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The pathogenesis of Parkinson’s disease remains unclear that there is no cure for Parkinson’s disease yet. The abnormal
expressions of certain miRNA are closely related to the occurrence and progression of Parkinson’s disease. Here, we
demonstrate that miR-9-5p inhibits the dopaminergic neuron apoptosis via the regulation of β-catenin signaling which directly
targets SCRIB, a tumor suppressor gene. Besides, miR-9-5p improved the motor function of mice with Parkinson’s disease.
The results of this study suggest that miR-9-5p might be a potential therapeutic target against Parkinson’s disease.

1. Introduction

Parkinson’s disease (PD) is the second most common neuro-
degenerative disease worldwide [1]. The main clinical man-
ifestations of the patient were progressive aggravation of
myotonia, bradykinesia, and static tremor [2]. Patients suffer
both in physical and in mental. Mitochondrial dysfunction,
oxidative stress, neuroinflammation, and excitatory toxicity
were considered as the pathogenesis of Parkinson’s disease
[3, 4]. All of the above pathological processes would lead
to dopaminergic neurons dysfunction [1, 3, 4]. Therefore,
the repair of damaged dopaminergic neurons and the resto-
ration of dopamine regulation are the fundamental goals in
Parkinson’s disease therapy [5–14].

MicroRNA (miRNA, miR) regulates the gene expression.
The aberrant expression of miRNA involves in the occurrence
and development of various diseases, including Parkinson’s
disease. Due to its easy access and stable expression in body
fluids, miRNAs are presumed as potential biomarkers for the
diagnosis of PD in early stage and for the monitoring of PD
development [5, 6]. Data has showed that the expression of
hsa-miR-221-3p, hsa-miR-214-3p, hsa-miR-29c-3p, and miR-
124 family is meaningful for the diagnosis of PD [7–10]. Mean-
while, some scholars believe that miRNA has great potential in
treating PD [9–14]. The abnormal expression of miR-9-5p in
neurodegenerative diseases would sabotage its neuroprotective
effect [15, 16]. MiR-9 is closely related to the progress of
Alzheimer’s disease, directly targeting BACE1, PSEN1, SIRT1,
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and CAMKK2 [17]. Upregulation of dopaminergic neurons
miR-9-5p was detected in PD patients, induced by pluripotent
stem cells (iPSCs) [18]. A latest system analysis revealed that
the protective effect of miR-9-5p on neurons was contributed
to a negative feedback regulatory response [19]. The expression
of miR-9-5p in Parkinson’s disease may be dynamic, and its
underlying mechanisms will be explored further.

2. Methods

2.1. Cell Culture. Mouse dopaminergic neuron MN9D was
purchased from American Type Culture Collection (ATCC)
and cultured in Dulbecco’s Modified Eagle Medium (DMEM)
with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin (Sigma-Aldrich, USA), under the condition of
37°C and 5% CO2. MN9D was treated with 1mM MMP+

(Sigma, USA) for 24h as a PD model in vitro.

2.2. Animals.C57BL/6mice were used in the present study, and
each group contains 5 mice. The PD model was conducted by
5days intraperitoneal injected MPTP (30mg/kg) and following
10 days intravenous injected agomir (micrONmmu-miR-9-5p
and control miRNA, RiboBio, China, 100nmol/kg). Neurolog-
ical function of the mice was assessed at day 0, day 1, day 2, day
3, day 7, day 14, and day 21 when MPTP treatment finished.
All the mice were killed at day 21 to harvest the midbrain. This
study was carried out in strict accordance with the recommen-
dations in the Guide for the Care and Use of Laboratory Ani-
mals of the National Institutes of Health. The protocol was
approved by the Committee on the Ethics of Animal Experi-
ments of the Southern Medical University.

2.3. Gene Transfection. Following the manufacturers’
instruction, lipofectamine 3000 (Thermo Fisher, USA) was
used for gene transfection. The concentration of mmu-
miR-9-5p mimics and negative control miR (RiboBio,
China) was 25 nM. miRNAs were mixed with lipofectamine
3000 in serum-free DMEM for 20min at room temperature;
afterwards, the mixture was added into culture dishes. The

culture medium was replaced 4 hours later, and the cells
were incubated for another 48 h-72 h before harvest. DNA
transfection was conducted with the same protocol.

