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In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models
(DCMs). Specifically, we use (a) HamiltonianMCMC (HMC-E) where sampling is simulated using Hamilton’s equa-
tion ofmotion and (b) LangevinMonte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of
samples using gradients either on a Euclidean (E) or on a Riemannian (R)manifold. While LMC-R requiresminimal
tuning, the implementationofHMC-E is heavily dependent on its tuningparameters. Theseparameters are therefore
optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one
to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an
intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated
DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both
gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to
steer away from dynamical instability.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A common problem in neuroimaging is one where we observe some
data y ≈ f(θ) with θ being a vector of parameters and we are interested
in asking how likely the observed data is under a generative model de-
scribing f(θ). The observed data is typically in the form of EEG, MEG or
fMRI time series. Dynamic causal models (DCMs) (Friston et al., 2003)
provide a portfolio of generativemodels that can range fromdetailed bio-
physical models, like neural mass models (NMMs) (David et al., 2006) to
phenomenological models used to explain phase coupling between mul-
tiple brain regions (Penny et al., 2009). Bayesian statistics then enable us
to compute the posterior density of parameters πpost(θ|y) using Bayes rule,
i.e., πpostðθjyÞ ¼ Z−1ðπlikeðyjθÞπpriorðθÞÞwhere πlike and πprior are the likeli-
hood and the priors, respectively, while the partition function Z is a nor-
malisation constant. In what follows, we will drop any dependence onZ,
as our interest lies in sampling the distribution, where the requirement
that the distribution normalises to unity is not necessary.

When there aremany parameters, sampling from the posterior densi-
ty is computationally intractable. Under such circumstances, one typically
approximates the posterior density using a probability density with a
fixed form. This converts the problem of evaluating high-dimensional in-
tegrals into an optimisation problem (Friston et al., 2003). Variants of this
approach are well-known under the remit of variational-Bayesian (VB)
inference (Beal, 2003; Wainwright and Jordan, 2008). In this note, we
are concerned with a complementary approach where our goal is to esti-
mate the posterior density by obtaining a functional that is easy to sample
. This is an open access article under
from (Robert and Casella, 2005)—and is computationally cheap to calcu-
late for the generative models used in DCMs. This is generally in the
form of a Metropolis–Hastings sampler that traverses randomly on the
parameter space, selecting samples that increase the joint-likelihood of
the data under the current parameters (Chumbley et al., 2007). Although
conceptually simple, such a random-walk Metropolis algorithm con-
verges slowly to the target posterior density (slowmixing). This is unten-
able when the likelihood comprises solutions of tens or hundreds of
differential equations. More so, for infinite-dimensional dynamical sys-
tems governed by partial-differential equations (PDEs).

To alleviate slow mixing (statistical inefficiency), we use the first-
order gradient of the joint log-likelihood, sampling from the posterior
density using either the Hamiltonian MCMC (HMC-E) method (Duane
et al., 1987; Neal, 2010) or the Langevin Monte Carlo algorithm (LMC-E
and LMC-R) method (Girolami and Calderhead, 2011). We contrast the
performance of both algorithms using a single node NMM, exploiting
highly efficient differential equation integrators (CVODES) (Hindmarsh
and Serban, 2002) and an adjoint formulation for the gradients
(Sengupta et al., 2014), where possible. In brief, our indicative results
show that in terms of statistical efficiency, HMC-E followed by LMC-R
are strong contenders while random-walk Metropolis–Hastings and
LMC-E do not seem to mix at all (non-convergence) for problems with
unstable dynamics—the dynamics become stiff and difficult (too slow)
for a practical algorithm to integrate.

2. Methods

In this section,we briefly describe the generativemodel (DCM) used
to evaluate the sampling schemes and consider generic issues
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Model parameters used for dynamic causal modelling.

Parameter Shape (k1) Scale (k2) True parameters

g1 18.16 0.03 0.42
g2 29.9 0.02 0.76
g3 29.14 0.005 0.15
g4 30.77 0.007 0.16
δ 22.87 0.51 12.13
τi 34.67 0.23 7.77
hi 20.44 0.96 27.88
τe 33.02 0.16 5.77
he 24.17 0.07 1.63
u 23.62 0.13 3.94

Parameters describing the prior (Gamma distribution). Also shown are the parameters for
generating the raw data (Fig. 1).
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pertaining to numerical integration (solution of differential equations)
implicit in evaluating log-likelihoods and their gradients. We then de-
scribe the Hamiltonian (HMC-E) scheme—and how potential problems
with its tuning can be finessed. Secondly, we consider the Langevin
Monte Carlo (LMC-E and LMC-R) scheme which is somewhat simpler.
Aswewill see, LMC andHMC are not separate algorithms—LMC is a lim-
iting case of HMC, i.e., HMC reduces to LMC by taking the integration
time to be as small as the step size. What we have pursued in this
paper is a comparison of Hamiltonian MC using Euclidean metric and
Langevin MC using a Riemannian as well as a Euclidean metric. For the
LMC algorithm, our comparisons demonstrate the utility of taking into
account the curved nature of the statistical manifold in the design of
an efficient sampler. Finally, we use a gradient-free random-walk
Metropolis–Hastings algorithm to gauge the efficiency of the gradient-
based algorithms. Due to algebraically involved calculations involving
third-order tensors, comparison to a Hamiltonian MC using a Riemann-
ian metric will be presented in our forthcoming technical note
(Sengupta et al., in preparation).

Custom code was written in MATLAB 2014a (The MathWorks, Inc.,
USA) to simulate the Markov chains. Unless stated otherwise, out of
the 20,000 samples that were collected, the initial 6000 samples were
discarded as burn-in (see Appendix A). All computations were per-
formed on an Intel Xeon W3570 workstation with 12 GB RAM. Due to
different computer architectures and number of samples collected, the
simulations in this paper are not comparable to those reported in
Sengupta et al. (2015). The source codewill be released as a general pur-
pose ‘Monte Carlo inference’ toolbox for SPM (Statistical Parametric
Mapping; http://www.fil.ion.ucl.ac.uk/spm/).

2.1. Neural mass models

In order to test the inference schemes, we use a single node neural
mass model (NMM) based on the DCM proposed by David et al.
(2006) to create a synthetic dataset. These DCMs are generally more
nonlinear than DCMs used for generative modelling of fMRI time series.

