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in mouse embryonic stem cells
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MEK inhibition in combination with a glycogen synthase kinase-3p (GSK3p) inhibitor, referred as the 2i condition,
favors pluripotency in embryonic stem cells (ESCs). However, the mechanisms by which the 2i condition limits ESC
differentiation and whether RAS proteins are involved in this phenomenon remain poorly understood. Here we show
that RAS nullyzygosity reduces the growth of mouse ESCs (mESCs) and prohibits their differentiation. Upon RAS
deficiency or MEK inhibition, ERF (E twenty-six 2 [Ets2]-repressive factor), a transcriptional repressor from the ETS
domain family, translocates to the nucleus, where it binds to the enhancers of pluripotency factors and key RAS

targets. Remarkably, deletion of Erf rescues the proliferative defects of RAS-devoid mESCs and restores their ca-

pacity to differentiate. Furthermore, we show that Erf loss enables the development of RAS nullyzygous teratomas.
In summary, this work reveals an essential role for RAS proteins in pluripotency and identifies ERF as a key mediator

of the response to RAS/MEK/ERK inhibition in mESCs.
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RAS proteins are small GTPases that are essential regula-
tors of proliferation, differentiation, and survival in eu-
karyotic cells (Cox and Der 2010; Pylayeva-Gupta et al.
2011). These proteins oscillate between an active (GTP-
bound) and inactive (GDP-bound) state that is in turn reg-
ulated by guanine exchange factors (GEFs; which promote
the GDP/GTP exchange) and GTPase-activating proteins
(GAPs; which accelerate GTP hydrolysis). RAS signaling
initiates at the membrane, where it integrates cues com-
ing from a wide range of mitogens such as epidermal
growth factor (EGF) or fibroblast growth factors (FGF)
through their cognate receptors. Upon activation, RAS
proteins elicit their function by triggering several phos-
phorylation-based signaling pathways from which the
RAF/MEK/ERK and PI3BK/mTOR/AKT routes are the
most studied. Ultimately, the RAS signal is executed by
transcription factors, including FOS, JUN, MYC, and fac-
tors from the “E twenty-six” (ETS) domain family (Size-
more et al. 2017). While ETS domain factors are best
known as activators of transcription, there are also exam-
ples of transcriptional repression. One such case is ERF
(Ets2-repressive factor), which, in the presence of growth
factors, is kept inactive in the cytoplasm by ERK-depen-
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dent phosphorylation and only translocates to the nucleus
upon ERK inactivation to exert its function (Sgouras et al.
1995; Le Gallic et al. 1999).

Besides its well-established roles in regulating prolifera-
tion and survival in somatic cells, work with pluripotent
cells has also revealed an important role of RAS signaling
in promoting differentiation. Mouse embryonic stem cells
(mESCs ) are characterized by their indefinite capacity to
self-renew and differentiate into all cell types of the organ-
ism. In order to maintain their pluripotency, mESCs are
cultured in the presence of leukemia inhibitory factor
(LIF) and either bone morphogenetic protein 4 (BMP4) or
fetal bovine serum (FBS) (Smith et al. 1988; Williams
et al. 1988; Ying et al. 2003). Interestingly, ectopic ex-
pression of an activated H-RAS in mESCs leads to troph-
oectodermal differentiation, whereas interfering with
FGF4-dependent MEK or ERK signaling impairs neuronal
differentiation (Kunath et al. 2007; Lu et al. 2008). These
experiments suggested that the RAS/MAPK pathway
could be a primary trigger of cell commitment in ESCs.
Accordingly, a combined inhibition of MEK and glycogen
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synthase kinase-3p (GSK3), also known as the 2i condi-
tion, is sufficient to maintain pluripotency even in the ab-
sence of LIF and serum (Ying et al. 2008). However,
regardless of the role of MEK, to what extent RAS proteins
are involved in the exit from pluripotency has not been
formally addressed. Our work presented here reveals an
essential role of RAS proteins in the exit from pluripo-
tency and identifies ERF as a key mediator of the response
to RAS/MEK/ERK inhibition in mESCs.

