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ABSTRACT

Tumors are characterized by properties of genetic
instability, heterogeneity, and significant oligoclon-
ality. Elucidating this intratumoral heterogeneity is
challenging but important. In this study, we pro-
pose a framework, BubbleTree, to characterize the
tumor clonality using next generation sequencing
(NGS) data. BubbleTree simultaneously elucidates
the complexity of a tumor biopsy, estimating can-
cerous cell purity, tumor ploidy, allele-specific copy
number, and clonality and represents this in an intu-
itive graph. We further developed a three-step heuris-
tic method to automate the interpretation of the Bub-
bleTree graph, using a divide-and-conquer strategy.
In this study, we demonstrated the performance of
BubbleTree with comparisons to similar commonly
used tools such as THetA2, ABSOLUTE, AbsCN-
seq and ASCAT, using both simulated and patient-
derived data. BubbleTree outperformed these tools,
particularly in identifying tumor subclonal popula-
tions and polyploidy. We further demonstrated Bub-
bleTree’s utility in tracking clonality changes from
patients’ primary to metastatic tumor and dating so-
matic single nucleotide and copy number variants
along the tumor clonal evolution. Overall, the Bub-
bleTree graph and corresponding model is a power-
ful approach to provide a comprehensive spectrum
of the heterogeneous tumor karyotype in human tu-
mors. BubbleTree is R-based and freely available to

the research community (https://www.bioconductor.
org/packages/release/bioc/htmi/BubbleTree.html).

INTRODUCTION

A common characteristic shared among malignant can-
cerous cells is impaired DNA repair, which in turn leads
to genome instability (1-5). As a result of this instability,
tumor cells progressively acquire additional DNA aberra-
tions throughout the lifetime of a tumor. Analogous to
Darwinian natural selection, cancer progression can be re-
garded as a process of clonal expansion (6,7). Specifically,
each tumor cell is a single species or ‘clone’ characterized by
a specific genetic makeup, and the tumor evolution is driven
by competition for growth between clones within the adap-
tive tissue microenvironment (8-11). The resulting tumor
therefore comprises a heterogeneous mixture of genetically
distinct cell populations. This heterogeneity enables a tumor
to adapt to differing selective pressures such as drug therapy
to prolong tumor survival (12), hence it is of great impor-
tance to understanding the inherent tumor clonal structure.

Clonal heterogeneity can ideally be evaluated using
single-cell technology (13-15), or alternative low-resolution
but more cost-effective multi-cell approaches such as cell
sorting with flow cytometry coupled to next generation se-
quencing (NGS) (16). So far, however, most genomic and
genetic alterations are still measured from multi-cell spec-
imens within mixed cell populations, due to limitations of
precision in biopsy extraction, cellular localization, assay
throughput and cost.

Accordingly, many bioinformatics tools have been devel-
oped to deconvolute the prevalence of tumor cells and clon-
ality within multi-cell tumor masses (17). Of these tools, sev-
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eral are regularly cited in cancer literature - ASCAT (18),
ABSOLUTE (19), AbsCN-seq (20) and THetA2 (21). AS-
CAT is a pioneer of the tools in this category and AB-
SOLUTE has been widely adopted in NGS data analy-
ses. AbsCN-seq offers comparable performance to ABSO-
LUTE and ASCAT using a simpler less complicated algo-
rithm (20). All three algorithms, however, focus on the prob-
lem of tumor purity (i.e. quantifying tumor cell content ver-
sus non-tumor cell ‘contamination’ in a biopsy). In doing so
they assume that tumor cells are monogenomic (i.e., with-
out subclonal tumor populations), and thereby underper-
form in cases where subclones constitute a significant pro-
portion of the total tumor mass. In reality, intratumoral het-
erogeneity is common in most cancers, and is thus a neces-
sary component for tumor cell prevalence estimates (9,22).
In contrast to these three tools, THetA2 employs a sophis-
ticated algorithm to determine tumor subpopulations using
copy number ratio with an optional component to select the
optimal solution using B-allele frequency (BAF) (19).

Though each tool has its own strength for character-
izing the complex intratumoral heterogeneity, we aim to
improve upon such methods for tumor clonal structure
and ultimately better inform cancer diagnosis, prognosis
and treatment decisions. In this study, we propose a novel
visualization-based framework termed BubbleTree. Using
somatic copy number alterations (SCNAs) and BAFs which
are routinely obtained from NGS data, BubbleTree pro-
vides an intuitive graph for simple estimates of tumor pu-
rity, ploidy, and clonality. Additionally, a heuristic approach
to mimic and automate the manual interpretation of the
BubbleTree graph is provided, which can speed automated
analyses for large patient studies. We demonstrate that Bub-
bleTree can outperform its counterpart tools in our testing
of both simulated and patient-derived datasets, suggesting
this framework as an attractive approach for application in
the characterization of tumor heterogeneity.