The NMM comprises nine ordinary differential equations (ODEs) of
hidden neuronal states x(t) that are a first-order approximation to
delay-differential equations (DDEs), i.e., using x(t − δ) = x(t) − δẋ(t)
(Eq. (1)). There are ten parameters ({δ, g, h, τ, u} ⊆ θ with δ (intrinsic
delay), {g1 … 4} (connection strengths), he/i (maximum amplitude of
post-synaptic potential), τe/i (rate-constant of the membrane) and u
(input to the neural population) that govern the flow in three neural
populations, namely, inhibitory interneurons (x7), spiny-stellate (x1)
and pyramidal neurons (x9). In deterministic DCM, these hidden states
are not unknown quantities but respond deterministically to exogenous
input according to the differential equationswith unknownparameters.
By integrating the differential equations and assuming additive Normal
noise, the likelihood of observing any data can be modelled as a multi-
variate Normal density (Eq. (2)).
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Priors on all parameters conform to a Gamma distribution (Table 1),
where (by construction) approximately 46%–50% of parameters sam-
pled result in unstable dynamics, marked by positive real eigenvalues
of the Jacobian matrix. This ensured that the inference algorithm
can steer away from dynamical instability. Although pairwise co-
dimension-2 bifurcation analysis was performed (using numerical con-
tinuation), co-dimension-10 bifurcations are difficult to chart. Thus, the
shape and scale of the Gamma prior were determined numerically by
integrating 200,000NMMs and evaluating the eigenvalues of the Jacobi-
an at the nearest fixed points. The eigenvalues were then used to adjust
the prior distribution, such that the sampled parameters produce unsta-
ble dynamics. The fixed-point equations were solved using a Trust-
Region Dogleg method (Nocedal and Wright, 2006). The initial values
are sampled from the prior and are guaranteed to generate parameter
sets that emit dynamically stable models.

Contrary to David et al. (2006), where the input was modelled as a
combination of a Gamma density function and a discrete cosine set,
we used a simpler Heaviside step function to perturb the spiny-
stellate cells. This was done tomimic the inputs used during bifurcation
analysis. Differential equations were integrated using CVODES
(Hindmarsh and Serban, 2002) using implicit backward-
differentiation formulas (BDFs). The resulting nonlinear equations
were solved using Newton’s method. Initial simulations established
that direct solvers based on dense matrices were computationally
more efficient than the three pre-conditioned Krylov (iterative) solvers
(GMRES, Bi-CGStab and TFQMR) (Golub and Van Loan, 2012).We antic-
ipate that for larger dynamical systems (e.g., a 10-node NMM), iterative
solvers would be more efficient. The absolute and relative tolerances of
the integrators were both fixed at 10−3.

2.2. Sensitivity analysis and adjoints

The efficiency of gradient-based MCMCmethods rests on the evalu-
ation of the gradient of the joint log-likelihood function. There are two
methods for computing this gradient: (a) forward sensitivity analysis
or (b) adjoint sensitivity analysis as described in Sengupta et al.
(2014). Given that the forward dynamics can be unstable by design,
all inference results considered in this note are based on forward sensi-
tivities. DCMs in general are stable, therefore we show speedup results
for stable DCMs when using adjoints for computing gradients. The
joint log-likelihood function J reads,

J ¼ −
1
2

ln Σj jð Þ− T
2

ln 2πð Þ−1
2

x9 θð Þ−yð ÞTΣ−1 x9 θð Þ−yð Þ

þ ln
1

Γ k1ð Þk2k1
θk1−1e−

θ
k2

 ! ð2Þ

where, Σ is the observation noise co-variance matrix with diag(Σ) =
0.0625, T is the total datapoints observed, x9(θ) is the predicted pyrami-
dal cell voltage, y is the observed pyramidal cell voltage and θ is a vector
of parameters. The fourth term represents the log-Gamma priors on the

http://www.fil.ion.ucl.ac.uk/spm/
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parameters where k1 and k2 are the shape and scale of the Gamma
density, respectively. The gradient then reads,

dJ
dθ

¼ − x9 θð Þ−yð ÞTΣ−1 dx9
dθ

þ k1−1
θ

−
1
k2

ð3Þ

The forward-sensitivity method involves using Gronwall’s theorem
(Sengupta et al., 2014) to compute the state sensitivities, as a function
of time. This method is less efficient than using the adjoint of the
dynamical system: in brief, a single solution of the nonlinear (NMM)
ODE and a single (linear) adjoint ODE provides the gradient, where:

dJ
dθ

¼
ZT
0

∂ j
∂θ

−λT ∂ f
∂θ

� �
dt ð4Þ

λT is the adjoint-vector, j(θ) is the right hand side of Eq. (2) and f(θ)
represents the differential equations that form the single-node NMM.
There are two remarks that can bemade about the adjoint formulation.
First, regardless of whether the underlying differential equation is linear
or nonlinear, the adjointmethod requires the integration of a single lin-
ear equation—the computational efficiency is inherent in the structure
of the equation. Second, the appearance of a transpose on the adjoint
vector implies that the flow of information in the system of equations
is reversed; it is in this sense that the adjoint equations are integrated
backwards in time. The proof for Eq. (4) is available in Sengupta et al.
(2014).

Sensitivity analysiswas performedusing CVODES and cross-checked
manually using the code-base in Sengupta et al. (2014). Both methods
yielded identical results. Forward mode automatic differentiation
using ADiMat (Bischof et al., 2002) yielded sub-optimal execution
time in comparison to numerical differentiation for computing interme-
diate sensitivity operators. We anticipate that the computational
efficiency of automatic differentiation would be prominent for larger
dynamical systems.

2.3. Algorithm A—Hamiltonian Monte-Carlo

The random walk Metropolis–Hastings algorithm has slow mixing
because of the inherent random walks (Chumbley et al., 2007). Hybrid
or Hamiltonian Monte Carlo (HMC-E) resolves this issue by equipping
the proposal distribution with a dynamics that reduces the amount of
random-walk—correcting for any numerical error in the integration of
this dynamics using a Metropolis–Hastings acceptance criteria (Duane
et al., 1987; Neal, 2010). Hamiltonian dynamics is a reformulation of
Newton’s second law of motion; where the evolution of any energy-
conserving system can be described with a pair of first order ODEs. In
the present context, the Hamiltonian is a function of the unknown
parameters, where its potential energy is given by the negative log-
likelihood.