Results

The absence of RAS genes reduces the growth of mESCs

To investigate the impact of RAS deficiency in pluripotent
cells, we generated mESCs carrying constitutively null
alleles for H-Ras and N-Ras and a conditional knockout
K-Ras allele (H-Ras™/~; N-Ras~/~; K-Ras'®*/°% | referred to
here as RAS*/1%) (Drosten et al. 2010). When combined
with a CreE®T? expressed from the locus of the large sub-
unit of RNA polymerase II (Brocard et al. 1997), this system

RASlox/on
- + = + = + OHT

Hallmark “ERK-MAPK targets”

ERF loss rescues RAS nullyzigosity in mESCs

allows for the ablation of the remaining K-Ras allele upon
addition of 4-hydroxytamoxifen (OHT) and thus the gener-
ation of mESCs devoid of all RAS proteins (RAS'**®). The ef-
ficiency of the system was confirmed by Western blotting,
which showed an efficient depletion of RAS after ex-
posing RAS!**/1°* mESCs to OHT, together with a severe
reduction in the phosphorylation levels of MEK, ERK,
and ribosomal S6 kinase (p90RSK), a well-established
ERK target (Fig. 1A). In addition, gene set enrichment anal-
ysis (GSEA) from microarray data revealed an overall
down-regulation of ERK/MAPK targets in OHT-treated
RAS!¥/1°X mESCs (Fig. 1B; Supplemental Table 1). While
MEK inhibition does not severely impair ESC growth (Li
et al. 2007), the loss of all RAS proteins significantly re-
duced the size of mESC colonies (Fig. 1C), suggesting
that Ras nullyzygosity could have a more profound impact
on MEK/ERK signaling than chemical MEK inhibition. In
support of this, the reduction in the phosphorylation levels
of ERK and p90RSK was higher in RAS'*® cells than in
mESCs treated with the MEK inhibitor PD0325901 (Sup-
plemental Fig. S1A). Furthermore, while MEK inhibition

Figure 1. RAS deficiency impairs growth and differenti-
ation in mESCs. (A) Western blot analysis illustrating the
loss of the remaining K-RAS protein (with a panRAS anti-
body) and the decrease in the active phosphorylated forms
of MEK, ERK, and POORSK in OHT-treated (7 d) RAS!O%/1%
mESCs. Three independent RAS¥/°* mESC lines were
used. CDK2 levels are shown as a loading control. (B) Pre-
ranked GSEA on the genes included in the hallmark
“ERK-MAPK targets” revealed a down-regulation of the
pathway in RAS-deficient mESCs. The heat map repre-
sentation derives from two independent untreated or
OHT-treated RAS'¥/!°* mESC lines 2 d after the addition
of OHT. (C) Representative bright-field images corre-
sponding to untreated or OHT-treated RAS'¥/1°* mESCs
7 d after the addition of OHT. Bar, 20 pm. (D) Flow cytom-
etry analysis of the cell cycle distribution in untreated or
OHT-treated RAS'/1°* mESCs 7 d after the addition of
OHT. (E) Flow cytometry analysis of a knocked-in
mCherry reporter at the Nanog locus in RAS*/1°* mESCs
untreated, treated with OHT, and treated with 2i for 3
d. (F) mRNA levels of pluripotent (Oct4 and Nanog) and

7 days differentiation (Afp and Gata6) markers in wild-type

mESCs and in embryoid bodies (EBs) derived from un-
treated or OHT-treated RAS*/'°X mESCs as assessed by
real-time PCR. Gapdh levels were used to normalize
gene expression. Two independent experiments were per-
formed, and data are shown as the averaged level of tripli-
cates. Error bars indicate SD. (G) Representative bright-
field images of the cultures initiated from EBs derived
from untreated or OHT-treated RAS!%/1% mESCs that
were maintained in suspension and in the absence of
LIF for 15-d and subsequently trypsinized and plated on
top of feeder mouse embryonic fibroblasts (MEFs) in
mESC medium. Bar, 20 pm.
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triggers a feedback loop that results in increased MEK
phosphorylation (Caunt et al. 2015), the phosphorylation
levels of MEK are sharply reduced in RAS'®*® cells (Supple-
mental Fig. STA).

To analyze the growth properties of RAS'* mESCs,
OHT-treated and untreated RAS°*/1% cells were infected
with H2B-EGFP-expressing lentiviruses and video-moni-
tored for 24 h at 10-min intervals. This analysis revealed
that the reduced proliferation of RAS'* cells was not
due to an increase in cell death but rather the presence
of cells that failed to progress into mitosis, consistent
with the key role of MAPK signaling as a mitogenic path-
way (Supplemental Fig. S1B). Flow cytometry analyses
also did not show an increase of cell death in RAS!®
mESCs but revealed a slight arrest at the G1/S bound-
ary (Fig. 1D). This phenotype is reminiscent of recent ob-
servations made in mESCs grown in 2i (Ter Huurne et al.
2017).