MATERIALS AND METHODS
BubbleTree model and diagram

The basic BubbleTree model is similar to that Bao et al
has described for AbsCN-seq (20): the heterogeneous tu-
mor genome can generally be considered a chain of dis-
jointed homogeneous segments. We use a three-tuple (x, y, p)
to denote one homogeneous genomic segment in a diploid
species, where x and y denote allele-specific copy number at
a bi-allelic genomic locus (x < y, without loss of generality),
and p is the prevalence of the specific segment in the tumor
sample. Then, we have:

Expected copy number overline

CN=2x(I-p+&x+y) xp

X+

Copy number ratio, R=CN/2=(1—p) + J xp (1)

yxp+1x(1—=p)

Ballele frequency, BAF =
9 ¥ x+y)xp+2x(1-p)
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and the heterozygous-deviation score (HDS),

px|y—x
2x[(x+py)x p+2x(1—=p)]

Based on equations (1) and (2), we are able to calculate an
expected R score (copy number ratio) and HDS for a seg-
ment (x, y, p) in the R-HDS plot. For example, the segment
with the 3-tuple value (0, 1, 0.75) (i.e. one copy loss with
75% prevalence) will have 0.625 and 0.3 for the R score and
HDS, respectively. Accordingly, we construct the branches
of the BubbleTree (Figure 1), that is, the prediction of our
model for the integer allele-specific copy numbers (ASCNs).
Here, we also provide the designations of A or B to indicate
ASCNs of the SCNAS in a similar style as the allele geno-
type, where, without loss of generality, the copy number of
A is always no more than that of B. For instance, a nor-
mal disomy state (x = 1, y = 1) is represented by AB. Other
pre-calculated modes for the various SCNAs include a ho-
mozygous deletion (J; x = 0, y = 0), one-copy loss (B; x =
0, y=1), copy-number neutral LOH (cnLOH; BB; x =0, y
=2), one-copy gain (ABB; x=1,y=20rBBB; x =0,y =
3), etc., with different likely prevalence p (i.e. 10%, 20%, ...,
100%), to construct the branches of the BubbleTree (Figure
1 and Supplementary Figure S1).

IBAF — 0.5| = (2)

Three-step approach to interpret the BubbleTree graph

The bubbles (i.e. the leaves) are represented on the R-HDS
plot with positions derived from NGS data and sizes pro-
portional to the segment lengths. In most cases, the ASCN
and prevalence (i.e. x, y and p) of the tumor clone or sub-
clone, marked by one particular SCNYV, can be inferred by
its proximity to the particular branch.

The interpretation of the BubbleTree graph can generally
be described by three steps: (i) Determine the tumor ploidy
and adjust the copy ratio R accordingly. Notably, the mea-
sured copy ratio R’ from a tumor is not the actually copy
ratio score R, and the former needs to be adjusted by the
relative tumor sample ploidy 74, such as:

®=(tp+2(1—-p)/2and R= R x @

We provide examples of this ploidy adjustment in the
BubbleTree graph into three of the most common ploidy
states: 7, ~ 2, 3, and 4 in Figure 2. Figure 2A shows the most
common scenario where the tumor ploidy state is 7, ~ 2. If
7, < 2, the observed copy ratio R’ is overestimated and all
bubbles (segments) need to be horizontally shifted to the left
accordingly; otherwise, vice versa. In Figure 2B, the tumor
genome is approximately triploidy (t, &~ 3); this state can
easily be distinguished from diploidy (or other even num-
ber ploidy states) by the extensive LOH: the bubbles are not
centered around (1, 0) in the R-HDS plot but is about (1,
h) instead, where 0 << /& < 1/6. Again, the HDS score is
not affected by the tumor ploidy adjustment, so the cen-
tered segments should be right-shifted to the ABB branch in
the BubbleTree graph. In Figure 2C, there are no observed
dramatic copy number variations in the simulated sample
saml5, thus there is no difference in goodness-of-fit between
the high purity tetraploidy prediction (P = 70%) and the
low purity diploidy prediction (p’ = p/(1 + p) = 41%) in
terms of R and HDS scores alone (Figure 2C and D). In
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Figure 1. BubbleTree graph. In this R-HDS plot, R score indicates the copy number ratio between the tumor and matched normal sample, and HDS,
heterozygous-deviation score, is defined by IBAF-0.5I. The tree branches represent the integer ASCNs (allele-specific copy numbers) as calculated by
equations (1) and (2), with the tick value marking the likely prevalence in position. The branches are labeled by the genotypes of the SCNAs, for instance,
the empty set symbol @ represents, for the homozygous deletion, B for one copy loss, AB for the normal disomy, BB for the cnLOH (colored in green),
ABB and BBB for the copy gain (colored in blue), and so on. For example, the green filled circle represents the 3-tuple value (x =0, y = 1, P = 0.75), that
is, one copy loss (the branch B) with 75% prevalence. By equations 1 and 2, it has 0.625 and 0.3 for the R score and HDS, respectively (highlighted by the

dotted lines).

this case, extra tumor specimen information such as ploidy
and/or purity is required to make the correct prediction.
The monoploidy (r; = 1) and the other high ploidy states
(e.g. T, = 5, 6 or beyond) are less common and difficult to
be determined without additional information, so they were
not explored in this study.

After ploidy adjustment (i.e. horizontal shift of bubbles
to the branches in the BubbleTree graph), the next step is to
(i1) Identify the tumor purity and subclonal populations. To
reduce likely variation due to the small genomic segments
(e.g. centromeres and low complexity regions), we focus on
the large segments in this step. The segments with the high-
est prevalence indicate the dominant tumor clone, and thus
this prevalence (p) represents the purity of the tumor. Those
SCNV segments with distinctly lower prevalence indicate
the existence of the tumor cell subpopulations (Figure 3).