Heuristically, we want to find a way of exploring parameter space to
evaluate the log-likelihood; rejecting or accepting samples using
Metropolis–Hastings criterion to approximate the posterior distribution.
The slowmixing of a randomwalkMetropolis–Hastings can be alleviated
if we use the local gradients of the log-likelihood to explore the parame-
ter space in a more informed fashion. Hamiltonian Monte Carlo
techniques do this by using the trajectory implied by Hamiltonian dy-
namicswhen the potential energy is the log-likelihood (cf., the trajectory
of a frictionless marble rolling over the log-likelihood landscape). How-
ever, there is a problem: we do not know the form or roughness of this
landscape and themomentumof themarblemust be tuned. This induces
tuning parameters, which themselves have to be optimised—as we will
see below.
In detail, the total energy of the Hamiltonian H, with parameters θ
and their respective momentum ρ, reads

H θ;ρð Þ ¼ Epot θð Þ þ Ekin θ;ρð Þ ð5Þ

where,Epot is the potential energy andEkin is the kinetic energy. Then, by
Hamilton’s principle, we have

θ
�

¼ ∂H
∂ρ

ρ
� ¼ −

∂H
∂θ

ð6Þ

In order to use Hamilton’s equations in an MCMC setting, the dy-
namics need to be reversible so as to satisfy detailed balance, and their
solutions should be volume preserving. Numerical integrators must be
used solely because analytic results for such a problem are not available.
Fortunately, as we describe below, symplectic integrators offer highly
accurate numerical approximations that are both reversible and exactly
preserve volume, whichmeans they can also bemade statistically exact
with the application of a Metropolis correction.

Reversibility is guaranteed by Picard’s theorem, which says that for
first-order differential equations, the Hamiltonian flow is bijective,
wherein invertibility of the flow-map guarantees the reversibility of
the dynamics. Secondly, Hamiltonian systems are symplectic, i.e., the
volume enclosed by nearby solutions is constant. This is a consequence
of the Liouville’s theorem,which says that the vector field prescribed by
Hamilton’s equation has zero-divergence (Leimkuhler and Reich, 2004).
With these constraints in mind, we use a symplectic reversible integra-
tor known as the ‘leapfrog scheme’ (Störmer-Verlet) to simulate the
Hamiltonian of our statistical model. We simulate an iteration of this
scheme with step-size ε, moving from (θ0, ρ0) to (θn, ρn) via a two-
step process,

ρ1=2 ¼ ρ0−
ε
2
∇θH θ0;ρ1=2

� �
θ
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2
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�� ð7Þ

For a Hamiltonian with a mass-matrixM and momentum πðρÞ � N
ð0;MÞ, the D dimensional joint density over parameters and their mo-
mentum can be factored as π(θ, ρ)= π(θ)π(ρ), such that the Hamiltoni-
an becomes separable,

H θ;ρð Þ ¼ −J θð Þ þ 1
2
ρTM−1ρþ 1

2
log 2πð ÞD Mj j
� �

: π θð Þ∝
Z

exp −H θ;ρð Þð Þdρ
ð8Þ

Eq. (6) now simply reads θ
�

¼ M−1ρ andρ
� ¼ ∇θJ ðθÞ. We setM to be a

positive-definite diagonal matrix with the leapfrog updates in Eq. (7)
now defined as

ρ t þ ε
2

� �
¼ ρ tð Þ þ ε

2
∇θJ θ tð Þð Þ

θ t þ εð Þ ¼ θ tð Þ þ εM−1ρ t þ ε
2

� �
ρ t þ εð Þ ¼ ρ t þ ε

2

� �
þ ε
2
∇θJ θ t þ εð Þð Þ

ð9Þ

To correct the errors introduced by numerical integration,
we subject the samples to the Metropolis acceptance criteria
s b (1 ∧ exp(Hold − Hnew)) where s � Uð0;1Þ.

Frequently, one wants to infer parameters that satisfy certain con-
straints. While constraints such as positivity are easily enforced using
log-transforms, there are times where one has a priori knowledge of
the parameter space that is enforceable either via truncated priors or
vector functions representing the constraint function. In HMC, such



Table 2
Simulation parameters.

Parameter Value

Samples collected, v 20,000
Burn-in samples, ϕ 6000
Bounds on leapfrog steps, L [10, 150]
Bounds on step-size, ε [0.0001, 0.01]
λ 0.2
K 0.1
ς 2

Parameters describing the HMC sampler.
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constraints could be applied using an infinite potential but this fails be-
cause the gradient of the potential is undefined at the constraint surface
(Betancourt and Stein, 2011). As shown byBetancourt and Stein (2011),
we appeal to a classical result in mechanics which says that the compo-
nents of the momentum vector that are perpendicular to the constraint
surface reflect, while preserving the value of the Hamiltonian. This is
known as the specular reflection of the momentum. As soon as the con-
straint is violated,we compute thenormal n̂and replace themomentum
update with a reflection of the momentum. For a smooth constraint
C(θ), this amounts to,

n̂ ¼ ∇C θð Þ
∇C θð Þj j

ρnew ¼ ρold−2 ρold � n̂ð Þn̂
ð10Þ

2.4. Tuning of hyperparameters in HMC

There are two hyper-parameters ({ε, L} ⊆ ζ) for the HMC
algorithm—step-size (ε) and the number of leapfrog steps (L). In the
initialisation phase for the HMC, we fix L and bisect ε to achieve a target
acceptance rate of 0.65 (Beskos et al., 2013). We then begin sampling
and choose ε and L every l-th sampling step to maximise the expected
squared jumping distance (ESJD) (Pasarica and Gelman, 2010) as,

g ζð Þ ¼
Eζ θtþ1−θt
��� ���2ffiffiffi

L
p ð11Þ

Maximising such a functional not only guarantees minimising
the first-order correlation of the drawn sample but also bounds the
computational time (Wang et al., 2013). We use a Gaussian process
(Rasmussen andWilliams, 2005) to approximate the unknown function
g(⋅) by observing it in discrete sampling events (l = 10) such that

g �ð Þ � GP 0; k �; �ð Þð Þ∋g �ð Þ ζj � N μ i ζð Þ;σ2
i ζð Þ

� 	
μ i ζð Þ ¼ kT Kþ σ2

modI
� 	−1

gi
σ2

i ζð Þ ¼ k ζ ; ζð Þ−kT Kþ σ2
modI

� 	−1
k

ð12Þ

where k= [k(ζ, ζ1)⋯ k(ζ, ζi)]T, σmod
2 is the GP observation variance and

K ¼
k ζ1; ζ1ð Þ … k ζ1; ζ ið Þ

⋮ ⋱ ⋮
k ζ i; ζ1ð Þ ⋯ k ζ i; ζ ið Þ

2
4

3
5 ð13Þ

The covariance matrix k(⋅,⋅) implements automatic relevance deter-

mination (ARD) with kðζ i; ζ jÞ ¼ e−
1
2ζ

T
i Σ

−1
GP ζ j . The characteristic length-

scales for ΣGP = diag([λ(ζmax − ζmin)]2). After approximating the ESJD
using a GP, we proceed by using the posterior mean and co-variance
kernel to formulate and maximise an acquisition function that enables
us to select the best possible ζ for the next sampling interval. The
upper confidence bound (ψ) is one such acquisition function that
trades-off exploration and exploitation in the ζ space (Srinivas et al.,
2010, 2012),