2.4. Western Blot. Cell and tissue lysates were prepared with
sonication in modified RIPA buffer (Solarbio, China) adding
protease inhibitor (Solarbio, China). BCA protein assay kit
(Solarbio, China) was used for protein quantification. Protein
stripes were visualized with ECL reagents (Solarbio, China).
The following primary and secondary antibodies were used
in the study: anti-GAPDH (abcam, USA), anti-cleaved caspase
3 (affbiotech, China), anti-Bcl-2(abcam, USA), anti-SCRIB
(proteintech, China), HRP-goat anti-rabbit (proteintech,
China), and HRP-goat anti-mouse (proteintech, China).

2.5. Real-Time PCR. Total RNAs of tissues and cells were
extracted using TRIzol Reagent (Invitrogen, USA). Reverse
transcription kit (TaKaRa, Japan) and Sybr Pre-mix EX Taq
II (Takara, Japan) were performed in mRNA reverse tran-
scription and cDNA amplification, respectively. All in-One
miRNA qRT-PCR Detection Kit (GeneCopoeia, Rockville,
MD, USA) was used to detect the miRNA expression. The
sequence of the primers are listed below: mmu-miR-9-5p for-
ward primer: 5′CCGGTCTTTGGTTATCTAGCTG3′; reverse
primer: 5′CTCAACTGGTGTCGTGGAGTC3′; U6 forward
primer: 5′CTCGCTTCGGCAGCACAT 3′; reverse primer:
5′AAATATGGAACGCTTCACGA3′. SCRIB forward primer:
5′AACGCTTCACGAATTTGCGT 3′; reverse primer: 5′
TCACCAACTCGGACTCCAGC3′. The relative expression
of miRNA and mRNA was calculated using the 2−ΔΔCT

method.

2.6. Flow Cytometry. Cell apoptosis was evaluated by flow
cytometry, using FITC Annexin-V (Becton Dickinson).
The washed cells were resuspended in binding buffer at a
final concentration of 1 × 106/ml. According to the manufac-
tures’ instruction, AV-FITC and/or PI were added into the
tube and incubated at room temperature for 15min in dark.
Then, samples were detected in an hour.
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Figure 1: MPTP induced the apoptosis of dopaminergic neurons MN9D. (a, b) The apoptosis rate of MN9D cells in the mmp+ group was
higher than that in the control group (P < 0:05). (c, d) The expression of cleaved-caspase 3 was higher in the mmp+ group than in the control
group, and the expression of bcl-2 was lower (P < 0:05). (e, f) The expression of cleaved-caspase 3 was higher in PD mice (P < 0:001). The
expression of TH was lower ðP > 0:05Þ. (g) The expression of mmu-miR-9-5p was decreased in the mmp+ group than in the control group
(P < 0:05). Scale bar: 100 μm.
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Figure 2: Continued.
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2.7. Luciferase Reporter Assay. Putative binding site between
mmu-miR-9-5p and SCRIB was predicted by the miRNA
database (http://www.targetscan.org). The mmu-miR-9-5p
sequence binding to the 3′UTR of SCRIB, either wildtype or
mutant, was cloned into the pMIRREPORT vector (Ambion,
USA). MN9D cells were cultured in 24-well plates and trans-
fected with 0.1μg of luciferase reporter vectors contained
mmu-miR-9-5p mimics or control miRNA. Renilla luciferase-
expressing vector (pRL-TK, Promega, USA) was cotransfected
for normalization. Cells were harvested after 48h transfection.
According to the manufacturer’s instruction, Firefly and Renilla
luciferase activities were detected using the Dual-Luciferase
Reporter Assay System (Promega).

2.8. immunofluorescence. After anesthetized with overdosed
barbiturate, mice were transcardially injected with 4% para-
formaldehyde, and brain tissues were handled for immuno-
fluorescence as previously described [20]. Antibodies were
listed below: anti-TH (servicebio, China), anti-cleaved-
caspase 3 (proteintech, China), FITC, and CY3 antibodies
(APSEN, China).