The last step is to (iii) predict (x, , p) scores for each seg-
ment. The prevalence of the tumor (sub)clone is detected in
the second step, preferably using the large segments prox-
imities to the unambiguous branches (e.g. ABB and ABBB;
see Figure 1 and Supplementary Figure S1). It is probable
that the number of tumor subclones in a sample is limited
and most should be captured by the large segments in the
second step. In this third step, we may deduce the most likely
x and y scores for the remaining segments (including those
on the ambiguous branches like, ABB, ABBB, etc.), using
the grid search again but with the known prevalence scores.

To complement the manual estimates of the Bubble-
Tree graph and speed automated interpretation, a heuristic
model was developed in a similar stepwise fashion, as de-
scribed in the Supplementary Methods.

Samples and NGS sequencing

Matched primary and recurrent tumors in two patients
with hepatocellular carcinoma (HCC). Three fresh frozen
specimens were procured from each of the two HCC pa-
tients who experienced tumor recurrence following ortho-
topic liver transplantation (OLT): peripheral blood, pri-
mary tumor and recurrent tumor. The peripheral blood
sample served as the normal control of the other remaining
samples for each patient (Table 1). Informed written con-
sent was obtained from each patient and the study protocol
conformed to the ethical guidelines of the 1975 Declaration
of Helsinki as reflected in a priori approval by the Ethics
Committee of Renji Hospital. Tumor purity was evaluated
by pathology assessments for each tumor specimen.

Matched primary lung and ovarian tumor specimens from a
patient with synchronous double malignancy. The 51-year-
old Chinese female never-smoker patient presented with
synchronous double malignancy in both lung and ovary
and was treated with first line chemotherapy and epidermal
growth factor receptor — tyrosine kinase inhibitor (EGFR-
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Figure 2. Copy ratio score adjustment and the lack of identification due to high tumor ploidy. The copy ratio score measured from the NGS data is not
the actual copy ratio score, the adjustment @ depends on the tumor purity and the tumor ploidy @ = (7,p + 2(1 — p))/2. In the plots, (A) the diploidy, (B)
triploidy and (C) tetraploidy states are illustrated by the simulated data sets: sam2 (P = 100%), sam14 (P = 72.3%) and sam15 (P = 66.7%)), respectively.
The bubbles represents the genomic segments positioned by the HDS scores and the raw R scores, with the color corresponding to each chromosome. The
horizontal arrows indicate the shift of the bubbles following copy ratio adjustment. (D) One tetraploiy sample with purity p could yield the same HDS and
R scores as a diploidy sample with the purity p’ = p/(1 + p) < p, where p” < 0.5. Specifically, it is difficult to distinguish the diploidy tumor with low purity
from the tetraploidy tumor with a higher purity by the HDS and R scores alone.

Table 1. The patient and sample information

Patient Age at Sample collection Sample
ID Gender diagnosis Sample ID Sample type Tissue date description® NGSP
HCC4 M 59 HCC4.Blood Normal Blood NA WES
HCC4.Primary. Tumor Hepatocellular Liver Feb, 2012 Prior to OLT WES
carcinoma
HCC4.Recurrent. Tumor Hepatocellular Liver Sep, 2012 recurrent HCC WES
carcinoma post to OLT
HCCl1 F 57 HCCI11.Blood Normal Blood NA WES
HCCI11.Primary. Tumor Hepatocellular Liver Dec, 2011 Piror to OLT WES
carcinoma
HCC11.Recurrent. Tumor Hepatocellular Lung April, 2013 Lung metastasis WES
carcinoma post of OLT
DM M 51 lung_normal Adjacent normal Lung Mar, 2012 WES/WGS
lung Adenocarcinoma Lung Mar, 2012 Primary lung WES/WGS
cancer
ovary_normal Adjacent normal Ovary Aug, 2011 WES/WGS
ovary Ovarian serous Ovary Aug, 2011 Primary ovarian ~ WES/WGS
papillary cancer
cystadenocarcinoma

20OLT = orthotopic liver transplantation.
PNGS = next genearation sequencing; WES = whole exome sequencing; WGS = whole genome sequencing.
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Figure 3. Automated BubbleTree prediction for simulated sample sam11. (A) Tumor sample sam11 was a mixture of the simulated normal cells, and tumor
(sub)clones T1, Tla and T1b with a ratio of 2:5:5:5 (Table 2 and Supplementary Figure S2). As Tla and T1b are the subclones derived from the tumor
clone T1, they share some SCNAs with T1, like the homozygous deletion (i.e. represented by the empty set symbol @ here) in chrl and 2p, one copy loss
(i.e. the genotype B) of chr2q, 17p and 19 and the copy-number neutral LOH (i.e. the genotype BB) of chr7q and 15. Tla and T1b have the common marker
in B:14, that is one copy loss in chr14, while T1b has one unique 20Mb copy gain in chr12. (B) BubbleTree graph after copy ratio score adjustment, where
the genomic segments are located in the expected positions. (C) The details of the prediction are display in three tracks: allele-specific copy number (blue
bar for the score x and red bar for y), the expected BAFs on top of the observed BAFs of the germline heterozygous loci, and the expected R scores on top
of the adjusted copy ratio scores. The consistency between the prediction and the measured scores indicates the accuracy of the BubbleTree method for
saml11. Unique SCNA markers for the subclones are highlighted in light blue (for the subclone with prevalence of 60%) and light orange (for the subclone
with prevalence of 30%). Detailed text output is available in Supplementary Data File 2.