RAS deficiency prohibits mESC differentiation

Next, we investigated the effects of RAS deficiency in plu-
ripotency. Similar to the “ground state” achieved with the
2i condition (Ying et al. 2008), RAS*** mESCs presented a
more intense and homogeneous expression of NANOG
and fewer differentiated colonies based on alkaline phos-
phatase activity (Supplemental Fig. S1C,D). Accordingly,
flow cytometry analysis of a knocked-in mCherry reporter
at the Nanog locus (Faddah et al. 2013) revealed that the
loss of RAS genes in mESCs led to an increase in NANOG
expression, which was actually higher than that achieved
with the 2i condition (Fig. 1E). To evaluate the capacity of
RAS-deficient mESCs to undergo differentiation, we
first induced their differentiation toward intermediate
mesoderm with a protocol based on retinoic acid and acti-
vin A (Oeda et al. 2013). This experiment revealed that
RAS!®** mESCs induced to differentiate retained the ex-
pression of the pluripotency factors Oct4 and Nanog
and failed to express differentiation markers such as Afp,
Foxa?2, and Msx1 (Supplemental Fig. S1E).

To further induce differentiation, we generated embry-
oid bodies (EBs) from OHT-treated or untreated RAS!O¥/10x
mESCs and subsequently transferred them to gelatin-
coated plates where they were left to differentiate for 10
additional days. Remarkably, even if RAS'*® mESCs
were capable of generating EBs (see examples below),
these EBs maintained the expression of Oct4 and Nanog
and failed to express differentiation markers such as
Gata4, Afp, Foxa2, Gata6, and Albumin (Fig. 1F; data
not shown). Finally, we tried to promote the differentia-
tion of RAS'®® mESCs with the following experiment.
EBs derived from untreated and OHT-treated RAS!¥/1o%
mESCs were transferred to nonadherent plates in the ab-
sence of LIF and kept in suspension for 15 d, which is a
highly stringent protocol, after which no pluripotent cells
should remain. After this time, EBs were tripsinized and
transferred to regular mESC culture plates containing
feeders and LIF. As expected, no mESC colonies grew
from trypsinized RAS-proficient EBs. In contrast, cultures
initiated from RAS'*® EBs yielded abundant mESC colo-
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nies, confirming the incapacity of RAS-deficient mESCs
to differentiate (Fig. 1G). Importantly, the lack of H-Ras
and N-Ras present in RAS'¥/1°% cells does not signifi-
cantly affect the self-renewal or differentiation capabili-
ties of mESCs (Supplemental Fig. S2). Altogether, these
experiments illustrate that the absence of RAS genes re-
duces the growth of mESCs and prevents their exit from
pluripotency.

ERF deletion rescues growth and differentiation
in RAS™ mESCs

In mammals, cumulative evidence supports an important
role for ERF in counteracting the RAS signal (Sgouras et al.
1995; Le Gallic et al. 1999; Verykokakis et al. 2007). ERFis
a transcriptional repressor from the ETS family that, in
the presence of an active RAS/MEK/ERK pathway, is
kept inactive in the cytoplasm through ERK-dependent
phosphorylation and translocates to the nucleus upon
ERK inhibition, leading to cell cycle arrest at GO/G1 (Le
Gallic et al. 1999, 2004). Interestingly, ERF expression is
particularly high in mESCs when compared with other
cell types (Supplemental Fig. S3), suggesting a distinct
function for this ETS domain factor in pluripotency. In
support of this, exposure of mESCs to the 2i condition
or the loss of Ras genes promoted the nuclear accumula-
tion of ERF (Fig. 2A; Supplemental Fig. S4A,B). In addition,
ERF phosphorylation levels were reduced in RAS!¥/1ox
mESCs upon OHT treatment, further indicating its acti-
vation in RAS'* cells (Fig. 2B). To evaluate whether
ERF played a role in the reduced growth rates of RAS!®s
cells, RAS¥/1°* mESCs were infected with lentiviruses
expressing Cas9 and two different single-guide RNAs
(sgRNAs) targeting Erf. CRISPR-mediated depletion of
ERF was efficient with both sgRNAs, as determined by
Western blotting (Fig. 2B). ERF depletion fully rescued
the growth of RAS!*** mESCs (Fig. 2C; Supplemental Fig.
S4C). Video analysis of cell cycle progression confirmed
the rescue of proliferation and mitotic entry rates that is
achieved by Erf deletion in RAS-deficient mESCs (Supple-
mental Fig. S4D).