2.9. Statistical Analysis. Data were expressed as mean ±
standard error. Statistical analysis was performed with SPSS
20.0 software. Differences between means were assessed by
Student’s t-test for normal distribution data orMann–Whitney
U test for nonnormal distribution data. In multiple compari-
sons, one-way analysis of variance (ANOVA) was adopted. A
value of P < 0:05 was considered statistically significant.

3. Results

3.1. MPTP Induces Apoptosis in Dopaminergic Neurons.
Abnormal apoptotic signaling is involved in the progression
of neurodegenerative diseases, including PD [21]. In this
study, apoptosis was increased in MPTP-treated MN9D cells.
Flow cytometry showed that the apoptosis rate in MN9D cells

treated with MMP+ was significantly higher than that of the
control group (Figures 1(a) and 1(b)). Meanwhile, the protein
expression of cleaved-caspase 3 was higher in the later than the
former, and the protein expression of bcl-2 was the opposite
(Figures 1(c) and 1(d)). In vivo, cleaved-caspase 3 was
upregulated in nigrostriatal system in MPTP-treated mice
(Figures 1(e) and 1(f)). To investigate whether miR-9-5p is
involved in PD, we examined the level of mmu-miR-9-5p.
Results showed that the expression of mmu-miR-9-5p was
reduced in MMP+-treated MN9D (Figure 1(g)).

3.2. mmu-miR-9-5p Alleviates the MPTP-Induced Apoptosis
in Dopaminergic Neurons.We tried to restore the expression
of mmu-miR-9-5p in the PD cell model. With gene transfec-
tion, we successfully enhanced the expression of mmu-miR-
9-5p in MN9D cells (Figure 2(a). Then, we evaluated the
trend of apoptosis. The apoptosis rate of mmu-miR-9-5p
treated cells was decreased (Figures 2(b) and 2(c)). Western
blot showed that the expression of cleaved-caspase 3 was
reduced while the expression of bcl-2 was upregulated in
mmu-miR-9-5p treated cells (Figures 2(d) and 2(e)).

3.3. mmu-miR-9-5p Involves in Multiple Signaling Pathways of
Neuronal Apoptosis. To clarify how mmu-miR-9-5p inhibits
MMP+-induced neuronal apoptosis, we examined signaling
pathways associated with neuronal apoptosis. Results found
that mmu-miR-9-5p improved the activity of β-catenin and
Akt signaling which was previously suppressed by MMP+. On
the contrast, the p-38/JNK signal was inhibited (Figures 3(a)–
3(e)). However, the p65 signaling pathway was suppressed,
which promotes cell survival. (Figures 3(a) and 3(f)).

3.4. mmu-miR-9-5p Regulates the β-Catenin Signaling
Pathway by Directly Targeting SCRIB. It has been reported
that SCRIB directly regulates β-catenin activity [22], and data-
base suggested that SCRIB was one of the mmu-miR-9-5p tar-
geted genes (Figure 3(j)). To further explore the relationship
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Figure 2: mmu-miR-9-5p reversed the MPTP-induced apoptosis of dopaminergic neurons. (a) The expression of mmu-miR-9-5p was
upregulated after transfected with mmu-miR-9-5p mimics (P < 0:05). (b, c) The apoptosis rate of MN9D cells was reduced in the mmu-
miR-9-5p group than in the miR-control group (P < 0:05). (d, e) Western blot showed cleaved-caspase 3 was downregulated, and bcl-2
was upregulated (P < 0:05). The blank group stands for untreated normal cells, the miR-control group was transfected with negative
control miRNAs, and the miR-9-5p group was transfected with mmu-miR-9-5p mimics.
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Figure 3: Continued.
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between mmu-miR-9-5p and SCRIB, we tested the SCRIB
expression. Mmu-miR-9-5p inhibits the mRNA and protein
expression of SCRIB that induced by MMP+ (Figures 3(g)–
3(i)). Luciferase demonstrated that mmu-miR-9-5p directly
binds to SCRIB (Figure 3(k)).