TKI) targeted therapy. Adenocarcinoma lung and ovar-
ian serous carcinoma tumor biopsies (fresh frozen) and the
matched adjacent normal tissues were procured from this
patient (Table 1). Tumor purity and pathology classification
was evaluated and confirmed by pathologist assessments for
each sample. The study protocol was approved by the Ethics
Committee of Shanghai Chest Hospital. Informed consent
in writing was obtained from the patients and the study pro-
tocol conformed to the ethical guidelines of the 1975 Dec-
laration of Helsinki.

Simulated WGS data. A simulated set of tumors were pro-
duced by the following methodology: (i) Introduction of
germline variants into to the human reference genome hg19
to generate a normal diploid genome (N), (ii) creation of tu-
mor clones (T1 and T2), subclones (T1a and T1b), and poly-
ploidy (T3, T4) by introducing somatic copy number varia-
tions of various sizes and genotypes (Supplementary Figure
S2). Then, the program art_illumina (23) was used to gener-
ate simulated NGS read sets for each of the seven simulated
normal/tumor genomes at a variety of depths. Finally, we
constructed combinations the NGS read sets to create 15
simulated whole genome data sets of ~30x depth (Table 2).
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For instance, the sample sam11 is an admixture of N (depth
of 2), T1 (depth of 5), Tla (depth of 5) and T1b (depth of
5), with a collective total depth of 34 2 x 2+ 5 x 2+ 5 x
2+ 5x%x2=34;as N, Tl, Tla and T1b are all diploidy) by
using haploid human genome hgl9 as a reference sequence.
Accordingly, the tumor purity of saml1 is expected to be
30/34 = 88.2% (Table 2).

TCGA dataset. The 20 matched TCGA WES bam files,
which had been used in the THetA2 publication (21), were
downloaded Cancer Genomics Hub (https://cghub.ucsc.
edu/). The sample TCGA-06-0185-01A-01W-0254-08 was
removed, due to its low read count (Supplementary Data
File 1). The remaining 19 matched samples were processed
to the subsequent germline variant calling and somatic copy
number variation analyses.

DNA sequence read mapping and variant calling

All human patient samples were sequenced by whole ex-
ome sequencing (WES) with a read depth of ~100x and
the samples from the double malignancy (DM) patients
were additionally sequenced by WGS with a read depth
of ~30x (Supplementary Table S1). Paired-end WGS and
WES reads (2 x 90) were generated by Beijing Genomics
Institute (BGI) using the Illumina standard library prepa-
ration and sequencing protocols as described in (24). De-
tailed explanation of the subsequent somatic and germline
variant calling is provided in the Supplementary Methods.

Somatic copy number variation (SCNV) analysis

R packages DNAcopy (25) and ExomeCNV (26) were used
to identify CNVs based on the read depth derived from the
WGS and WES alignments using default parameters. Copy
number ratios (R scores) of CNVs were calculated across
the whole exome or genome as the difference between the
tumor and paired adjacent normal comparisons.

Defining the R and HDS scores for each segment

The segments called from the previous SCNAs have similar
R scores for the loci within each segment, but the HDS
for loci may not necessarily be consistent within each
segment. We calculated the median and standard deviation
values of the tumor BAFs of the heterozygous germline
loci for each segment and discarded those segments with
high HDS variation (empirically, standard deviation >
0.2). The consequent genomic segments are homogeneous
in terms of both HDS and R scores. The median values
of R scores and HDS of each homogeneous segment de-
fine the X-Y coordinates of the segment (i.e. the bubble
leave) in the BubbleTree diagram over the branches (i.e.
the predictions of the integer ASCNs). The details of
the procedure are available from the source code of the
BubbleTree package distributed through Bioconductor
(https://www.bioconductor.org/packages/release/bioc/
html/BubbleTree.html). A refined solution to identify
the homogeneous segment is proposed in the Discussion
section.
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Figure 4. Performance of BubbleTree on a simulated WGS data set. The
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ticeable that THetA?2 failed to provide the proper predictions for the low
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dotted rectangles P3 (triploidy sample sam14) and P4 (tetraploidy sample
saml5).

RESULTS

Estimates of tumor purity with BubbleTree on simulated
WGS data

To evaluate the performance of the BubbleTree model, we
simulated 15 tumor samples under various frequencies and
sizes of CNVs, including some with stepwise tumor clonal
hierarchy, independent tumor origin, and polyploidization,
most of which are admixtures with normal cells. The simu-
lation process is described in Supplementary Figure S2 and
Table 2 and a detailed example of simulation and the Bub-
bleTree prediction is demonstrated in Figure 3. We further
evaluated other programs such as ASCAT (27), AbsCN-seq
(20), ABSOLUTE (19) and THetA2 (21) to predict tumor
purity using the simulated data (Table 2).