Next, we investigated whether ERF depletion could en-
able the differentiation of mESCs devoid of RAS genes by
generating EBs. Consistent with the growth defects ob-
served in RAS'* cells, EBs generated from OHT-treated
RAS!/1°X mESCs were smaller in size than RAS-proficient
ones, an effect that was once again rescued by ERF deple-
tion (Fig. 2D; Supplemental Fig. S4E). Subsequently, EBs
were cultured on gelatin-coated plates, which leads to the
growth of patches of differentiated cells that spread as alay-
er away from the EBs (Fig. 2E). In agreement with their in-
capacity to differentiate, RAS!®*® EBs did not present such
an outgrowth and stayed as compact EBs. In contrast, layers
of emigrating cells were observed in the periphery of
RAS!® EBs that were also deficient in ERF (Fig. 2E), which
expressed differentiation markers such as NESTIN (Sup-
plemental Fig. S4F). ERF loss enabled a high degree of
differentiation in RAS'®*® cells, as exemplified by the ob-
servation of beating cardiomyocytes emerging from ERF-
deficient RAS'* EBs (Supplemental Movie 1).


http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1
http://genesdev.cshlp.org/lookup/suppl/doi:10.1101/gad.310086.117/-/DC1

S
£ o
S A N
§ & &
s 3 5
- + = + = + OHT
panRAS «» @& =
ERF " s
CDK2 0 e e = = —
sgControl SgErf_1 SgErf 2
10% 101 1010
10 10 10
3 10° g10° 3 10°
S 107 2107 5 107
%100 10% onr Z 400
— -OHT = — - OHT
10° —+ 8HT 10° —+OHT 10° — 8HT
+ T T T T + T T T T F T T T T
0 2 5 8 11 0 2 5 8 M 0o 2 5 8 11
Days Days Days
RAslox/qu
D sgControl SgErf_2 E

R, Aslox/lox

Figure 2. ERF loss rescues the effecs of RAS deficiency in
mESCs. (A) Intracellular localization of ERF (green) in control
or 2i-treated (2 h) wild-type mESCs. Bar, 5 pm. DAPI (blue) was
used to stain DNA. (B) Western blot of ERF observed in untreated
or OHT-treated (48 h) RAS'¥/1°° mESCs that had been infected
with lentiviruses expressing Cas9 and sgRNAs against ERF
(sgErf_1 and sgErf 2) or a control sgRNA. The ERF band shift
that occurs upon loss of all Ras proteins (detected with a panRAS
antibody) is consistent with a loss of phosphorylation. CDK2 lev-
els are shown as a loading control. (C) Cumulative growth curves
from cultures of untreated or OHT-treated RAS'/'°* mESCs in-
fected with lentiviruses expressing Cas9 and sgRNAs against
ERF (sgErf_1 and sgErf 2) or a control sgRNA. (D) Representative
bright-field images from 4-d-old EBs maintained in suspension
derived from untreated or OHT-treated RAS'**/1°* mESCs infect-
ed with lentiviruses expressing Cas9 and sgRNAs against ERF
(#2) or a control sgRNA. EB formation was initiated 5 d after
the addition of OHT. Bar, 100 pm. (E) Representative bright-field
images of 6-d-old EBs derived from untreated or OHT-treated
RAS'¥1% mESCs infected with lentiviruses expressing Cas9
and sgRNAs against Erf (#2) or a control sgRNA that were subse-
quently plated onto gelatin to induce spontaneous differentia-
tion. Bar, 100 ym.

ERF deletion enables the development of RAS
nullyzygous teratomas

Besides their role in pluripotency, RAS genes are best
known as the most frequently mutated human oncogene
(Pylayeva-Gupta et al. 2011). Given that RAS structural
properties are unfavorable for the development of small
molecule inhibitors (Cox et al. 2014), current therapies
are oriented to target downstream effectors of RAS, such
as RAF or MEK. However, resistance to these treatments
invariably occurs due to the existence of numerous feed-
back loops (Samatar and Poulikakos 2014). In this context,

