pro-
teins in the network. Figure 2 shows an overview of this
process.
We present the results of this analysis in Figure 3A

and show the number of pathogen interactors ‘identified’
(that is, in the selected group) on the X axis, versus the
fold-enrichment in pathogen interactors (percentage of
pathogen interactors in the selected group divided by
the percentage of pathogen interactors in the remainder
of the network) on the Y axis. Selected groups, the top
20% of proteins ranked by degree (diamonds), between-
ness (squares), clustering coefficient (triangles), and clo-
seness (circles) are indicated for varying network
inference parameters. Each point on this graph repre-
sents a distinct set of parameters for network generation
and a complete table of results including statistical sig-
nificance for each enrichment value is provided in
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Figure 1 Highly differentially regulated proteins are
preferentially targeted by pathogens and HCV. A. Pathogen
interactors are enriched in differentially expressed proteins from cell
culture experiments. The percentage of known pathogen interaction
targets in general is shown for the top 20% of proteins ranked by
differential regulation overall at each time point post-infection (red
bars) versus background (blue bars). Statistically significant
enrichment is indicated by asterisks with p-values less than 0.05 by
Fisher’s exact test. B. Pathogen interactors are enriched in proteins
differentially expressed in patients with severe fibrosis. The
percentage of pathogen targets in the top 20% of differentially
regulated proteins is shown (red bars) versus the percentage in the
other proteins (blue bars). None of these comparisons was
significant by Fisher’s exact test.
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(Additional file 3: Table S2). These results show that all
four topological measures that betweenness performs
better than the other three measures with the highest

enrichment and the greatest number of interactors cov-
ered (indicated by the point furthest along the diagonal).
To summarize this observation across all networks
tested we summed the numbers of pathogen targets in
each group (top 20% of proteins ranked by each topolo-
gical property) versus the number found in the remain-
der of the network across all networks and evaluated
the significance of the enrichment found using Fisher’s
exact test. These results are included in Table 1 and
show that enrichment in pathogen targets is significant
(p-value < 0.01) for betweenness and clustering coeffi-
cient, but not for degree or closeness, though there are
a number of individual networks that show statistical
enrichment in these topological properties.
Following our previous approach we combined each
network with experimentally determined protein-protein
interactions (PPIs) between observed proteins. In this
process known PPIs between proteins already in the co-
abundance network are added as new edges to the net-
work. The results of this analysis are shown in Figure
3B. Open symbols show the enrichment in the PPI net-
work alone. These results show that the inferred protein
association relationships can improve target discrimina-
tion using each topological measure except clustering
coefficient, but that the best discrimination is provided
by degree followed by betweenness. The specificity and
sensitivity of both the degree and betweenness
approaches are significantly better than either differen-
tial regulation or the inferred networks without PPIs.
Table 1 provides a summary enrichment across all net-
works (full results in Additional file 3: Table S2). These

Proteomics data
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Pairwise correlation

Network construction
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Figure 2 Overview of network inference and topological target
identification from proteomics data. The filters used in
proteomics processing are shown in grey boxes (see text).
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Figure 3 Network analysis of global proteomic data from HCV infection of Huh-7.5 cells allows identification of targets. We constructed
association networks from proteomics alone (A) or with added protein-protein interactions (B) as described in the text, varying parameters as
indicated in (Additional file 3: Table S2). The top 20% of proteins ranked by the topological degree (blue diamonds), betweenness (red squares),
clustering coefficient (green diamonds), and closeness (purple x’s) were evaluated for their enrichment in proteins that are known interaction
partners of pathogen proteins. Fold enrichment (Y axis) is calculated as the percentage of pathogen interactors in the group divided by the
percentage not in the group. In panel B the circled points indicate the values for the PPI network alone. Statistical significance is indicated in
(Additional file 3: Table S2).