Overall, BubbleTree exhibited the most accurate perfor-
mance, followed by THetA2 and ABSOLUTE, when us-
ing simulated WGS data (Table 2). Low tumor purity, to-
gether with high ploidy state, is one of the challenging tu-
moral conditions for estimation, as shown in Figure 2D,
where THetA2 failed to provide predictions (Figure 4). AB-
SOLUTE provided multiple estimates for each prediction,
which did contain the right solution most of the time. How-
ever, out of the 14 simulated datasets, ABSOLUTE only
ranked the correct solution twice within one of the top three
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Table 2. The simulated data sets and the benchmark results
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N# T3 T4 Tumor cell

Sample (normal) ~ TI# Tla® T1b? T2% (Triploidy) (Tetraploidy) purity (%) BubbleTree® THetA® ABSOLUTE™  AbSeqCN®  ASCAT®

saml 15x2 0

sam2 15x2 100 1 1.00 1 (l6th) 0.67 1

sam3 3x2 12x2 80 0.815,0.2 0.80 0.8 (8th) 0.53 0.9

sam4 6x2 9x2 60 0.6 0.60 0.6 (8th) 0.59 0.45

sam5 9x2 6x2 40 0.406 0.60 0.4 (9th) 0.39 0.26

samo6 12x2 3x2 20 0.247 0.67 0.2 (8th) 0.25 NA

sam?7 2x2 8x2 8x2 88.9,44.4 0.896,0.45 0.89 0.89 (3rd) 0.56 0.97

sam8 2x2 8x2 4x2 4x2 88.9,44.4 0.896 0.89 0.89 (2nd) 0.54 0.96
22.2 0.444

sam9 2x2 8x2 8x2 44.4 0.453 0.51 0.67 (12th) 0.57 0.41

sam10 2x2 11x2 5x2 61.1,27.8 0.615 0.66 0.61 (10th) 0.58 0.6

saml1 2x2 5x2 5x2 5x2 88.2, 58.8 0.893,0.6, 0.88 0.88 (5th) 0.54 0.89
29.4 0.3

sam]12 2x2 8x2 4x2 4x2 66.7,44.4 0.672,0.31  0.70 0.66 (11th) 0.58 0.5
22.2

saml3 2x2 8x2 5x2 3x2 88.9,44.4 0.895,0.45 0.89 0.89 (6th) 0.54 0.96
27.7,16.7

saml4 3x2 8x3 72.3 0.73 0.53 0.31 (10th) 0.29 0.62

saml5 3x2 6x4 66.7 0.696 1.00 0.67 (16th) 0.22 0.26

#(Coverage) x (Ploidy) = (Total coverage). The generation of the normal sample (N) and the tumor clones (i.e., T1, Tla, T1b, T2, T3 and T4) is described in Supplementary Figure S2.
bTumor purities estimated by the programs. The prevalences of the tumoral subclones are also listed for BubbleTree (as seperated by commas).
3The number in parenthesis represents the rank of the selected prediction in the ABSOLUTE output.

of the multiple potential solutions provided (Table 2), im-
posing a challenge in practical application to large cohorts
of patient tumor specimens, where each prediction cannot
be efficiently interrogated amongst a panel of potential so-
lutions.

Evaluation of tumor heterogeneity in simulated WGS and
The Cancer Genome Atlas (TCGA) WES data

Purity estimation indicates the prevalence of overall can-
cerous cells within a given patient tumor. Given the step-
wise tumor clonal hierarchy, the tumor purity is simply the
prevalence of the dominant tumor clonal population. How-
ever, understanding the entire tumor clonality is more chal-
lenging. The simulated WGS tumor samples sim7-sim13 are
mixtures of two or more tumoral clones, each of which in-
clude specific SCNAs (Figure 3, Supplementary Figure S2
and Table 2). BubbleTree successfully predicted the tumor
subclones in each of these simulated tumor samples (Table 2
and Figure 3). Detailed text and graph output are available
in Supplementary Data Files 2—4.

THetA2 is one of the few programs that assess the
prevalence of the tumor subclonal populations. To pro-
vide an unbiased comparison between THetA2 and Bub-
bleTree, we used the same The Cancer Genome Atlas
(TCGA) data used in the THetA2 publication (21). Specif-
ically, we focused on the five TCGA WES tumor/normal
matched samples where detailed subclonal predictions were
fully described in the study (21): TCGA-06-0214, TCGA-
56-1622, TCGA-06-0188, TCGA-06-0145 and TCGA-AO-
AOJF. Results (Supplementary Data Files 2—4) indicated
that BubbleTree provided similar predictions for the three
TCGA samples TCGA-06-0214, TCGA-AO-AOJF and
TCGA-06-0145, but showed significant difference in the
predictions for TCGA-56-1622 and TCGA-06-0188. For
TCGA-06-0188, BubbleTree predicted purity of 80%, with
the dominant tumor clone marked by clonal deletions at
chromosomes 9p, 10, 13q and 22q (Figure 5). In contrast,
THetA2 predicted the copy losses at chromosomes 9p, 13q
and 22q as clonal deletions (P = 63%) and the chromosome

10 loss as a subclonal deletion (P = 43%), contradicting the
similar HDS score seen between chromosome 10 and chro-
mosomes 9p, 13q and 22q (Figure 5C; and Figure 5 in (21)).

In the case of TCGA-56-1622, BubbleTree predicted the
tumor genome to be triploidy (tumor ploidy = 3.1) and pu-
rity estimation of 88% is close to the 90% purity assessed
by the pathologist. Our prediction successfully addressed
the reason that no LOH resulted from the obvious ‘copy
number loss’ in chromosome 1. That is, chromosome 1 in
the sample TCGA-56-1622 actually has genotype AB, ap-
pearing to be ‘copy loss’ relative the triploidy tumor genome
(Supplementary Data Files 2-4). In the THetA2 prediction,
the tumor genome is approximated as diploidy and has pu-
rity of 68% (21).