ERF loss rescues RAS nullyzigosity in mESCs

even if potent and selective RAS inhibitors finally emerge,
to what extent the anti-tumoral effects of these agents
could also be bypassed by resistance mechanisms is not
known. To evaluate the tumor formation potential of
RAS-deficient mESCs, we generated teratomas. To this
end, untreated and OHT-treated RAS'*/'°* mESCs were
injected subcutaneously into both flanks of nude mice.
To discard variability between host mice, untreated
mESCs were injected into one flank, and OHT-treated
ones were injected into the other. Consistent with the ma-
jor role of RAS in cancer, OHT-treated RAS'*/1°* mESCs
failed to form teratomas (Fig. 3A-C). In contrast, Erf dele-
tion enabled the development of RAS-deficient teratomas
(Fig. 3A-C). The size of ERF-deficient RAS'*** teratomas
was similar to that of control tumors, further illustrating
the extent of the synthetic viable effect that arises upon
the concomitant loss of ERF and RAS (Fig. 3B; Supplemen-
tal Fig. S5A). Interestingly, one teratoma could be ob-
tained from RAS'®® mESCs that were ERF wild type,
which turned out to be a chimaera of RAS-proficient and
RAS-deficient cells due to an incomplete OHT-induced
deletion of the remaining K-Ras allele (Fig. 3D). Consis-
tent with the incapacity of RAS-deficient mESCs to
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Figure 3. ERF deletion enables the development of RAS-devoid
teratomas. (A) Representative images of mice bearing teratomas
20 d after the injection of untreated or OHT-treated RAS¥/1ox
mESCs infected with lentiviruses expressing Cas9 and sgRNAs
against ERF or a control sgRNA. Eight mice were injected per con-
dition. (B) Representative images of the teratomas obtained from
the experiment defined in A at day 20. (C) Kaplan-Meier graphs
illustrating the percentage of mice bearing teratomas after the in-
jection of the indicated mESCs. (n.s.] Nonsignificant; (***) P <
0.001. (D) Immunohistochemistry of panRAS, OCT4, and NES-
TIN expression in the only teratoma obtained from OHT-treated
RAS'¥/1°% mESCs that had been infected with a control sgRNA.
Note that areas lacking panRAS staining retained OCT4 expres-
sion and failed to express NESTIN (zoomed-in square).
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undergo differentiation, areas of this teratoma lacking
RAS expression retained high levels of OCT4 and failed
to express NESTIN, while differentiation could be readily
observed in RAS-positive areas. Upon ERF loss, NESTIN-
positive and OCT4-negative areas could be observed in
RAS-deficient teratomas (Supplemental Fig. S5B). More-
over, ERF-deficient RAS nullyzygous teratomas presented
areas of differentiation into all three embryonic layers
(Supplemental Fig. S5C). In summary, these data demon-
strate that Erf deletion enables the differentiation of
mESCs devoid of all Ras genes in vitro and in vivo.

ERF is a regulator of transcriptional enhancers in mESCs

To understand the mechanism by which ERF regulates
growth and differentiation in mESCs, we mapped its geno-
mic binding sites by chromatin immunoprecipitation
(ChIP) followed by next-generation sequencing (ChIP-
seq). To this end, we analyzed the chromatin association
of ERF in RAS!¥/!°* mESCs that had been either treated
or untreated with OHT for 7 d as well as in ERF-deficient
mESCs as an antibody specificity control (Supplemental
Fig. S6A). Consistent with the cytoplasmic localization
of ERF in RAS-proficient cells, only one ERF peak could
be detected in this condition (Supplemental Table 2). In
contrast, 4297 potential ERF-binding sites were detected
in OHT-treated RAS*/'°* mESCs (Supplemental Table
3). Interestingly, while ETS domain factors are most often
associated with transcriptional control at promoter sites,
a detailed analysis of ERF-bound sequences in Ras'®*
mESCs showed that 45.5% of the peaks map to sequences
10-100 kb away from the transcription start site (TSS) (Fig.
4A). Moreover, the majority of ERF peaks is at either in-
trons (36%) or intergenic sequences (45%) (Fig. 4B), simi-
lar to previous observations from an ERF ChIP-seq in
growth-deprived mouse embryonic fibroblasts (MEFs)
(Twigg et al. 2013).