McDermott et al. BMC Systems Biology 2012, 6:28
http://www.biomedcentral.com/1752-0509/6/28

Page 6 of 16



results show that all four topological measures provide
highly significant (p-value < 1e-16) enrichment in patho-
gen targets, with betweenness and clustering coefficient
displaying highest enrichment, thereby demonstrating
the added value of incorporating PPI data into inferred
networks for a generalizable approach to identify target
regulatory nodes within networks.
There have been a large number of different topologi-

cal measures developed for various purposes. We were
interested in comparing more sophisticated measures
with those considered in Figure 2 to see if any would
provide better identification of interesting target pro-
teins. We assessed the enrichment of the top 20% of
proteins ranked by each measure in pathogen interac-
tors for all the networks generated above. We examined
two popular topological measures, eigenvector centrality
[18] and pagerank [22]. Both of these measures were
developed to provide some measure of the importance
of the node in a network. With an enrichment score of
2.4, betweenness performs much better than any other
topology metric (all others below 1.5) at identification of
important proteins defined by prior knowledge, at least
for this kind of network (Figure 4A).
It is well known that some topological measures dis-

play varying degrees of overlap; for example, proteins
may have both high betweenness and high degree and
thus be bottleneck-hubs [23]. We were interested in
assessing the relationships between topological measures
in our integrated network using Spearman rank correla-
tion (to account for differences in the distributions of
these measures). The results are presented in Additional
file 4: Figure S1 and show that degree and closeness are
highly correlated in all of the networks examined, while
betweenness was slightly less correlated with these two
and clustering coefficient was the least correlated with
the other measures. Eigenvector centrality was highly
correlated with degree and closeness, but pagerank was
not as correlated with the other measures.
Examining degree and betweenness, the most used

metrics for biological networks, we found that of 343

bottlenecks and hubs (the top 20% of proteins as ranked
by betweenness and degree, respectively), 184 (53%) were
shared, reflecting the moderate correlation between
degree and betweenness and the fact that they aren’t cap-
turing the same characteristics of the networks. To exam-
ine this overlap further, we assessed whether the
enrichment of bottlenecks in pathogen targets was
dependent on their hub status within the integrated cell
network. In Figure 4B we show the results from a topolo-
gical subgroup analysis (similar to [23]) showing enrich-
ment in pathogen targets for various overlapping groups.
Interestingly, these results show that betweenness alone
contributes more to importance than does degree, since
the hub and hub-nonbottleneck groups are less enriched
than the bottleneck, hub-bottleneck, or nonhub-bottle-
neck groups. Similar results were observed in the pre-
vious study by Yu, et al. [23] for regulatory networks, but
not for PPI networks, indicating that our inferred net-
works combined with PPIs maintain the properties of
regulatory networks and are less similar to PPI networks.

Functional characterization of topologically-defined
targets
Given their enrichment in pathogen interactors, we
hypothesized that proteins with high betweenness might
be involved in similar functions. We therefore investi-
gated this in the network with the best enrichment from
the analysis above. This was a network that was given
by an abundance filter of 0, a correspondence filter of 4,
and a correlation filter of 0.9 (see Methods). We then
assessed the top 20% of the proteins in this network
ranked by betweenness for functional enrichment in
gene ontology categories. Despite the fact that the bot-
tleneck proteins from this network were the most
enriched for pathogen interactors as well as for HCV-
specific interactors, we found no significant enrichment
in any functional categories, relative to the other pro-
teins in the network. This indicates that these proteins
are united by their importance to the replication of
HCV, but span diverse functional categories.

Table 1 Networks inferred from proteomics show significant enrichment in pathogen targets across many network
inference parameters

Measure Group Background p-value Fold-enrichment
aCoA Degree 18% 18% 1.6E-01 1.0

Betweenness 20% 17% 1.4E-07 1.2

Clustering Coefficient 19% 17% 7.1E-03 1.1

Closeness 19% 17% 1.2E-02 1.1

CoA + PPI Degree 35% 14% 2.2E-16 2.5

Betweenness 46% 12% 2.2E-16 3.8

Clustering Coefficient 31% 15% 2.2E-16 3.8

Closeness 32% 15% 2.2E-16 2.1
aCoA, co-abundance networks; CoA + PPI, co-abundance with protein-protein interactions
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Application of network analysis to clinical proteomics
data
We were interested in whether this approach to target
identification from proteomics data would generalize to
other data sets, and so used proteomic data from the
study of HCV-positive patients with various stages of
fibrosis of the liver [5], mentioned above. We applied a
similar network inference approach to the liver biopsy
data, inferring networks using different ranges of para-
meters than for the cell culture data. The results of this
analysis are shown in Figure 5. We chose to focus on just
the degree and betweenness topology measures for the
figure, and show enrichment in both the inferred net-
works and the networks combined with PPIs. Though
the numbers are much lower in these networks, they are
comparable to the results obtained in the cell culture
data and the points of highest enrichment are statistically
significant (see Additional file 5: Table S3 for details).
Additionally, an overall significance calculated from net-
works using all parameters shows that betweenness is the

only measure significantly enriched in pathogen targets,
and this overall enrichment is only significant (p-value
1e-9) in the coabundance networks integrated with PPIs
(Additional file 6: Table S4). However, we note that
many individual networks with different parameter sets
are significantly enriched. These results show that our
approach can work similarly on data from time course
experiments in cell culture and from clinical samples
from multiple patients. It also indicates that betweenness
is the only topological measure that is robust across the
two different datasets.