3.5. SCRIB Inhibits the Protective Effect of mmu-miR-9-5p on
Apoptotic Cell. To testify whether mmu-miR-9-5p regulates
β-catenin by SCRIB or not, we restored the expression of
SCRIB Figures 4(a) and 4(b)). Consequently, mmu-miR-9-
5p lost its control to β-catenin (Figures 4(a) and 4(e))
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Figure 3: mmu-miR-9-5p regulates the SCRIB/β-catenin signaling pathway by directly targeting SCRIB. Western blot was used to detect
possible signals for apoptosis. (a, b, d) p-AKT and β-catenin were upregulated (P < 0:05). (a, c, e, f) p-p38, p-JNK, and p-p65 were
downregulated (P < 0:05). (g) The expression of SCRIB mRNA was upregulated in the mmp+ group than the control group (P < 0:05)
and was inhibit by mmu-miR-9-5p (P < 0:05) (h, i) The expression of SCRIB was downregulated in the mmu-miR-9-5p group (P < 0:05)
detected by Western blot. (j) Predicted binding sites of mmu-miR-9-5p and SCRIB. (k) Luciferase reporter assay suggests SCRIB is the
direct binding to mmu-miR-9-5p (P < 0:05).

7Oxidative Medicine and Cellular Longevity



GAPDH

β–catenin

p–JNK

p–p38

AKT

p–AKT

miR–9–5p
SCRIB

SCRIB

1 2 3 4

–
– –

–+
+

+
+

(a)

0.8

0.6

0.4

0.2

0.0

ns

Re
la

tiv
e S

CR
IB

 ex
pr

es
sio

n

1 2 3 4

⁎

(b)

0.8

0.6

0.4

0.2

0.0

Re
la

tiv
e p

–p
38

 ex
pr

es
sio

n

1 2 3 4

⁎⁎
⁎⁎

(c)

1.5

1.0

0.5

0.0

Re
la

tiv
e p

–J
N

K 
ex

pr
es

sio
n

1 2 3 4

⁎⁎

⁎

(d)

0.8

0.6

0.4

0.2

0.0

Re
la

tiv
e β

–c
at

en
in

 ex
pr

es
sio

n

1 2 3 4

ns

⁎

(e)

0.4

0.3

0.2

0.1

0.0

Re
la

tiv
e p

–A
KT

 ex
pr

es
sio

n

1 2 3 4

⁎⁎ ⁎

(f)

Figure 4: Continued.
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without affecting other signals (Figures 4(a), 4(c), 4(d), and
4(f)). Flow cytometry indicated that apoptosis of PD cells
were increased when SCRIB was presented, compared to
the mmu-miR-9-5p group only (Figures 4(g) and 4(h)).

3.6. mmu-miR-9-5p Improves the Behavior of PD Mice. To ver-
ify the effect of mmu-miR-9-5p in vivo, mmu-miR-9-5p was
administered in PD mice model. It seemed that athletic ability
of PDmice was improved (Figures 5(a) and 5(b)). Furthermore,
brain tissue staining showed more TH-positive cells in the
mmu-miR-9-5p group than in the control group (Figures 5(c)
and 5(d)). Immunofluorescence results showed that the expres-
sion of TH in the mir-9 treated group was higher than that in
the untreated group, and there was no statistical significance
between the two groups in the cleaved-caspase 3 expression
(Figures 5(e) and 5(f)).

4. Discussion

The decrease or dysfunction of dopaminergic neurons is the
main cause for Parkinson’s disease [23]. Apoptosis, a pro-
grammed cell death, is an effective way to eliminate the aged
or aberrant cells, thus maintain the self-renewal of organs

[24]. The abnormality of the apoptosis is one of the
pathogenesis of many neurodegenerative diseases, such as Par-
kinson’s disease, and subsequently leads to the loss of dopami-
nergic neurons in the substantia nigra pars compact [25, 26].
The measurements that promote apoptosis could be used
against the progression of Parkinson’s disease and to improve
the patients’ prognosis.