ψ ζ ; vð Þ ¼ μ i ζ ; vð Þ þ aib
1=2
iþ1σ i ζð Þ

ai ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max
i−ϕþ 1
ν þ 1

;1
� �s

b1=2iþ1 ¼ 2 log
iþ 1ð Þς=2þ2π2

3κ

 !

ζ iþ1 ¼ arg max
ζ

ψ

ð14Þ

where v is a scalar-invariance parameter that is estimated automatically
and a enforces diminishing adaptation as that in adaptive MCMC
(Roberts and Tweedie, 1996). Parameters specific to this algorithm are
given in Table 2.

This concludes our description of the Hamiltonian scheme.

2.5. Algorithm B—Langevin Monte Carlo algorithm

The Hamiltonian scheme above uses local gradients to inform the
exploration of the log-likelihood landscape; however, the trajectories
ignore the curved statistical manifold—local curvature and anisotropy
of the landscape. This can be overcome by using a Langevin Monte
Carlo (LMC-R) scheme that, effectively, models both flow and diffusion
over the log-likelihood landscape. Theoretically, the LMC scheme is a
limiting case of HMC; if we consider a single leapfrog step (Eq. (9)),
the update equations for HMC reduces to

θ t þ εð Þ ¼ θ tð Þ þ ε2

2
M−1∇θJ θ tð Þð Þ þ εM−1ρ tð Þ ð15Þ

Therefore, it is easy to see that in such a scenario, HMC reduces to a
pre-conditioned Langevin diffusion (Eq. (15)). The convergence of the
HMC is determined by the structure of the mass matrix, M that is set
to an identity matrix, i.e., HMC algorithm assumes that each parameter
changes isotropically in the parameter space. WhenM is set to an iden-
tity matrix and Hamiltonian dynamics is absent, a related update
scheme—LMC with an Euclidean metric (LMC-E)—follows,

θ t þ εð Þ ¼ θ tð Þ þ ε2

2
∇θJ θ tð Þð Þ þ εz tð Þ ð16Þ

where, z(t) represents a standard normal variate. In the LMC-E, the drift
defines the direction of the proposal based on the Euclidean form of the
gradient along with using an isotropic form for the diffusion. Often, a
pre-conditioningmatrix for the gradient is introduced (akin to numeri-
cal analysis where pre-conditioning reduces condition number) to ac-
count for correlation among parameters. But how to select this matrix
in a rigorous and principled manner remains unclear.

One way forward is to use adaptive MCMC (Haario et al., 2001)
methods to prune the mass matrix (pre-conditioner), while the one
that we adopt here is an information geometric trick (Girolami and
Calderhead, 2011). A convenient way to alleviate parametric scaling
problems is to use the natural gradient of the log-likelihood, which
turns out to be the Fisher information matrix. In doing so, we not only
have a principled recipe for deriving the mass matrix but also reduce
the computational complexity of running a symplectic numerical inte-
grator required for the HMC algorithm.

Consider the Langevin diffusion equation on a manifold,

dθ tð Þ ¼ 1
2
~∇θJ ~θ tð Þ

� �
dt þ d~b tð Þ ð17Þ

where, ~∇θJ ðθðtÞÞ is the natural gradient (Amari andDouglas, 1998). It is
known that the stochastic dynamics of Brownian motion on a manifold
is governed by the Laplace–Beltrami operator (Hsu, 2002). The formal
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proof is provided in Appendix B. Expanding Eq. (17) via differentiation
and first-order discretisation yields,

μ θk; εð Þ ¼ θk þ
ε2

2
~∇θJ θð Þk þ ε2Λ θkð Þ

λi θkð Þ ¼ 1
2

X
j

∂
∂θ j

G−1 θkð Þ
n o

i j

ð18Þ

where we have used the fact that ~∇θJ ðθÞ ¼ GðθÞ−1∇θJ ðθÞ .
G is the metric tensor. WithL as the log-likelihood and assuming a con-
stant metric for computational efficiency (although losing accuracy) we
have,

θ t þ εð Þ ¼ θ tð Þ þ ε2

2
G−1 θ tð Þð Þ∇θL θ tð Þð Þ þ ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G−1 θ tð Þð Þ

q
z tð Þ

G θð Þ ¼ dx
dθ

T

Σ−1 dx
dθ

−
d2πprior θð Þ

dθ2

¼ dx
dθ

T

Σ−1 dx
dθ

−
1−k1
θ2

ð19Þ

This is the Langevin Monte Carlo algorithm (LMC-R) with z(t)
representing a standard normal variate. In our simulations, we have
set ε = 0.75.

This concludes our description of the Langevin scheme.

2.6. Algorithm C—random walk Metropolis–Hastings algorithm

The random walk Metropolis (MH) is the most common MCMC
algorithm for Bayesian inference. Given a current value θi of a
d-dimensional Markov chain, the next value is chosen according to a
proposal distribution ~θ � πð~θjθiÞ . We choose this to be a standard
multi-variate Normal. The sample is then accepted with probability,

α ¼ 1∧
π y ~θ




� �
π ~θ
� �

� π θ ~θ



� �

π y θjð Þπ θð Þ � π ~θ θj
� � ð20Þ

∧ denotes minimum between the left and the right arguments. If s ≼ α
where s � Uð0;1Þ we set θiþ1 ¼ ~θ. Otherwise, we set θi + 1 = θi. The
above formula embodies the notion that any proposal that takes the
chain closer to a local mode is always accepted, while any other propos-
al is accepted with the probability equal to the relative densities of the
posterior at the proposed and the current values. The covariance of
the standard multi-variate Normal distribution is set to an identity ma-
trix pre-multiplied by 0.57 (2.42/10).