Network topology is more conserved than differential
regulation
The Huh7.5 cell culture system has been extensively used
as a model for HCV infection [2,24-26]. However, it is
unclear at the molecular level how common patterns of
expression and regulation might be in terms of HCV
pathogenesis and disease progression. To examine this
we used two approaches: examining the correspondence
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in differential regulation between the two datasets and
examining the correspondence of topological characteris-
tics in the networks described. For network comparison
we chose to compare the networks with the best topolo-
gical enrichment of pathogen targets, as described for the
cell culture network above. For the liver biopsy derived
network we chose a correspondence filter of 5, abun-
dance filter of 2, correlation filter of 0.8, with integrated
PPIs (see Additional file 3: Table S2). The filters used
were different than those used for the Huh7.5-derived
network because the structure of the underlying data sets
were different. The liver biopsy data contains data from
15 patients and thus the number of corresponding data
points used is more (5 versus 4) and the abundance filter
is related to the overall range of differential abundance so
the difference here (2 versus 0) reflects the larger var-
iance observed in the patient samples. These differences
highlight the fact that some care must be used when
applying these methods to different kinds of datasets.
We first compared differential regulation in the 148

proteins that were observed in both the cell culture
samples and the liver biopsy samples. Differential regu-
lation ratios for infected samples were averaged per pro-
tein across all time points or patients. This process
provides a reasonable estimate of the overall differential
regulation for a protein in each experiment. We then
compared the abundance ratios for proteins identified in
both datasets using Spearman rank correlation. The two
lists displayed no correlation (R = -0.05) indicating that

the overall level of differential regulation in the cell cul-
ture system is not a good indicator of differential regula-
tion in the liver biopsy samples. To ensure that this
result did not reflect the use of averaged differential
abundance across patients and time points that could
mask true correlation between the two groups, we also
calculated the Spearman rank correlation between the
differential abundance ratios for all fibrosis stages from
patients versus all time points. These results confirmed
our findings; the mean correlation in differential abun-
dance between different stages of fibrosis was 0.63, and
between different time points was 0.24, whereas the
mean correlation between the two sets was 0.03. The
maximum correlation between any two fibrosis stages
was 0.73, and between any two time points was 0.74,
whereas the maximum correlation between any fibrosis
stage and time point was 0.23. These results show that
differential abundance, in general, is not well conserved
between proteins in the cell system and patient samples.
This analysis is consistent with our previous analysis [2]
showing that there was a subset of proteins displaying
similar temporal progression in the cell culture and liver
biopsies since the current analysis compared the regula-
tion of all proteins, and did not incorporate the tem-
poral information. We discuss these findings further in
the Conclusion section.
We next examined the agreement between topological

measures between the cell-culture derived network and
the network derived from liver biopsy samples. The
Spearman rank correlation comparing betweenness mea-
sures in proteins in both networks was 0.4. Though not
perfect agreement, this correlation is much better than
the correlation obtained comparing differential regula-
tion. To examine this in a slightly different way, we
examined the distribution of betweenness values from
the clinical network in topological bottlenecks, using a
two-sided t-test. We found that bottlenecks in the cell
culture network have a significantly higher mean
betweenness (from clinical network) than non-bottle-
neck proteins (138 versus 42, p-value 0.02). These
results indicate that the general topology of the net-
works is more conserved than is differential regulation
of the individual proteins in each dataset, supporting
our notion that network topology provides information
not provided by differential regulation in some cases.
As we showed, the differential regulation of proteins