In short, the tumor clonal/subclonal with the unique SC-
NAs can be readily identified in the BubbleTree graph and
the heuristic model is able to extend the manual inspection
to an automated process with accuracy.

Changes in SCNAs between hepatocellular carcinoma pa-
tients’ matched primary and metastatic or recurrent tumors

Characterizing the tumor clonal composition over time can
be a powerful method to better understand responses to
treatment interventions, metastasis or recurrence, and gen-
eral tumoral fitness. In this study, we procured specimens
from hepatocellular carcinoma (HCC) patients experienc-
ing tumor recurrence following orthotopic liver transplan-
tation (OLT). One patient (HCC4) experienced tumor re-
currence in the transplanted liver only seven months post-
OLT, while another patient (HCC11) experienced tumor re-
currence as a metastasis to the lung in 17 months following
OLT. To evaluate the clonal evolution, we conducted WES
on the primary and recurrent liver tumors as well as the pe-
ripheral blood of these two patients (Table 1). Shifts from
primary to recurrent tumors in SCNAs are indicated with
arrows pointing from the primary tumor to recurrent tu-
mor in the BubbleTree graph (Figure 6). For HCC4, the ar-
rows are all short and occur along the BubbleTree branches
from 76% prevalence to 86% prevalence, suggesting that the
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Figure 5. BubbleTree prediction for the TCGA WES data TCGA-06-0188. (A) BubbleTree prediction for the TCGA sample TCGA-06-0188 and, (B) the
interpretation of the tumor clonality. We may infer that this sample harbors a dominant tumor clone with purity of 80%, marked by the DNA copy number
loss on several chromosomes including chr10. There are three subclones with prevalence 61%, 37% and 23%, respectively; (C) prediction from the THetA2
publication, where tumor purity was predicted as 63% and the chr10 deletion, different from the BubbleTree prediction, was a marker of the subclone (P
= 43%); (D) BubbleTree predictions are displayed in tracks in the same way as Figure 3C. In particular, the unique SCNAs for the smallest subclone (P
= 23%) are highlighted by the light purple rectangles along the tracks. Due to low prevalence, the consequently predicted R and BAF scores are almost
identical to the normal disomy (i.e. no SCNAs), with exception to the SCNA in chr7 with the predicted genotype BBBB (i.e. one copy of the parental
chromosomes was lost and the other one was amplified to four copies). Noticeably, THetA2 reconstructs the tumor genome, so that chrl0 deletion and
chrl4q deletion belong to two distinct tumor subclones. BubbleTreeassumes that all subclones share the markers carried by the dominant clone (P = 80%
in this particular example), that is, one subclone (P = 61%) should have both chr10 and chrl4q deletions and the remaining subclone (P = 80-61 = 19%)
should have a deletion in chr10 but not in chrl4q. We did not attempt to infer the interactions among the subclones.

SCNA spectra is identical between the primary and recur-
rent tumors and the minor differences in clonal spectrum
are due to differences in the purities of the two tumor biop-
sies (Figure 6A). It is evident that the recurrent malignancy
originated from the primary tumor of the recipient rather
than from the donor, which was also confirmed by genetic
comparison (data not shown).

For patient HCC11, the SCNA spectra between the pri-
mary and the lung metastasis are not so similar, as high-
lighted by the long arrows in the graph (Figure 6B). The
two most significant alterations between the primary tumor
and lung metastasis are LOH observed in chr2q and chr6p,

resulting in two novel markers for the subclone with ~40%
prevalence (Figure 6B). This alteration in HDS values be-
tween the primary tumor and lung metastasis is more clearly
illustrated in the genomic track plots (Supplementary Data
File 4) and the text output (Supplementary Data File 2).
It is noteworthy that both the clonal marker at chr5q and
the subclonal marker at chr4q are remarkably conserved be-
tween the two longitudinal samples from HCC11. This sug-
gests that the lung metastasis has a common ancestral origin
and a stable subclonal structure as the primary neoplasm,
where various novel SCNAs were acquired in the subclone
through tumor progression. As a control, we found no sig-
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Figure 6. Tracking the alternations in clonality between primary and metastatic or recurrent tumors. Changes in the SCNA spectra from the primary
tumor to the recurrent malignancy are illustrated by the arrows, for HCC patients (A) HCC4 and (B) HCCI11; (A) shifts are all due to the change of the
tumor purity from 76% to 86% and all SCNAs were conserved between these two tumor biopsies from patient HCC4. For patient HCCI11, an interesting
paradigm is displayed here: the dominant tumor clone (marked by the copy loss in chr5q) and subclone (marked by the copy loss in chr4q) are conserved
between the primary tumor and the lung metastasis; many novel markers also occurred in the subclone (e.g. 2p and 6q). The exact copy number changes
are more apparent in the genomic track plots (Supplementary Data File 4) and in Supplementary Data File 2; (C) The comparison between the DM-Lung
WGS and WES data provides a good control for NGS data types of different coverage and depth, where few changes are highlighted (see Supplementary

Data Files 2-4 for details).

nificant difference between the double malignancy (DM)-
Lung WGS and WES data (Figure 6C).