The data above prompted us to explore whether ERF
binding could preferentially occur at transcriptional en-
hancer sequences. To this end, we compared its distribu-
tion with a reference data set of 10,627 mESC enhancers
(Hnisz et al. 2013), identifying ERF peaks in 1954 of these
sites (Fig. 4C). Consistently, an independent statistical
analysis identified that 49.1% all ERF peaks have a P-val-
ue of <0.05 for overlapping with mESC enhancer sequenc-
es (vs. randomly distributed) (see the Supplemental
Material). Moreover, the distribution of ERF at these sites
was similar to that of mESC enhancer-associated marks
such as H3K4mel and P300 (Fig. 4D,E; Heintzman et al.
2007). Interestingly and in addition to “negative regula-
tion of MAPK cascade,” gene ontology analyses identified
“stem cell maintenance” and “blastocyst formation”
among the most significantly enriched pathways harbor-
ing ERF-bound enhancers, highlighting a key role for
ERF in the coordination of pluripotency (Supplemental
Fig. S6B; Supplemental Table 4). In support of this, ERF
bound to enhancer sequences present near the genes
from core pluripotency factors such as OCT4 and KLF4
as well as from other factors with an important role in
the maintenance of the ground state, such as ESSRB,
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Figure 4. ERF binds to enhancers of RAS targets and pluripo-
tency factors in mESCs. (A) Distribution of ERF-bound genomic
regions in RAS-deficient mESCs related to the closest TSS. Num-
bers within the graph correspond to the number of ERF-bound ge-
nomic regions included in each category. (B) Distribution of the
different genomic features overlapping with the 4297 ERF peaks
identified in RAS'** mESCs, identified with the HOMER bioin-
formatics package (see the Supplemental Material). (C) Heat
map representations from untreated and OHT-treated RAS!¥/1
mESCs of the normalized read density of the ERF ChIP-seq at
10,627 previously defined mESC enhancers (Hnisz et al. 2013).
The heat map from the ERF ChIP-seq in FzfX© cells is provided
as a control. (D) Heat map representation of the normalized
read density of ERF ChIP-seq data around the 1954 enhancers
bound by ERF in OHT-treated RAS°*/'°* mESCs. The overlap
with public ChIP-seq data sets of P300 (Gene Expression Omni-
bus [GEO] accession no. GSM918750) and H3K4mel (GEO acces-
sion no. GSM1003750) distributions in mESCs is shown. (E)
Average ERF, P300, and H3K4mel ChIP-seq mean density distri-
butions in mESCs as defined in D, centered around enhancers. (F)
Representative ChIP-seq tracks of ERF at the Oct4 (left) and KIf4
(right) locus in RAS'** mESCs. The ChIP-seq signal from ERF-de-
ficient mESCs is also provided as a specificity control. The X-axis
corresponds to the genomic location, and the Y-axis corresponds
to normalized ChIP-seq signal density. The ChIP-seq track of
P300 in mESCs (GEO accession no. GSM918750) is provided for
comparison with a reference enhancer-associated mark. Known
mESC enhancers are shown as blue boxes in the bottom track.

NR5A2, PRDM14, TCFCP2L1, STAT3, and TCE3 (Fig.
4F; Hnisz et al. 2013; data not shown). Moreover, while
motif analyses revealed ETS-binding sites as the most sig-
nificantly enriched sequences at ERF peaks, this was fol-
lowed in significance by the target sequences for OCT4,
SOX2, and KLF4 (Supplemental Fig. S6C).
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Regarding the impact of ERF binding in gene expres-
sion, bioinformatics analysis with the genomic enrich-
ment of annotations tool (GREAT) (McLean et al. 2010)
identified 5098 genes as associated with ERF peaks.
When comparing this data set with microarray analyses
of OHT-treated and untreated RAS*/'** mESCs (Supple-
mental Table 1), 468 out of the 5098 genes (9.2%]) that
lay near ERF peaks were found to be down-regulated in
RAS-deficient mESCs (Supplemental Table 5), consistent
with the known role of ERF as a transcriptional repressor.
Accordingly, ERF deletion increased the expression of the
majority of genes that are down-regulated in RAS!*
mESCs and are in close proximity to ERF-bound enhancer
regions (Supplemental Fig. S6D). This is exemplified by
JARID2 or MYC, for instance, which present ERF peaks
in the vicinity of their genes and are down-regulated in
the absence of RAS in a manner that is alleviated by
ERF deletion (Supplemental Fig. SGE-H). Besides Myc,
the list of genes that present ERF peaks and are down-reg-
ulated in RAS-deficient mESCs includes key transducers
of the RAS signal, such as Pdk1, the ETS domain factors
Etv1 and Etv4, and several negative regulators of growth
factor signaling, including Spred1, Dusp4, Duspé, Spry?2,
and Spry4. (Supplemental Table 5). Interestingly, 284
out of the 5098 genes (5.6%) associated with ERF peaks
in RAS'** mESCs presented increased expression in these
cells, suggesting that ERF might also play an activating
role at certain loci (Supplemental Table 6). In support of
this, ERF deletion reduced the expression levels of many
of the genes that are up-regulated in RAS!**®* mESCs and
are in close proximity to ERF-bound enhancers (Supple-
mental Fig. S6I). Thus, despite the well-established role
of ERF as a transcriptional repressor (Sgouras et al. 1995;
Le Gallic et al. 1999; Verykokakis et al. 2007), our current
data indicate that the presence of ERF at mESC enhancers
can either activate or repress transcription of the associat-
ed gene. Collectively, these data identify ERF as an en-
hancer-bound regulator of gene expression in pluripotent
cells.