in both datasets correlates with the probability that
these proteins have been identified as pathogen interac-
tors and of HCV in particular. We next examined if the
proteins with high betweenness (bottlenecks) in the cell
culture network are more likely to be highly differen-
tially regulated in the liver biopsy samples. We first
examined the enrichment of bottlenecks in proteins sig-
nificantly differentially regulated in the clinical samples.
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Figure 5 Network analysis of global proteomic data from liver
samples of HCV-positive patients. We constructed association
networks from proteomics as described in the text, varying
parameters as indicated in (Additional file 5: Table S3). The top 20%
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This analysis showed that bottlenecks and hubs were
both significantly enriched in proteins differentially
regulated in liver biopsy samples (p-values 0.009 and
0.0009, respectively). We next compared the mean dif-
ferential regulation of bottlenecks and non-bottlenecks
in the patient data in groups separated by stage of fibro-
sis. We found that bottlenecks were significantly more
differentially regulated in patients with late stage fibrosis
(3 or 4; see Figure 6), but that this relationship was not
observed for hubs (data not shown).

Network topology provides better target identification
than differential regulation
We postulated that network topology could provide bet-
ter discrimination of interesting proteins than differen-
tial regulation. To address this we compared the
enrichment of known pathogen interactors, which we
consider to be interesting targets, in the most highly dif-
ferentially regulated proteins from each dataset (see Fig-
ure 1) and the proteins with highest betweenness in the
network derived from each dataset. This analysis
revealed that the top differentially regulated proteins
(top 20%) from any time point in the cell culture data
set were comprised of 20% known pathogen interactors
(relative to 14% in the remaining portion of proteins).
The proteins with the top betweenness (bottlenecks; top

20%) from the cell culture-derived network were com-
prised of 32% known pathogen targets (relative to 10%
background). This observation is consistent with results
in the liver biopsy data where the maximum enrichment
in the top differentially regulated proteins was 17% ver-
sus an enrichment of 33% for top ranked bottlenecks.
These numbers were also reflected in HCV-specific tar-
gets (data not shown). Collectively, these results show
that network topology provides better identification of
target proteins than does simply ranking by differential
regulation.
Finally, we show a comparison of target identification

in both networks using several methods of assessing
importance. We compared the enrichment of bottle-
necks or hubs in the network inferred from the Huh7.5
cell culture proteomics data with those in the network
from the fibrosis patient proteomics data. Figure 7
shows the enrichment of bottlenecks or hubs in each of
these networks in general targets of pathogens, HCV-
specific targets, and in proteins that exhibit evolutionary
positive selection. These results show that bottlenecks
(Figure 7A) in both networks are significantly enriched
in pathogen interactors, and the bottlenecks in the cell
culture network are enriched in specific HCV interac-
tors. It is unclear why the enrichment in HCV-specific
interactors is higher in the Huh7.5-derived networks.
This difference could be because the processes involved
in fibrosis progression in vivo involve more than simply
HCV replication, and thus bottlenecks in the liver
biopsy-derived network may represent proteins with
more complicated roles in pathogenesis and thus those
less likely to be identified as HCV interactors from the
two-hybrid study [11]. Bottlenecks in the cell culture
network are also significantly enriched in proteins exhi-
biting positive evolutionary selection. A similar result
was obtained examining hubs in the network (Figure
7B), though the enrichment was significantly less pro-
nounced than in the bottleneck enrichment. This indi-
cates that bottlenecks are more important in both
networks, either because they are preferentially interac-
tion targets for pathogens, or that they have been under
recent selective pressure.
Given the importance of bottlenecks in both networks

we were interested in determining which of these pro-
teins represented conserved bottlenecks in both net-
works. We postulate that these common bottlenecks
will be even more important to HCV replication and
pathogenesis. Figure 8 shows a plot of the betweenness
values from each network for each protein with proteins
identified as high-confidence (10%) bottlenecks in both
networks highlighted in red. This small group includes
ATP5B, DCI, GSTK1, IMMT, and YWHAQ. Interest-
ingly, several of these proteins are localized on the mito-
chondria including DCI, a mitochondrial fatty acid
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oxidation enzyme whose requirement in the HCV life
cycle we have now confirmed by a series of in vitro per-
turbations including gene silencing and pharmacologic
inhibition [7]. All shared bottlenecks are listed in Table
2 and a complete list of all the shared proteins from the
two networks is provided as (Additional file 7: Table
S5). Finally, functional enrichment of the shared bottle-
neck proteins shows that this groups is significantly
enriched in proteins localized to mitochondria and hav-
ing mitochondrial-related functions (Benjamini-Hoch-
berg adjusted p-value 1.0e-6).
To further investigate potential functional roles of these