This concludes our description of the MCMC samplers.

2.7. Convergence criterion

In order to gauge whether the Markov chains have converged to the
invariant distribution, we use spectral analysis of Geweke (1992). For
this one takes the first 10% of the chain post burn-in (CA) and the last
50% of the chain (CB) to construct two estimators for mean parameter
value and their respective asymptotic variances (σA and σB) using the
spectral density Sh(0),

‘A ¼ 1
CA

XCA

t¼1

h θ tð Þ
� �

; ‘B ¼ 1
CB

XT
t¼T−CBþ1

h θ tð Þ
� �

Sh wð Þ ¼ 1
2π

Xt¼þ∞

t¼−∞
cov h θ 0ð Þ

� �
;h θ tð Þ
� �� �

exp itwð Þ
ð21Þ
T is the total number of samples that were collected. One can then
construct test statistics (t-test; when cA, cB→∞ the t-test can be approx-
imated using the standard normal Z score) to assess the quality of the
initial and the final parts of the Markov chain as,

ffiffiffi
T

p
‘A−‘Bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
A

cA
þ σ2

B

cB

s : CA ¼ cAT;CB ¼ cBT andcA þ cBb1 ð22Þ

If the samples are drawn from a stationary part of the chain, then the
two means are equal and the Z-score has an asymptotically standard
Normal distribution. To visually aid the demonstration of this conver-
gence criterion, Fig. 5 showswhat happens to the Z-scoreswhen succes-
sively larger numbers of iterations are discarded from the beginning of
the chain obtained from the HMC-E and LMC-R samplers. Each parame-
ter chain for the individual sampler was divided into 80 bins and
Geweke’s Z-scorewas repeatedly calculated. Thefirst Z-score is calculat-
ed with all of the iterations in the chain while the second is calculated
after discarding the first segment, the third after discarding the first
two segments and continuing until half of the posterior samples collect-
ed have been discarded. The plot never discards more than half the
chain. Excursions outside the boundaries of ±2 are indicative of non-
convergence. Due to the inability of MH and LMC-E to steer away
from dynamic instability, these samplers were not subjected to conver-
gence analysis.

This completes our description of the numerics, the MCMC schemes
we wanted to evaluate in this work along with the description of a uni-
variate convergence indicator.Wewill now look at their relative perfor-
mance using simulated data, where we know the true values of the
parameters.

3. Results

Weused a single nodeNMM(Fig. 1A) to compare the computational
efficiency of two gradient-based MCMC samplers, Hamiltonian MCMC
(HMC-E) and Langevin Monte Carlo algorithm (LMC-E and LMC-R). To
do this, we created synthetic data where we perturbed the NMM
using a Heaviside step function, eliciting a stable pyramidal cell voltage
(Fig. 1B). Using the pyramidal cell voltage (plus observation noise) as
the measured response, the task of the MCMC samplers was to infer
the posterior density of parameters. The observation model assumed a
Normal likelihood with parameters sampled from a Gamma (prior)
distribution (see Methods; Table 1).

Using 30% of the total samples drawn as burn-ins, the HMC algo-
rithm introduces an auxiliary variable (momentum), wherein
Hamilton’s equation of motion are integrated to simulate the dynamics
of the parameters (position) on the posterior landscape. The end result
of integrating the Hamiltonian dynamics yields the posterior density of
the parameters. Based on 14,000 samples, the HMC algorithm success-
fully traverses the parameter space to yield the posterior distributions
shown in Fig. 2. All but one parameter (no. 7) is not under the support
of the posterior density. This can be alleviated simply by collecting
more samples.

The efficiency of a MCMC sampler is defined as the ratio of the com-
putation time and the number of effective samples produced in that
time. The effective sample size (ESS) for each parameter is calculated

using ESS ¼ Rf1þ 2∑
q

γðqÞg−1 , where R is the number of posterior

samples post-burn-in and ∑
q

γðqÞ is the sum of Q monotonic auto-

correlations. This auto-correlation is estimated using the initial mono-
tone sequence estimator (Theorem 3.1 in Geyer, 1992). The minimum
ESS reflects the number of samples that are effectively uncorrelated
across all parameters. Similarly, the time normalised (wall-time/
minimum ESS) ESS tells us how much time we effectively spend sam-
pling a single uncorrelated sample, providing us with worst-case
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performance measure (Cormen et al., 2001). As noted in Table 3, the
HMC algorithm produces on average (over 10 parameters) 95 uncorre-
lated samples while the nESS is around 496min per sample. The prima-
ry reason for this expenditure is the selection of small step sizes (up to
0.0001) and large leap-frog steps (up to 150) for each MCMC iteration.
Almost certainly, the computational cost could have been reduced by
decreasing the leap-frog steps and/or increasing the step-size. This
was deliberately avoided to quantify the worst-case behaviour of this
algorithm. Towards the end of the MCMC sampling, although the leap-
frog step collapses to a minimum, the GP-UCB optimiser still favours
the smallest time-steps.

Using the Euclidean form of the LMC (LMC-E) shows poor or
rather no mixing of the Markov chain (Fig. 3), compared to HMC-E
(Fig. 2)—the convergence of LMC-E is suspect. This is demonstrated by
the posterior density attaining a Dirac-delta type distribution, with
many true parameters not being under the support of the posterior
distribution. The average number of un-correlated samples decreases
substantially to 4 samples (Table 3). This straightforward comparison
demonstrates the necessity of introducing constraints (usingHamilton’s
equation) on the motion of the otherwise randomly diffusing
parameter.

This inherent problem in the LMC-E can be remedied by augmenting
a mass-matrix with the local geometric information such that different
parameters can make variable steps during the sampling procedure. A
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Fig. 2.Parameter inference usingHMC-E. Kernel density estimates of parameter posteriors; 6000
parameter.
simpler approach is to enable Langevin diffusion of the samples using
their natural gradients (see Methods). This is exactly what LMC-R
does: it augments the stochastic differential equation governing the tra-
jectory with its natural gradient, assuming that the natural gradient is
locally constant. For our NMM, this amounts to a 38-fold reduction in
computational time (Table 3) but with a concomitant reduction in the
number of independent samples (Fig. 4). Notice that the posterior sup-
port for parameters 4 and 7 do not include the true parameter. Thus,
LMC-R suffers from lower mean ESS (Table 3), while being computa-
tionally more efficient (under fixed samples) than HMC-E. Geweke’s
convergence test show that for both HMC-E and LMC-R, the Z-scores
for all 10 parameters are well within 2 standard deviations of zero
(Fig. 5); this does not indicate lack of convergence.