Deconvoluting the chronology of acquired somatic single nu-
cleotide variants (SNNVs) or insertion/deletions (indels) and
SCNAs along the clonal evolution

SCNAs which ubiquitously occur in solid tumors, not only
alter the allele frequencies of the germline heterozygous
loci, but also affect those somatic SNVs/indels. Alterna-
tions in the latter vary, depending on the order of the so-
matic event occurrence and copy number change. Given
the allele-specific copy number predicted by BubbleTree, we
can leverage clonal abundance and allele type to predict
the likely BAF and determine the appropriate chronology
in the clonal evolution for a somatic SNV (Supplementary
Figure S3). In this study, the predicted BAF track for pa-
tient HCC11 clearly indicated that the BAFs of the somatic
SNVs are not randomly distributed, but more or less af-
fected by the SCNA events (Figure 7). Accordingly, we may
infer that those somatic variations matching the maximum
expected BAF are likely to occur prior to formation of the
dominant tumor clone, and less BAF for those occurring
late and existing only in the tumor subclonal populations
(Supplementary Figure S3). This function could be valu-
able to determine the order of the occurrences the acquired
somatic SNVs/indels, along with SCNA events, and distin-
guish the driver mutations from the recently acquired treat-
ment resistant variants.

BubbleTree consistency using WGS or WES data types

We evaluated the generalizability of BubbleTree for perfor-
mance on both WES and WGS data types, as there is a clear
difference in granularity in coverage between these two se-
quencing data types. The DM lung WGS and WES sam-
ples were used for this assessment (Table 1). Based on this
assessment, we found no significant difference between the

two samples in tumor purity, ploidy, or clonality estimates.
Both were predicted to have purity of 74%, ploidy of 1.9
and a subclone with the prevalence of ~40% (Supplemen-
tary Table S1; also see Figure 6C and the genomic track
plots in Supplementary Data File 4). This consistency be-
tween NGS data of vastly different coverage and depth also
confirms the robustness of BubbleTree.

It is noteworthy that the purity of the ovarian tumor sam-
ple from the DM patient is very low (~30%), where the res-
olution on the SCNA spectra becomes low. As a result. we
do not explore this further here.

DISCUSSION

The BubbleTree model presented here is an intuitive repre-
sentation of purity, allele-specific copy number, and clonal-
ity for human tumor specimens. This method displays the
clonal composition within a tumor at the genomic segment
level with allele-specific copy number — a granular quality
that is not provided by other tools used in NGS data analy-
sis. Further, these estimates can be obtained simply by man-
ual inspection of the BubbleTree graph. For larger patient
studies, we developed a heuristic model to automate the pre-
dictions and provide a more accurate estimate (than that
provided by visual inspection). The robust performance of
the BubbleTree framework is primarily attributed to the use
of both R scores and BAFs of the heterozygous germline
loci and the three-step implementation.

BAFs of the heterozygous germline loci play a critical role
with the copy ratio R scores

The programs ABSOLUTE (19) and AbsCN-seq (20) pri-
marily rely on the R scores, with an optional component
utilizing the BAFs of somatic mutations. As discussed pre-
viously, somatic mutation frequencies can be useful for pu-
rity estimates (Figure 7), though they are rare as compared
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Figure 7. The allele frequencies of the somatic mutations can be explained by somatic copy number variations. The scheme for the first allele-specific copy
number track is the same as Figure 3. In the second track, the horizontal bars indicate the expected somatic mutation frequencies calculated by the models
described in Supplementary Figure S3, and dots represent detected somatic mutations. Assuming the parental allele B has more copy number than the
parental allele A in a SCNA, the green bar represents the expect allele frequency of the somatic mutation occurring on the parental allele B prior to the
dominant tumor clone (Supplementary Figure S3A) and the brown bar for the somatic mutations unique in the subclone only (Supplementary Figure
S3B). In a similar way, the purple and red bars present the cases where the somatic mutation occurs to the parental allele A prior and post to the SCNA
event, respectively (Supplementary Figure S3C and S3D). In the genomic segments marking for the dominant tumor clone, the subclone 1 does not exist
and thus p; = 0 (see Supplementary Figure S3). Consequently, the four bars are collapsed into two, that is, only the green and purple bars are visible.
‘We might even further date a SCNA event. For example, few somatic mutations in chr2 were found to be subclone unique, suggesting that the temporal
interval between the founding of the dominant tumor clone to that of the subclone be relatively short, and the SCNA in chr2 is not likely to be an recent

event.

to germline heterozygous loci, which can cause higher vari-
ation and lower accuracy. THetA2 does not rely on simulta-
neously BAFs and R scores, but implements a method to se-
lect the optimal prediction in the post-processing stage (21).
ASCAT, primarily designed for single nucleotide polymor-
phism (SNP) array data, relies on both BAF and SCNA,
but has no subclonal estimate considered in the model (18).

The three-step implementation of BubbleTree is key to effi-
ciency and robust estimates

The three-step approach solves the complexity in a divide-
and-conquer process. Step 1, tumor ploidy and copy ratio
adjustment initially occurs. This step is simple, but very im-
portant. After aligning the bubble leaves with the branches
and predicting tumor ploidy, the computation can focus
on segments close to the branches and ignore all others.
Notably, THetA2 failed to predict high ploidy samples in
both the simulated data sets and the TCGA sample TCGA-
56-1622; performance might be improved with inclusion of
this component. Step 2, the greatest source of computa-
tion lies in this second step, where the prevalence of the
tumor (sub)clones is identified. In this step, we preferably
chose large segments in the region B and weighted segments
in other regions lower priority (Supplementary Figure S1).
Most programs weight all segments equally in their algo-
rithm, which would require significantly more CPU time
and likely deviate to an incorrect estimate. Step 3, we ex-
tend and cover our prediction to all segments, which, again,
saves significant time in the grid search. Consequently, Bub-
bleTree search time on WGS data for various ploidy states
up to decasomy is less than one minute, which is much more
CPU-efficient compared to THetA2.