conserved bottleneck proteins we performed functional
enrichment on the first-order networks of each protein.
The first-order networks for several conserved bottlenecks
are shown in (Additional file 8: Figure S2) and the func-
tional categories significantly enriched in each neighbor-
hood are listed in (Additional file 9: Table S6). Though

many of the individual conserved bottleneck proteins were
linked to mitochondria (Table 2), the functions of their
neighborhoods are fairly diverse. However, two neighbor-
hood networks were significantly enriched in processes
related to fatty acid metabolism and its regulation (DCI
and YWHAQ). Additionally, we provide the topology of
the conserved targets in both networks in (Additional file
10: Table S7). These results show that many of the bottle-
necks are also hubs (highly connected proteins) in both
networks including CALR, ETFA, IMMT, and RPLP1.
Interestingly, all of the targets have low clustering coeffi-
cients. The clustering coefficient is the percentage of a
node’s neighbors that are also linked to each other and
reflects the density of edges in that portion of the network.
Given that betweenness is a primary driver of importance
in the network (Figure 4B) this is not a surprising observa-
tion. That is, even hubs having many neighbors may be
playing connecting roles in the network because they are
also bottlenecks, and a high density of edges in their
neighborhoods would decrease their betweenness since
this would provide multiple routes through their
neighborhood.

Conclusions
We previously described network analyses of cell culture
data to define interactions between host and pathogen
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and identified mitochondrial fatty acid oxidation
enzymes that are predicted to function as central points
for connecting and controlling metabolic pathways and
as such, key targets in HCV-associated metabolic repro-
gramming [2]. In fact, dys-regulations in mitochondrial
function are evidenced by wide-spread perturbation of
related proteins across every HCV model system we
have studied [2,5,7,26,27]. Thus, the modeling efforts
reported here leveraged these data to further investigate
whether the parameters used in our prior in vitro mod-
eling activities (abundance filter of 0, correspondence fil-
ter of 4, and correlation filter of 0.9) were the best to
help identify new targets. Indeed, our previous study did
not examine whether the use of a network topology
approach could identify important targets any better
than a standard approach such as considering highly dif-
ferentially regulated proteins. Additionally, though we
previously showed that this approach was valuable in
cell culture studies it also remained unclear how it
would perform on data from very different kinds of
samples, such as those from liver biopsies of HCV-posi-
tive patients.
In the current study we build upon our previous find-

ings to determine if there are other topological metrics
(for example clustering coefficient and closeness) that
identify targets in these networks, to define the para-
meters for network construction that provide the best
target identification, and to characterize the relationship
between networks derived from the cell culture data and
those derived from data from patient biopsies. Our
results indicate that the method of network construction
has a significant impact on the results obtained. We
found that betweenness was the most effective metric
for defining important targets in our network but that
other topological metrics (degree, clustering coefficient

and closeness) could also discriminate targets to a statis-
tically significant extent. From previous work examining
the properties of topological bottlenecks in networks
inferred from global transcriptomics data we have pos-
tulated that bottlenecks may represent mediators of
transitions between states of the system [1,28-30], and
therefore represent critical points of control for the dis-
ease process. We have speculated that this is because
bottlenecks link functional modules that represent
groups of genes or proteins coexpressed under similar
conditions. The transition between modules may repre-
sent state changes in the system, and the position of
bottlenecks makes them candidates for regulators of
these transitions. Our finding that degree was also a
good predictor of importance in the system reiterates
previous findings in other undirected biological net-
works [23], though the primary contribution to impor-
tance we found to be betweenness, similar to findings in
regulatory networks. Our findings here are consistent
with the idea that bottlenecks in coabundance networks
represent transitions between functional modules, and
show that bottlenecks and hubs from proteomics-based
networks may have similar properties as those from
transcriptomics-based networks.
We note that modeling activities involving integrated

genomic-proteomic analyses is an important area of
research aimed at understanding the differences between
co-expression at the transcript and protein level. How-
ever, our initial modeling efforts centered on the utiliza-
tion of proteomic and metabolomic data indicating a
temporal regulation of cellular metabolic homeostasis
that was not detected by the accompanying gene expres-
sion profiles. Indeed our prior in vitro studies were
unique in part because they described a previously un-
identified role for post-transcriptional regulatory