Comparison of the l2 error norm (Fig. 6A–D) shows that HMC-E and
LMC-R have a similar accuracy (also see Fig. 7), which exceeds the ran-
domwalkMetropolis–Hastings (MH) scheme. Taking just under 10min
to generate 20,000 samples, MH has the worst mean ESS (Table 3). This
is demonstrated in Fig. 6D, where we observe that MH draws a low
number of independent samples. This behaviour is dependent on the
starting position of the sampler, where re-starting near the invariant
distribution can reduce the l2 error norm considerably, but keeps the
mean ESS unchanged. We conclude that for the problem at hand,
i.e., inference in the presence of stable as well as unstable dynamics,
random walk MH simply does not converge.
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Table 3
Effective sample size (ESS) obtained from various samplers.

Sampler Time
(minutes)

Mean ESS
(samples)

nESS
(minutes/sample)

l2
error

Metropolis 9.84 1 9.84 27.6
LMC-R 70.68 10.88 15.39 3.78
LMC-E 63.48 4.04 20.31 5.45
HMC-E 2755.87 95.13 495.65 3.86

Wall-time and average ESS for 10 parameters. Worst-case time normalised ESS (nESS) is
computed using the minimum ESS for each method. The prior distribution for the
parameters as well as the parameters used to generate the exemplar raw data are given
in Table 1. Due to the intrinsic inability of MH and LMC-E to steer away from dynamic
instability (resulting in non-convergence), comparison of their respective ESS is
meaningless.
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LMC-R, on the other hand,mixesmore efficiently thanMHbutworse
than HMC-E (Fig. 6E–H). Fig. 7 reiterates the fact that the root-mean-
squared-error (RMSE) reduces as a function of number of iterations,
with LMC-R and HMC-E demonstrating comparable error norms. In
summary, our comparison shows that HMC-E is themost statistically ef-
ficient estimatormarked by highest ESSwhile LMC-R is the second best.
From a l2 minimization perspective, it might be more useful to use a
LMC-R given that it displays similar l2 error decrease and is computa-
tionally more efficient (under fixed number of samples) in comparison
to a HMC-E sampler.

The absolute computational efficiency that we achieve in both HMC
and LMC is primarily due to the use of first order gradients. This is facil-
itated by efficient ODE integrators (Fig. 8A), providing almost 10-fold
improvement over the stiff differential equation integrator (ode15s)
in MATLAB. Similarly, gradients obtained from the adjoint system
prove to be almost 4 times faster in comparison to gradients based on
finite differences (Fig. 8B). We stress that gradient algorithms used in
this note do not use adjoints for gradient calculation (see Stability sec-
tion in Sengupta et al., 2014). Computational time for HMC and LMC
could be reduced further by relaxing the tolerances used for the for-
ward, sensitivity and the adjoint equations.

4. Discussion

Earlier work—using a symmetric randomwalk Metropolis–Hastings
algorithm—suggested that sampling-based DCM inversion schemes dis-
play slow chainmixing, in addition to slow convergence in high dimen-
sions (Chumbley et al., 2007). Using a nonlinear dynamic causal model
(one node NMM) as an exemplar, we compared the sampling perfor-
mance of two gradient-based MCMC samplers. We find that in
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comparison to a random walk Metropolis–Hastings sampler, these
schemes converge to the posterior density in a statistically efficient
manner. Specifically, the HMC algorithm (with an Euclidean metric)
yields a worse time-normalised effective sample size (nESS), being
computationally expensive even with sophisticated parameter tuning,
albeit being statistically the most efficient sampler. In contrast, the dif-
ferential geometry-based LMC (with a Riemannian metric) appears to
be much more suitable for inversion of this DCM—at the cost of
displaying nESS that is 96% lower than that of the HMC.

An important issue—when using MCMC for Bayesian inference—is
determining when the chain has converged. This criterion is crucial
and therefore forms a large part of ongoing research that ascertains
rapid convergence. Running a MCMC sampler for a long timewill result
in ‘convergence to distribution’ at the cost of non-finite execution time.
Measure-theoretic analysis of most MCMC samplers give an estimate of
the number of samples required to ensure convergence, according to a
total variation distance (with a specified tolerance bound) to the true
posterior density. For empirical problems, this is seldom possible. A
simpler but computationally wasteful strategy involves running
multiple—yet independent—chains and ensuring that the posterior den-
sity obtained by each chain is identical in terms of its lower moments. A
more cogent diagnostics to estimate convergence of the Markov chain
uses the normal theory approximations of Gelman and Rubin (1992).
This introduces a shrink factor that tends to 1 (depending on be-
tween-chain and within-chain convergence) as the Markov chain con-
verges. Unfortunately, a clinical neuroimager may not have the luxury
of a high-performance computer; therefore, such a method based on
multiple chains may not be suitable in a clinical setting. Therefore, it
might be more prudent to limit ourselves to single chain metrics such
as that of Geweke (1992) (used in this study) or Raftery and Lewis
(1992), even if they are univariate convergence indicators. For a discus-
sion of convergence estimators, see Table 1 in Cowles and Carlin (1996).

The fidelity of MCMC samplers can therefore be gauged under two
indicators—(a) sampling efficiency in terms of average number of inde-
pendent samples generated (post-convergence) and (b) computational
efficiency under the generation of a fixed number of samples. For exam-
ple, MH and LMC-E have clearly not converged due to their intrinsic
inability to steer the domains of dynamical instability, a fundamental
character of the underlying DCM. This makes the underlying compari-
son of sampling efficiency (using nESS) meaningless. Our results sug-
gest that under the specific generative model that we have adopted
(with unstable dynamics), using MH or LMC-E is simply inappropriate.
It is vital to appreciate that computational efficiency under a fixed
number of samples is distinct from computational efficiency under
variable number of samples drawn, until convergence.
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Our parameter selection scheme uses Gaussian process (GP) optimi-
sation to derive and bound the parameter acquisition function that gov-
erns how the next time-step and leapfrog steps are selected (Srinivas
et al., 2010, 2012). Heuristically, optimising the tuning parameters of
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the HMC algorithm is difficult, with algorithms such as the no-U-turn
sampler (NUTS) (Hoffman and Gelman, 2014) representing the best
remedy. However, bounding the cumulative performance—in terms of
its maximal information gain—appears to be an alternative approach.
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Beskos et al. (2013) have shown how the cost of generating a proposal
in HMC changes as a function of the integrator step-size.With an accep-