Discussion

While RAS proteins are mostly known as oncogenic
factors, the RAS/MEK/ERK axis also plays a key role in
pluripotency. Accordingly, MEK inhibition or ERK1/2
deficiency limits the differentiation of mESCs (Ying
et al. 2008; Chen et al. 2015). Our work further supports
this concept, as mESCs devoid of RAS genes are
completely incapable of abandoning pluripotency in vitro
or in vivo. Still, how the inhibition of growth factor sig-
naling favors pluripotency remains poorly understood.
Here we identify ERF as member of the ETS family of
transcription factors with a key role in this phenomenon.
Upon loss of RAS proteins, ERF translocates to the nucle-
us, where it binds to a broad set of enhancers placed near
key pluripotency and mitogenic factors. The localization
of ERF at enhancers is consistent with recent ChIP-seq
studies on ETS factors (Chen et al. 2013; Yang et al.
2015), which could indicate that this metazoan-specific
family of transcriptional regulators might have evolved
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together with the emergence of enhancer sequences as
modulators of their function. Given that ETS factors
share a common binding sequence, it is possible that
the presence of ERF upon inhibition of the RAS/MEK/
ERK pathway impedes the recruitment of other ETS fac-
tors, thereby limiting their function.

The central role that ERF plays in restricting prolifera-
tion and differentiation in mESCs is unlikely to be deter-
mined by a single factor. Similar to what was reported for
the 2i condition (Marks et al. 2012), reduced levels of
MYC probably play an important role in the growth de-
fects of RAS!®** mESCs. Accordingly, previous work iden-
tified MYC as a mediator of the growth-suppressing
functions of ERF in MEFs (Verykokakis et al. 2007). Never-
theless, ERF binds to the enhancers of multiple members
of the growth factor signaling pathway and ETS domain
factors, some of which probably also contribute to the re-
duced growth rates of RAS!*** mESCs. As to how ERF re-
stricts mESC differentiation, the polycomb repression
complex 2 (PRC2) subunit JARID2 is an interesting candi-
date. Multilineage differentiation in mESCs depends on
the transcriptional priming of developmental bivalent
(H3K4me3/H3K27me3) genes by JARID2. Accordingly,
JARID2 knockout mESCs have a severe compromised ca-
pacity to differentiate and are unable to intiate cell lineage
commitment (Landeira et al. 2010). In this context, the
finding that JARID2 levels are significantly down-regulat-
ed in RAS-deficient mESCs in an ERF-dependent manner
provides an interesting mechanistic insight that could
help in understanding how inhibition of the RAS/MEK/
ERK pathway promotes a more ground state in mESCs. Be-
sides the role of individual targets, ERF might also play a
more general role in limiting mESC differentiation. Recent
works have revealed that the transition from naive to
primed pluripotency involves a global reorganization of
enhancer usage patterns for factors such as OCT4, which
relocates from distal enhancers in naive mESCs to more
proximal enhancers in primed cells (Buecker et al. 2014;
Factor et al. 2014). Likewise, OCT4, SOX2, and NANOG
translocate to distal enhancers when mESCs are cultured
under the 2i conditions (Galonska et al. 2015), suggesting
that the “distal enhancer”-binding profile is a unique fea-
ture of ground-state mESCs. Given that ERF-bound en-
hancers are mostly distal, to what extent ERF binding
mediates the global rewiring of enhancer usage associated
with pluripotency emerges as an interesting possibility.

In regard to cancer, our work opens the unfortunate pos-
sibility that even if potent and selective RAS targeting
drugs are finally developed, resistance mechanisms are
likely to emerge. Supporting this concept, a recent study
has shown that some pancreatic cancer lines can tolerate
the absence of K-RAS (Muzumdar et al. 2017), although
there could potentially be compensation from the rest of
the members of the RAS family (Esteban et al. 2001;
Potenza et al. 2005; Drosten et al. 2017). It is noteworthy
that while H-RAS, N-RAS, and K-RAS are widely con-
sidered the main RAS genes in mammalian cells, mESCs
express another variant, E-Ras, that could drive RAS
signaling in pluripotent cells (Takahashi et al. 2003).
However, the profound inhibition of MEK and ERK
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phosphorylation in RAS'*** mESCs argues against E-Ras
significantly contributing to RAS signaling in these cells
(Fig. 1A; Supplemental Fig. STA). In this context, while ac-
knowledging that teratomas are a special tumor type, our
data suggest that cancer cells might even be able to bypass
RAS nullyzygosity through the inactivation of suppres-
sors such as ERF. Interestingly, recurrent deletions and in-
activating mutations of ERF have been found recently in
prostate cancer (Bose et al. 2017; Dhingra et al. 2017;
Huang et al. 2017). However, the impact of these muta-
tions is still not fully characterized. Based on our work,
it is tempting to speculate that loss of ERF function might
increase the resistance to targeted therapies of the RAS/
MEK/ERK pathway, including actual RAS inhibitors. Be-
yond the putative impact of ERF mutations in cancer,
our work places ERF at the core of the response to RAS/
MEK/ERK inhibition in pluripotent cells.