Table 2 Conserved bottlenecks between cell culture and clinical samples

Symbola ID Description Notesb

GSTK1 NM_015917 glutathione S-transferase kappa 1 M

IMMT NM_006839 inner membrane protein, mitochondrial (mitofilin) P, M

DCI NM_001919 dodecenoyl-Coenzyme A delta isomerase M

ATP5B NM_001686 ATP synthase, H + transporting M

YWHAQ NM_006826 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation P

HSPA8 NM_006597 heat shock 70 kDa protein 8 P, E

CALR NM_004343 calreticulin P, H, E

RPLP1 NM_001003 ribosomal protein, large, P1

CYCS NM_018947 cytochrome c, somatic P, M

ETFA NM_000126 electron-transfer-flavoprotein, alpha M

HSPA9 NM_004134 heat shock 70 kDa protein 9 (mortalin) P

GOT2 NM_002080 glutamic-oxaloacetic transaminase 2 M, E
aGenes appearing in the top 20% of bottlenecks ranked in both cell culture and clinical networks. These are also shown in the yellow and orange shaded regions
of Figure 8
bP, pathogen interactor; H, HCV target; M, mitochondrial protein; E, positive evolutionary selection

McDermott et al. BMC Systems Biology 2012, 6:28
http://www.biomedcentral.com/1752-0509/6/28

Page 12 of 16



mechanisms in the metabolic rerouting that was
observed [2]. For this reason, the scope of the current
manuscript has focused on extending our analyses speci-
fically to comparison with in vivo protein co-expression
networks.
Upon optimization of network construction, subse-

quent comparative analyses revealed that topologically-
defined bottleneck proteins in the cell culture-derived
network were generally more differentially regulated in
patients with advanced fibrosis than their non-bottle-
neck counterparts. Interestingly, this was not observed
when comparing differential abundance alone between
the two datasets, indicating that topological analysis may
identify more clinically relevant targets from cell culture
studies than relative expression. It is important to note
that we previously identified a subset of proteins that
showed strongly conserved patterns of differential abun-
dance [2] between the cell culture and liver biopsy sam-
ples. In the current analysis we show that as an overall
measure, differential abundance does not correlate well
between the two data sets. Additionally, bottlenecks in
the cell culture network were more likely to be bottle-
necks in the clinical network. This shows that our
approach can identify proteins of interest based on cell
culture studies that are important in human disease and
that these proteins would not be identified by examining
differential abundance alone. Importantly, these findings
point to the limitations of identifying/prioritizing patho-
gen-host targets based solely on highly differential regu-
lation, a common approach to the identification of
targets for further investigation.
Throughout this study we refer to target proteins as

proteins that are important for HCV replication and/or
fibrosis development. Some of these proteins have been
defined using two-hybrid screens [11,21], but our work-
ing hypothesis is that there are proteins that are impor-
tant for replication that have not been previously
defined. These are proteins that may or may not be
direct interaction partners with HCV proteins but could
contribute to metabolic or signaling pathways necessary
for HCV replication and/or liver disease progression.
We previously proposed an important role for temporal
regulation of mitochondrial fatty acid oxidation and
energy production in HCV infection and liver disease
progression. Briefly, we described early increases in
mitochondrial fatty acid oxidation that contribute to the
creation of a “pro-viral” environment immediately pre-
ceding the subsequent increase in viral replication
observed in vitro [2]. This was eventually followed by a
decline in fatty acid oxidation that accompanied the
appearance of a cytopathic effect in vitro and liver dis-
ease progression in vivo [2]. The down-regulation of
mitochondrial fatty acid oxidation would favor an
increase in hepatocellular lipid content (for example,

steatosis), a common occurrence in HCV, and histologi-
cal feature observed among 4 of 6 patients with
advanced fibrosis in our in vivo studies [5]. The conser-
vation of protein abundance changes associated with
pathogenesis in vitro (e.g. cytopathic effect) and liver
disease progression in vivo, and the corresponding mito-
chondrial bottlenecks reported here, including DCI,
raises the interesting prospect that these proteins
play an important role in the viral life cycle and
pathogenesis.
Our previous findings and those described in the cur-