tance probability of 65.1% HMC requires Oðd1=4Þ steps to traverse the
state-space as dimension d → ∞. To apply Bayesian optimisation, as we
have done here, employ no-U-turn sampler (Hoffman and Gelman,
2014) as used in Stan (Stan Development Team, 2014) or use partial
momentum refreshment (Mudigonda et al., 2014) may seem unprinci-
pled although all of them have enjoyed some empirical success. A prin-
cipled criterion can only be established by optimising the natural
parameters of the symplectic integrator. In fact, some recentwork in un-
derstanding the geometry behindHamiltonianMonte Carlo point to the
fact that optimising the integrator step and the number of integrator
steps may lead to inefficiency in the Hamiltonian flow (Betancourt
et al., under review). Betancourt et al. (under review) argue that
optimising integrator step size and the number of integrator steps
may lead to short integration time, limiting the efficacy of the
underlying Hamiltonian flow. Betancourt et al. (2015) also argue that
the step size motivated by ad hoc optimisation strategies can be much
larger than those guaranteeing topological stability and vanishing
asymptotic error. The practitioner should therefore be wary of these
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Fig. 7. Root mean-squared error (RMSE) of the posterior prediction. RMSE of posterior
prediction over 20,000 samples,where 6000 sampleswere discarded as burn-in iterations.
facts, employing domain-specific experience to cross-validate against
multiple optimisation criteria.

To attain lower nESS, an extensive amount of work has culminated
in the use of second-order geometric information in the form of
Christoffel symbols, i.e., the derivatives of themetric tensor, in manifold
MALA (MMALA) (Byrne and Girolami, 2013; Girolami and Calderhead,
2011; Lan et al., 2014). This relaxes the locally constant metric assump-
tion thatwe have in place in this note. Significant progress has also been
made in using information geometry based augmentation of the HMC
algorithm—in the form of the Riemannian metric manifold HMC
(HMC-R) algorithm (Byrne and Girolami, 2013; Girolami and
Calderhead, 2011; Lan et al., 2014). This brings us to the vital issue of
scalability of these inference algorithms—do theMCMCmethods tested
in this paper scale for DCMs with tens of nodes?With the implementa-
tion presented in this paper, this seems difficult as calculating the gradi-
ent of the metric tensor itself amounts to tens of minutes of compute
time, on a conventional workstation. Of course, using a high-perfor-
mance cluster reduces this time; we operate under the assumption
that only few statistical parametricmapping (SPM) users do have access
to such clusters. Fromanoptimisation point of view, thedrift termof the
LMC algorithm can be interpreted as a scaled Newton step (Nocedal and
Wright, 2006), specifically a Gauss–Newton approximation of the
Hessian. To improve sampling efficiency, MMALA in general uses a
non-constant metric tensor, constructing such operators requires
third-order derivatives of negative log posterior density. If one were to
take the second-order terms into consideration, the algorithm becomes
comparable to the full Newton method, i.e., in a model with P parame-
ters, a Hessian matrix stored in single precision would approximately
require 4P2 bytes of memory. Just like in the standard Newton method,
constructing the metric tensor and the associated derivatives prove to
be expensive. As we show in our forthcoming paper (Sengupta et al.,
in preparation), this calculation can be made computationally efficient
by using two constructs—(a) adjoined formulation of the gradients
and the Hessians (Sengupta et al., 2014) and (b) Karhunen–Loève ex-
pansion of the Fisher-information matrix. This efficiency is simply due
to the fact that the Fisher information matrix can be calculated as a so-
lution to an adjoint equation.

The computational efficiency of gradient-based samplers comes
from the added information from the gradients (Amari and Douglas,
1998; Girolami and Calderhead, 2011), efficient time integration using
CVODES (Hindmarsh and Serban, 2002) and adjoined dynamic systems
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(Sengupta et al., 2014) that reduce the computational cost of gradient
calculations (for systems that are known to be stable a priori). The expo-
nential divergence of the states diagnosed from low joint log-likelihood
protects us from stability issues, without explicit stability analysis at
each MCMC step. The stability constraints that we have incorporated
to make our inference problem harder just increases computing
time—where theODE integrator invariably suffers fromahigh condition
number for the propagator, slowing down the integration process.
Problems that are a priori known to be stable will yield far less compute
time than reported here. Furthermore, adjoints could be used for faster
gradient computations.

The workhorse of DCM inversion is the variational Laplace (VL)
scheme (Friston et al., 2003, 2007). Our long-term goal is to derive sam-
pling methods that provide us with posterior densities at comparable
computational expenditure. Thismay have deep consequences for neuro-
science:minimisationof variational free energyunderlies both (variation-
al and sampling) schemes (but using a different parameterisation of the
approximate posterior) (Fiser et al., 2010). If the brain is also performing
some form of Bayesian inference, neuronal populations either implement
sampling—and wemodel this in terms of sufficient statistics of the popu-
lation density—or neuronal populations encode the sufficient statistics
per se. It may well be that certain parts of the nervous system choose to
operate under a sampling formalism (MCMC) (Hennequin et al., 2014),
while others adopt a different approximate formalism (variational Bayes
or predictive coding). It is only with adequate experiments that such
questions can be resolved; however,wefirst have tounderstand the com-
putational anatomy of sampling per se, which is the focus of the current
work.
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Appendix A. Basic MCMC terminology

A.1. Invariant distribution

A probability distribution π is called invariant if and only if πT ¼ T ,
i.e., π is a left eigenvector for T with eigenvalue 1. T is the transition
kernel (a conditional probability).
A.2. Criteria for an invariant distribution

For the distribution of θt to converge to its invariant or stationary
distribution, the Markov chain has to be (a) irreducible—starting from
any point, the chain can reach any non-empty set with positive
probability (also known as probabilistic connectedness condition),
(b) aperiodic—returns to a state at irregular times; this stops the chain
from oscillating and (c) positive recurrent—if the initial θ0 is sampled
from π(⋅), then all subsequent iterates will also be distributed according
to π(⋅).