As described in Supplementary Methods, the number of
subclones is determined by the unsupervised hierarchical
cluster analysis on the prevalence values of the segments,
with the default cutoff distance value of 0.2 (i.e. the min-

imum prevalence difference between any two of the sub-
clones is 20%). With reduced cutoff distance value, the
prevalence values are likely to be clustered into more groups
and therefore more tumor subclones could be predicted,
without taking extra computation cost.

Tumor genome reconstruction

The recently published THetA2 outperformed ABSO-
LUTE, ASCAT and AbsCN-seq in our benchmark tests.
In particular, THetA2 makes the unique prediction of the
tumor genome reconstruction for each of the component
tumor subclones. This is certainly a very useful, but also ag-
gressive design, which might account for the extremely long
CPU running time in our testing. In this study, we found
that complex tumor clonality is not uncommon in the tu-
mor samples tested, in particularly, low abundance tumor
subclones, which are challenging to accurately identify. We
strategically chose to only identify unique SCNA markers
for the tumor clone and subclones rather than reconstruct
the whole tumor genome. BubbleTree, however, predicts the
allele-specific copy number, which is unavailable in THetA2.

Application of BubbleTree in cancer research

NGS technology provides a powerful platform to capture
a snapshot of the tumor evolution and explore tumor het-
erogeneity. The BubbleTree framework, presented here, pro-
vides an effective way to evaluate the tumor heterogeneity at
different levels - from the tumor ploidy to the tumor sample
purity to the prevalence of the subclone and allele specific
copy numbers for a particular genomic segment. In particu-
lar, we demonstrate a method to track the changes in tumor
clonality using longitudinal tumor biopsies. We also clearly
illustrated that BAFs of the somatic SN'Vs are not randomly
distributed and most could be explained by the SCNAs of
the host genomic segments.
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Polyploidy imposes an identifiability issue

BAFSs can improve the prediction, but is not able to address
the identifiability issue caused by polyploidy, particular for
the case of low tumor purity. In this case, additional sam-
ple information is required to make the proper prediction.
BubbleTree relies on an implicit assumption that the tumor
biopsy has high purity, and thereby seeks the alternative so-
lution of ‘higher’ tumor purity with the high tumor ploidy.
However, this default setting can be customized by users.

Limitations and next steps for the BubbleTree framework

The BubbleTree model and graph were developed as an
R package. The heuristic model demonstrates promising
results in this benchmark study against other compara-
ble tools. However, there is a limitation in our identifica-
tion of homologous SCNAs - the CNVs were first identified
by circular binary segmentation (CBS) using the R scores
(by DNAcopy and ExomeCNYV), then BAFs were used to
discard segments with heterogenecous BAFs (see Materials
and Methods). Ideally, homologous SCNYV identification
should be conducted using both BAFs and R scores simul-
taneously, as implemented in PennCNV (28). The resultant
segments are thereby likely to be more homogeneous and
more complete (as no heterogeneous regions would be re-
moved). When multiple tumor subclones harbor different
SCNAs over the same genomic segment, the segment may
have allele-specific copy numbers as fractions rather than
integers. In the BubbleTree graph, the segment may thus be
positioned away from any branch. A more sophisticated al-
gorithm may need to be developed to address this challenge.
For example, coupling the BubbleTree prediction with the
genome reconstruction from THetA2 might be a potential
solution.

BubbleTree was demonstrated here using both WES and
WGS data from matched tumor/normal biopsies, but this
model could be also applicable to array comparative ge-
nomic hybridization (aCGH) and SNP array data as well.
As many tumor samples have no matched normal samples,
it is interesting to extend the BubbleTree algorithm to un-
paired tumor samples using the algorithm developed in the
software CNVnator (29). In principle, it can be further ex-
tended for the targeted sequencing data.

It may be also interesting to combine the BubbleTree
framework with the algorithm proposed by Nik-Zainal
et al. (22) to reconstruct the tumor evolution at a fine reso-
lution, though this is beyond the scope of this study.

CONCLUSIONS

BubbleTree is a simple but powerful method to character-
ize tumor clonal composition at high granularity and dis-
play results in a meaningful way. This approach improves
upon current tools utilized for this purpose. The compli-
cated tumor karyotype plays a critical role in the tumori-
genesis and tumoral progression and is imperative to both
prognosis and diagnosis of certain cancers. The BubbleTree
approach shown here may help advance our understanding
of this tumor karyotype and its significance in tumorigene-
sis.

Nucleic Acids Research, 2016, Vol. 44, No. 4 e38

The BubbleTree framework is freely available as an R
package at Bioconductor. The datasets used in this study
were also distributed together with the R package and
all results presented in this paper and the supplementary
data files are reproducible (https://www.bioconductor.org/
packages/release/bioc/html/BubbleTree.html).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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