rent study prompted us to further explore the predicted
influence of HCV-associated disruptions in mitochon-
drial fatty acid oxidation, including consideration of
whether these perturbations would be reflected by dis-
ease-related patterns detected in blood. From a clinical
perspective, biomarker discovery efforts in body fluids
represent an attractive alternative to tissue samples
owing to the relative ease and less invasive nature of
collection and the large volumes that normally can be
obtained. We have observed the accumulation of both
substrates for enoyl-CoA isomerase activity (e.g. DCI) as
well as dicarboxylic acids well known to reflect alterna-
tive fatty acid catabolism through ω-oxidation pathways,
findings consistent with our predictions regarding an
important role for DCI, the essential link between satu-
rated and unsaturated b-oxidation, in the impaired
mitochondrial fatty acid catabolism occurring during
HCV-associated liver disease progression [28]. Thus, the
identification of disease-related fatty acid patterns in the
blood of patients with HCV-associated liver disease pro-
gression provides a potentially useful noninvasive diag-
nostic link to the previously described alterations in
hepatic mitochondrial fatty acid oxidation occurring
during HCV infection and pathogenesis. Importantly, we
have unequivocally validated a biologically relevant role
for DCI in the HCV life cycle using a combination of
gene silencing and pharmacologic inhibition approaches
[2,5,7]. In summary, our data from multiple model sys-
tems and clinically relevant physiologic compartments
provide evidence confirming our original modeling pre-
dictions regarding a requirement for DCI in the HCV
life cycle [7] and demonstrate a physiologically relevant
association of temporal declines in fatty acid oxidation
that coincide with pathogenesis in vitro and in vivo.
Taken together, we believe these data provide proof of
principle for the utility of integrated in vitro/in vivo
modeling efforts to identify key host targets of HCV
infection and pathogenesis.
The biological interpretation of the remaining top 10%

bottlenecks, 4 out of 5 of which are mitochondrial proteins
with links to fatty acid oxidation and energy production,
was predicated on the wealth of data described for the
representative example DCI as highlighted above together
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with the growing literature on the important role of
altered mitochondrial function in HCV infection and
pathogenesis (for an excellent review on the interactions
between HCV and mitochondria we recommend [29]).
Among the additional bottlenecks identified was glu-
tathione-S-transferase kappa 1 (GSTK1), a protein that
localizes to the mitochondria and peroxisome and has
pleiotropic functions including glutathione conjugation,
peroxidase, and disulphide-bond-forming oxidoreductase
activities [30]. Interestingly, GSTK1 has recently been
shown to play an important role in the oligomeric assem-
bly and secretion of adiponectin, a cytokine that stimulates
fatty acid oxidation through interaction with the hepatic
receptor AdipoR2 and subsequent activation of peroxi-
some proliferator-activated receptor (PPAR)-alpha [31,32].
HCV-associated targeting of GSTK1 and DCI may serve
to provide multiple control points for modulating cata-
bolic flux of fatty acids during metabolic reprogramming.
GSTK1 may promote further cross-talk between metabolic
signaling and biochemical pathways by modulating the
folding and assembly of oligomeric proteins directly
involved in lipid synthesis and/or catabolism, including
the trimeric DCI protein. A similar role in the folding of
lipid metabolism enzymes has been suggested in Caenor-
habditis elegans where GSTK1 silencing was associated
with a decline in the biosynthesis of the monounsaturated
fatty acid cis-vaccenic acid [33]. It is worth noting that the
differential abundance of cis-vaccenic acid was observed to
impact lipid droplet remodeling under pathogenic condi-
tions of defective peroxisomal b-oxidation in C. elegans
[34]. Taken together, these findings suggest interesting
new avenues of research aimed at exploring the interplay
between GSTK1 and DCI during metabolic reprogram-
ming and the lipid remodeling events predicted to provide
important constituents in the various structural entities
supporting the HCV life cycle, including the lipid droplet
and membranous replicase compartments.
Among the other bottlenecks detected in our analyses

was mitofilin, also known as mitochondrial inner mem-
brane protein (IMMT). Mitofilin is a protein localized to
the inner mitochondrial membrane whose presence is
essential for tubular cristae formation and the increased
surface-to-volume ratio of the inner membrane that
occurs during increased metabolic output [35]. While the
molecular basis for these alterations in mitochondrial
cristae morphology are not well understood, mitofilin
depletion has been shown to induce aberrant structural
changes in the inner membrane that are associated with
abrogation of ATP production despite increased flux of
fatty acid substrates through the b-oxidation pathway
thus, suggesting an adverse impact on the oxidative
phosphorylation machinery that resides in the inner
membrane [35]. We suspect that the putative HCV tar-
geting of mitofilin reflects a coordinated effort to