A.3. Ergodicity of the Markov chain

A state is ergodic if it is aperiodic and positive recurrent, which
means that the state has a period of 1 and has finite average recurrence
time. If all states of a (irreducible) Markov chain are ergodic, then the
chain is said to be ergodic. Consequently, a Markov chain will have a
unique invariant probability density (in our case, the approximate
posterior density) if and only if the states are positive Harris recurrent.

A.4. Geometric ergodicity

The distribution of θ is geometrically ergodic in total variation norm
if it is (a) ergodic and (b) there exists a κ in [0, 1) and a functionV N1 s.t.
∑
j
jT i jðtÞ−πð jÞj⩽ VðiÞκ t. The smallest κ for which the function V exists

is called the rate of convergence.

A.5. Uniform ergodicity

An ergodic Markov chain is uniformly ergodic if there exists a func-
tion V and a finite constant κ in [0, 1) s.t.∑

j
jT i jðtÞ−πð jÞj⩽ Vκ t . This is

known as Doeblin’s condition or ϕ-mixing.

A.6. Convergence of MH

A symmetric random walk Metropolis–Hastings (MH) algorithm
cannot be uniformly ergodic when the state space is not bounded (see
Theorem 3.1 and 3.2 in Mengersen and Tweedie, 1996), although it
can be geometrically ergodic. Geometric ergodicity is equivalent to the
acceptance probability being uniformly bounded away from zero.

A.7. Burn-in

Burn-in refers to the practice of discarding initial iterations of a
Markov chain to specify initial distributions of the form πT ϕ . ϕ is
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the number of burn-in iterations. Note that the strong law of large
numbers and the central limit theorem holds regardless of the
starting distribution.

Appendix B. Proof for Eq. (17)

Here, we present a short derivation of the manifold version of a
Langevin diffusion (Eq. (17)). Let us consider a random variable θ
with probability density π(θ) where J ðθÞ≡ log πðθÞ . The time-
evolution of such a variable is governed by a stochastic differential
equation (SDE),

dθ tð Þ ¼ 1
2
∇θJ θ tð Þð Þdt þ db tð Þ ð23Þ

Here, b denotes the Brownian motion. Although in theory such
a SDE should converge to a unique and invariant stationary densi-
ty, discretisation using numerical methods often lead to non-
convergence or convergence to a ‘wrong’ stationary density. This
can be alleviated by imposing a Metropolis–Hastings correction
to the errors introduced by the numerical algorithms, leading con-
sequently to the eponymous Metropolis-adjusted Langevin algo-
rithm (MALA or LMC-E).

By virtue of the Nash embedding theorem (Nash, 1956), our aim
here is to define the above mentioned (Langevin) diffusion process on
a manifold M that is embedded on a higher dimensional Euclidean
space ℝn. Before we start our derivation, let us generalise the Laplace
operator to Riemannian and pseudo-Riemannian manifolds. This linear
operator is known as the Laplace–Beltrami operator, composed as the
divergence of the covariant derivative. Assume that M is an oriented
Riemannian manifold, then the volume form on M indexed by the
coordinate system θi is

voln ¼
ffiffiffiffiffiffi
Gj j

p
dθ1∧ dθ2…dθn ð24Þ

where dθi are the 1-forms forming a dual basis, G is the metric tensor
and ∧ is the familiar wedge product. The divergence divΘ of a vector
field Θ on a manifold Θ is then a scalar function with

divΘð Þvoln ¼ LΘ voln ð25Þ

with L denoting the Lie derivative of the vector field Θ. Using Einstein
notation, such divergence can be written in local co-ordinates,

divΘ ¼ 1ffiffiffiffiffiffi
Gj j

p ∂i
ffiffiffiffiffiffi
Gj j

p
dΘi

� �
ð26Þ

Now for any scalar function J we can also define a vectorfield∇J on
the manifold using inner products for all vectors vθ at point θ on the
tangent space TθM,

∇J θð Þ; vθh i ¼ dJ θð Þ vθð Þ
~∇J
� �i

¼ ∂iJ ¼ Gi j∂ jJ
ð27Þ

dJ is the exterior derivative. With these identities, the Laplace–
Beltrami operator (Δ) reads,

ΔJ ¼ 1ffiffiffiffiffiffi
Gj j

p ∂i
ffiffiffiffiffiffi
Gj j

p
Gi j∂ jJ

� �
ð28Þ

The Langevin Eq. (23) consists of two terms—a drift term and a
diffusion term where the latter is represented by the Laplace–Beltrami
operator (diffusion with ‘constant’ infinitesimal variance with respect
to the metric) when diffusion occurs on a Riemannian manifold. While
the gradient obtains the form determined by Eq. (27), using Ito’s
calculus one can show the nonlinear mapping of the martingale db(t)
becomes,

d~bt ¼
1
2

1ffiffiffiffiffiffi
Gj j

p ∂i
ffiffiffiffiffiffi
Gj j

p
Gi j

� �
dt þ

ffiffiffiffiffiffi
Gi j

p
dbt ð29Þ

The probability density π(θ) also has to be corrected to yield
the correct invariant density; this can be attained by the following
transformation

~π θð Þ ¼ π θð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
G θð Þj j

p ð30Þ

Combining all the transformations, we obtain Eq. (17). Also refer to
Xifara (2014) and Livingstone (2014) for more details (private commu-
nication; Sam Livingstone).

Appendix C. Proof for Eq. (19)

Fisher information comes in a variety of forms—for example, the ob-
served Fisher information is simply the negative Hessian of the log target
distribution; regrettably, such a quantity does not preserve the inner
product on the manifold, especially so when the score vector is not
zero. Such a metric cannot also be guaranteed to be positive definite,
diluting the meaning of a metric tensor. Another approximation, the
empirical Fisher information is proven to be positive definite although
its convergence could be challenged in the small sample size limit. The
expected Fisher information, on the other hand, turns out to be invariant
to reparameterization of the data while its inverse gives us the attain-
able asymptotic performance of an unbiased estimator. Therefore, the
metric G in Appendix B is taken as an approximation of the true Fisher
information metric. Specifically, it is the expected Fisher information
in combination with the negative hessian of the log-prior. With
πpost(θ|y) ∝ πlike(y|θ)πprior(θ) the metric reads,

G θð Þ ¼ Ey θj −∇2 logπlike y θjð Þ
h i

−∇2 logπprior θð Þ ð31Þ

Expanding this equation and keeping the first order terms leads to
Eq. (19).
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