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ABSTRACT The recent article “Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Patho-
genic Adhesins” by Ielasi et al. describes a new development in microbial carbohydrate analysis [Ielasi FS, Alioscha-Perez M,
Donohue D, Claes S, Sahli H, Schols D, Willaert RG, mBio 7(4):e00584-16, 2016, http://dx.doi.org/10.1128/mbio.00584-16]. Spe-
cific carbohydrate ligands have been identified from the patterns of lectin binding to oligosaccharides printed on a chip. The new
technique links the output to a comprehensive glycan database and offers a number of data visualization options. The graphs
highlight the occurrence of potential ligands, organized by organism, tissue, and patterns of association with disease states. The
analysis has successfully predicted novel glycoprotein ligands for microbial lectins, including an interaction of E. coli FimH with
HIV gp120.

Lectins are nonenzyme proteins that bind to specific glycan de-
terminants. Lectins displayed on cell surfaces act as cell adhe-

sion proteins. Many microbial surface lectins initiate host-
microbe or microbe-microbe interactions leading to commensal
or disease states. Indeed, lectin binding can initiate signaling path-
ways that effect cellular functions, including innate and acquired
immune responses (1–5).

It is a long and arduous experimental path from the identifica-
tion of a lectin to the determination of its roles in cell signaling,
cellular differentiation, and host interactions. The first step is of-
ten the identification of ligands, and this step has become much
more systematic with glycochip technology (Fig. 1A and B). The
lectin protein is isolated, tagged with a fluorescent reporter, and
then incubated on a slide imprinted with ~500 oligosaccharides,
each with a known structure and specific position in the array. The
pattern of fluorescent spots due to lectin binding is used to deduce
the binding specificity of the lectin. Each lectin belongs to broad
structural and functional classes named for the major monosac-
charide recognized (e.g., mannose specific or galactose specific),
but each lectin has a slightly different binding specificity, depend-
ing on the size and structure of its individual binding site.

Several groups have reported glycochip analyses of binding
specificity for several microbial lectins, including FimH from
Escherichia coli, Als1 and Als3 from Candida albicans, and Epa
galectins from Candida glabrata (6–9). This much is standard.
However, the Willaert group now has taken the results two steps
farther (10). First, they have developed software that uses the gly-
cochip results to query UniCarbKB, a comprehensive database of
lectins and their ligand glycans (Fig. 1C). The database is sortable
and searchable by structure, taxonomy, tissue, protein, or associ-
ated disease. The authors have used these data to create weighted
graphs with nodes displaying the occurrence of a ligand in specific
glycoproteins of organisms and their tissues, connections to other
potential ligands and lectins, and association with disease states
(Fig. 1D). They have chosen to weight the nodes by their connec-
tivity (the number of related systems, which is an index partially
determined by the frequency of occurrence of the node in the
literature covered in the database). The lines connecting the nodes
(edges) are weighted by binding strength and by the frequency
with which the nodes have been associated with each other in the
literature (Fig. 1C and D). The software is available through an
FTP site listed in the supplemental materials of the paper (10).

The consequences of such analyses illustrate the power of the
bioinformatics approach. Some of the predicted interactions in-
clude C. albicans Als3 binding to glycoproteins containing
�-linked N-acetyl glucosamine residues and interactions of the
C. glabrata Epa lectins with �-galactose-containing glycans. Ielasi
et al. confirmed these predictions by demonstrating binding to
specific glycoprotein targets and by showing inhibition of binding
by monosaccharide competitors (10). The links through Uni-
CarbKB highlight the occurrence of ligands in glycoproteins and
glycolipids, especially those whose expression is increased in spe-
cific tumors or other diseases (Fig. 1D). These results are poten-
tially useful to predict increased probability of infections in vic-
tims of the specific tumor types identified. In addition, the lectins
may be assessed as potential vaccine immunogens, and their li-
gands can be assayed as inhibitors of microbial binding (11).

The most spectacular result reported by Ielasi et al. is the iden-
tification of HIV gp120 as a ligand for FimH, with a dissociation
constant in the equilibrium state (KD) of �1 �M. FimH is well
documented as a lectin specific for mannose-containing glycans
with �1,2 and �1,3 linkages (6), and previous work has focused on
ligands in human tissues. The UnicarbKB query from the FimH
glycochip output identified viral glycoproteins, including HIV
gp120, as potential ligands, interactions not documented in
PubMed. The authors used surface plasmon resonance (SPR) to
confirm recombinant FimH binding to gp120 with KD values be-
low 1 �M. Furthermore, the FimH lectin domain inhibited HIV-1
replication in assays using MT4 lymphocytic cells, peripheral
blood mononuclear cells, and HIV indicator line TZM-bl. The
50% effective concentrations were 20 to 70 �g/ml for two strains
of HIV. This result, spectacular in both its novelty and potential
application, is the type of interaction uncovered using this meth-
odology.

The featured paper describes a breakthrough in functional gly-
comics. The technique links specific glycan ligands to laboratory-
based and disease-based knowledge through UniCarbKB. The
resulting graphs have shown (and the authors have validated) po-

Published 9 August 2016

Citation Lipke PN. 2016. Glycomics for microbes and microbiologists. mBio 7(4):e01224-
16. doi:10.1128/mBio.01224-16.

Copyright © 2016 Lipke. This is an open-access article distributed under the terms of
the Creative Commons Attribution 4.0 International license.

Address correspondence to Peter N. Lipke, plipke@brooklyn.cuny.edu.

COMMENTARY

crossmark

July/August 2016 Volume 7 Issue 4 e01224-16 ® mbio.asm.org 1

http://dx.doi.org/10.1128/mbio.00584-16
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.01224-16&domain=pdf&date_stamp=2016-8-9
mbio.asm.org


tential microbial interactions with mammalian hosts and with vi-
ral glycoproteins. Thus, there is now a systematic way to link ex-
perimental results to the vast volume of acquired knowledge in
glycobiology.
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FIG 1 Workflow described in Ielasi et al. (10). (A) A fluorescently labeled microbial lectin is used to scan a glycochip printed with ~500 individual oligosac-
charides, and the extent of binding is monitored. (B) Target oligosaccharides are depicted as colored shapes according to a graphic convention, where a circle is
a hexose, a square is an aminosugar, etc., and each color represents a specific configuration, e.g., galactose is yellow and mannose is green (http://www
.functionalglycomics.org/static/consortium/Nomenclature.shtml). Ielasi et al. (10) have used this output to datamine UniCarbKB (C), a curated database for
glycan structure, occurrence, and association with specific tissues, diseases, and conditions. (D) A set of graphing routines highlights these associations, predicts
ligands, and potentially will identify oligosaccharides that would be competitive inhibitors of the lectin. The bioinformatic processes developed in the paper are
depicted by dark red arrows and labeled in the same color. ID, identification/identify.
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