maximize energy production in support of the significant
macromolecular biosynthesis necessary for viral growth
[2]. Consistent with this idea we further identified
ATP5B, the major catalytic subunit of F1 ATP synthase,
as a conserved bottleneck in our studies. A similarly
important pro-viral role for ATP5B has recently been
reported for herpes simplex virus-1 (HSV-1) [36]. In a
series of elegant experiments aimed at exploring the
effect of host microRNAs on HSV-1 replication, Zheng et
al, identified a point of cross talk between host cell and
virus that results in the progressive induction of host cell
miR-101 levels that is accompanied by concomitant
declines in ATP5B expression and HSV-1 replication
[36]. The interplay between virus and the miR-101/
ATP5B regulatory network suggests a potential link
between modulation of this host defense mechanism and
the establishment of long-term HSV-1 latency [36]. This
latter point is of particular interest as we and others have
proposed a similar role for modulation of fatty acid oxi-
dation and energy production in the establishment of
persistent HCV and measles virus infection [2,37].
It is important to note that our intent is not to provide

a network representation that is faithful to the underlying
true network of interactions in the cell, but rather to use
topology in these simply defined association networks to
identify target proteins for further experimental investi-
gation. The networks generated using this approach are
based on correlation of protein abundance over many dif-
ferent observations (time points in the cell culture data
and patients in the clinical data). As such they represent
the information flow in the system. For example, closely
coordinated proteins are close together in the networks,
while those with little or no coordination are far apart. It
is likely that this organization allows use of topology to
query the network for more important proteins, since
bottlenecks in particular represent points constriction in
information flow in the system [23]. In a fashion analo-
gous to that for DCI, additional conserved bottleneck
proteins represent particularly attractive targets for
further investigation of their functional significance dur-
ing HCV infection and liver disease progression. In this
regard, recent efforts to link these findings with clinical
protein profiling studies of serial liver biopsies obtained
from HCV-positive liver transplant recipients revealed a
statistically significant up-regulation of the protein bot-
tleneck GSTK1 in patients who developed severe liver
injury [28]. Importantly, the increased abundance of
GSTK1 occurred prior to histologic evidence of fibrosis.
Collectively, these findings merit further investigation to
understand the functional, regulatory and/or prognostic
significance of this protein bottleneck during HCV-asso-
ciated liver disease progression.
In summary, the results presented in this study show

that a network approach to consideration of global
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proteomics data is a powerful way to identify important
target proteins and to elucidate potential mechanisms of
pathogenesis. Previous results in yeast [23,38], fruit fly
and worm [39], pathogenic bacteria [40,41], cyanobac-
teria [42], mouse macrophages [43], mouse blood [44]
and human cell culture [2,7] support the notion that
our approach is generally applicable, though these have
been focused on analysis of coexpression networks from
transcriptomics. We have recently published on the net-
work analysis of proteomics data from Salmonella under
infectious-like conditions, and have found that these
networks show a similar kind of enrichment of bottle-
necks in proteins important to the system [45]. In the
current work we fully characterize the application of
this approach to protein co-abundance networks show-
ing that it works very well to identify important nodes
in the network. In this study we show that topological
betweenness provides the best identification of impor-
tant target proteins, but that other topological measures
can also be used to identify targets. Importantly, we
show that this approach can be applied successfully to
global proteomic data derived from liver biopsies of
HCV-positive fibrosis patients. Key findings of the study
were validated in a patient cohort by metabolic profiling
in serum [28]. Interestingly, the topology of cell culture
networks provides better insight into important proteins
in the liver biopsy data than does differential regulation,
showing that it is a viable alternative or complement to
standard analysis methods. Our approach represents a
generally applicable method for using global proteomics
data as a systems biology tool that goes beyond differen-
tial abundance of individual proteins. The finding that
other metrics could also identify targets suggests that
combining network metrics in some way may provide
improved discrimination over the individual measures.
Our initial results using a simple mean, geometric
mean, or minimum of protein rank from each of the
four metrics revealed that the results were not improved
(data not shown). We are currently investigating more
sophisticated methods for integrating multiple topologi-
cal measures to improve our results.
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