MiR-9-5p is crucial in the development of the nervous sys-
tem, targeting different mRNAs. It regulates several physiolog-
ical processes in neural precursor cells, such as proliferation,
migration, and differentiation [27]. The role of miR-9-5p in
neurodegenerative diseases is complex. Studies have shown
that the expression of miR-9-5p is changed with time and
lesion site depended in Alzheimer’s disease [15, 16, 28–30],
which means the roles of miR-9-5p relying on neuron types.
The expression of serum miR-9-5p was significantly higher
in treated Parkinson’s patients than untreated Parkinson’s
patients and healthy people [31]. MiR-9-5p is upregulated in
PD patients’ dopaminergic neurons via somatic cell repro-
gramming and induced pluripotent stem cells’ differentiation
[18]. Our evidence demonstrated that miR-9-5p protects
dopaminergic neuron from apoptosis which induced by
MMP+. Taken together, the neuroprotective effect of miR-9-
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Figure 4: SCRIB inhibits the protective effect of mmu-miR-9-5p on apoptotic cell. Western blot showed that after the SCRIB expression
was restored, mmu-miR-9-5p lost its regulation of β-catenin (a, b, e), while the expression of p-p38,p-JNK, and p-AKTwas not affected (a, c, d, f).
(g, h) The apoptosis rate of MN9D cells was also out of control of mmu-miR-9-5p after the SCRIB expression was restored (P > 0:05).
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Figure 5: Continued.
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5p is undisputed. The upregulation of miR-9-5p in Parkin-
son’s disease might be a self-protective feedback.

Drug-induced β-catenin signaling is effectively counter-
acted the toxicity of dopaminergic neurons, leading to neuro-
protection and neurorestoration [32–34]. Our data showed
that miR-9-5p activates β-catenin signaling which was inhibited
by MPTP in dopaminergic neurons. MiR-9-5p has potential to
be a therapeutic agent for PD. Besides, studies suggest that β-
catenin is a vital pathway for dopaminergic neurogenesis. The
unusual β-catenin pathway may precede and/or accompany
PD onset and progression [35]. In MPTP treated mice, cell
proliferation in subventricular zone (SVZ), riched in neural
stem cells, was significantly inhibited with decrease of β-catenin
signal [34]. Therefore, miR-9-5p administration may promote
the proliferation and differentiation of neural stem cells through
activating β-catenin signaling and regain the dopaminergic
neurons as well.

Studies have shown that SCRIB bind to β-catenin form
stable complexes, promoting β-catenin degradation [22]. Our
data suggested that SCRIB is the target of miR-9-5p, and the
regulation of miR-9-5p on β-catenin is not direct but realized
by SCRIB.

5. Conclusion

MiR-9-5p inhibits the apoptosis of dopaminergic neurons in
PD and improves the symptoms of Parkinson’s disease,
involving in a variety of signaling pathways. MiR-9-5p upre-
gulates β-catenin signaling pathway by directly targeting
SCRIB. In conclusion, miR-9-5p has great potential to be a
therapeutic target for Parkinson’s disease.

Data Availability

The article data used to support the findings of this study are
included within the article. The mir-9 database is on the
http://mirdb.org.

Additional Points

Contribution to the field. Parkinson’s disease is a complex
challenge of neuroregulatory disorder. There is still no cure
for Parkinson’s disease, and even the pathogenesis of Parkin-
son’s disease remains unclear. The abnormal expression of
miRNA is closely related to the occurrence and progression
of Parkinson’s disease. Here, we demonstrated that miR-9-
5p inhibited the apoptosis of dopaminergic neurons by reg-
ulating β-catenin signaling, directly targeting SCRIB, which
was regard as a tumor suppressor gene. Besides, miR-9-5p
improved the motor function of mice with Parkinson’s dis-
ease. The results of this study suggest a potential therapeutic
target for Parkinson’s disease.
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Figure 5: mmu-miR-9-5p improved the behavior of PD mice. Pole test (a) and hang test (b) were used to evaluate the motor function of
mice. (c, d) Immunofluorescence showed that TH positive cells were significantly higher than the control group (P < 0:05). (e, f) The
expression of cleaved-caspase 3 was higher in the mmu-miR-9-5p group (P > 0:05). The expression of TH was lower (P < 0:05). Scale
bar: 100μm.
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