Materials and methods
Mice

Athymic nude Foxnl-null mice were obtained from Charles Riv-
er. All mouse work was performed in the pathogen-free animal fa-
cility of the Spanish National Cancer Research Centre (CNIO) in
accordance with the Guidelines for Humane Endpoints for Ani-
mals Used in Biomedical Research and under the supervision of
the Ethics Committee for Animal Research of the “Instituto de
Salud Carlos IIL.”

Cell lines

N-Ras™'~; H-Ras~'~; K-Ras"’; Ubiq-Cre® "2 Drosten et al. 2010)
and wild-type (R1 and G4) mESCs were grown on a feeder layer of
growth-arrested MEFs or on gelatin at 37°C and 5% CO, in high-
glucose DMEM (Invitrogen) supplemented with 15% FBS, 1000
U/mL LIF, 0.1 mM nonessential amino acids, 1% glutamax, 55
mM B-mercaptoethanol, and 1% penicillin/streptomycin unless
otherwise indicated. MEFs were obtained from 13.5 embryos by
standard methods. HEK293T (American Type Culture Collec-
tion) cells were grown in DMEM, 10% FBS, and 1% penicillin/
streptomycin.

mESC differentiation

For differentiation toward intermediate mesoderm, dissociated
RAS'9¥/1°% mESCs (untreated or OHT-treated previously for at
least 5 d) were seeded without feeders on gelatin-coated plates
and cultured in DMEM supplemented with 10% FBS, 0.1 mM
nonessential amino acids, 55 mM B-mercaptoethanol, 1% peni-
cillin/streptomycin, and 10 ng/mL activin A for 4 d as described
previously (Oeda et al. 2013). In the last 2 d, 50 nM retinoic
acid was also added to the culture medium.

EBs

To generate EBs, trypsinized ERF-proficient and ERF-deficient
RAS!¥/1* mESCs (untreated or OHT-treated previously for at
least 5 d) were hanging drop-cultured at a density of 60,000 cells
per milliliter for 2 d. After this time, cells were collected and cul-
tured in suspension in low-attachment plates in DMEM without
LIF supplemented with 10% FBS, 0.1 mM nonessential amino ac-
ids, 55 mM B-mercaptoethanol, and 1% penicillin/streptomycin.
To further induce differentiation, EBs were transferred to gelatin-
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coated plates and left to differentiate for 10 additional days in the
same medium condition.

Teratoma formation

mESCs (1 x 10°) were subcutaneously injected into the flanks of
nude Foxnl-null mice and inspected daily for a period of several
weeks to assess teratoma growth and size (measures were calcu-
lated according to the formula length x width? x 0.5). Eight inde-
pendent injections per group were performed.

Plasmids

The lentiviral plasmid pLentiCRISPRv2 (Addgene, 52961) was
used to express sgRNAs. The sequences of the sgRNAs
used were designed with the Massachusetts Institute of Tech-
nology CRISPR design tool (http://www.genome-engineering.
org/crispr). pLenti-H2B-EGFP was a kind gift from Dr. Marcos
Malumbres (CNIO). The plasmid Nanog-2A-mCherry (Addgene,
59995) was used to knock in a mCherry ¢cDNA at the Nanog
locus.

High-throughput microscopy

High-throughput microscopy for the analysis of ERF nuclear
translocation was performed as described previously with anti-
bodies against endogenous ERF (see Supplemental Table 7 for a
list of antibodies used in this study; Lopez-Contreras et al.
2012). Briefly, images from each well were automatically ac-
quired by an Opera high-content screening system (Perkin Elmer)
at nonsaturating settings and segmented using DAPI staining to
generate masks matching cell nuclei. Upon quantification of
ERF signals, a nuclear/cytoplasmic ratio was established for
each cell. Where the observed ratio was above the values found
in 95% of untreated mESCs, the cells were considered to have a
“nuclear” localization of ERF. Data were represented with Prism
(GraphPad Software).

ChIP-seq and microarray data

Microarray and ChIP-seq data are available at the NCBI Gene
Expression Omnibus under accession number GSE99477. Bioin-
formatics analyses and experimental methods for ChIP-seq
and microarray experiments are detailed in the Supplemental
Material.
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