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Abstract

Precision medicine promises to revolutionize treatment, shifting therapeutic approaches from the classical one-size-fits-all
to those more tailored to the patient’s individual genomic profile, lifestyle and environmental exposures. Yet, to advance
precision medicine’s main objective—ensuring the optimum diagnosis, treatment and prognosis for each
individual—investigators need access to large-scale clinical and genomic data repositories. Despite the vast proliferation of
these datasets, locating and obtaining access to many remains a challenge. We sought to provide an overview of available
patient-level datasets that contain both genotypic data, obtained by next-generation sequencing, and phenotypic data—and
to create a dynamic, online catalog for consultation, contribution and revision by the research community. Datasets
included in this review conform to six specific inclusion parameters that are: (i) contain data from more than 500 human
subjects; (ii) contain both genotypic and phenotypic data from the same subjects; (iii) include whole genome sequencing or
whole exome sequencing data; (iv) include at least 100 recorded phenotypic variables per subject; (v) accessible through a
website or collaboration with investigators and (vi) make access information available in English. Using these criteria, we
identified 30 datasets, reviewed them and provided results in the release version of a catalog, which is publicly available
through a dynamic Web application and on GitHub. Users can review as well as contribute new datasets for inclusion (Web:
https://avillachlab.shinyapps.io/genophenocatalog/; GitHub: https://github.com/hms-dbmi/GenoPheno-CatalogShiny).
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Definitions
• Biobanks: Repositories of biological specimens

intended for clinical research. Biobanks store
information about every specimen, such as the
demographics and clinical symptoms or diagnoses of
the subject from which it was sourced. In some cases,
genotypic data associated with the specimen are also
available.

• Data descriptors: Data about the data also known as
metadata. In this manuscript, data descriptors specif-
ically refer to: name of dataset, country where data
were collected, disease focus, number of subjects with
genomic and clinical data, number of phenotypic vari-
ables per patient, phenotypic data type, number of
samples, molecular data type and the link to the
website (when applicable).

• Dataset: A collection of clinical and genomic variables
recorded for a cohort of subjects participating in a
research study.

• Repository: Where datasets are stored, organized and
distributed (e.g. dbGaP, EGA).

Data repositories for precision medicine
The goal of precision medicine [1–4] is to identify targeted
therapies for patients and to understand the etiology and
progression of disease through the holistic and longitudinal
analysis of patients’ genomic variant profiles, environmental
exposures, lifestyle and digital health data. We can more quickly
achieve these objectives by integrating multiple layers of patient
information, such as clinical and genetic data; providing better
access to integrated patient information for authorized clinical
and biomedical researchers; and more richly characterizing
patient conditions by including a significant number of variables
extracted from adequately sized patient cohorts.

Large-scale human clinical and genetic datasets are prolifer-
ating worldwide. Between 2014 and 2019, the number of studies
in the NCBI database of Genotypes and Phenotypes (dbGaP)
[5] increased from 483 to more than 1300. Nevertheless, many
studies are limited by small sample size, the lack of ancestral
diversity and the lack of detailed phenotypic information asso-
ciated with genomic variant data. Initiatives such as the All Of
Us Research Program [6] and the UK Biobank [7, 8] seek to over-
come these limitations. These datasets contain electronic health
record (EHR) data, questionnaires and physical measurements
along with genomic data of the same patients with either whole-
genome or whole-exome sequencing (WGS/WES) data. Other
initiatives, such as TopMed [9], enrich studies with detailed phe-
notypic information by adding the power of WGS and perform-
ing joint variant calling analysis across the different studies.
Datasets like these speed up the pace of medical discovery while
ensuring reproducibility.

Despite their potential value, many datasets lack data
descriptors—also known as ‘metadata’—such as patient cohort
size, number of recorded biosamples, sequencing platforms and
access requirements or costs. In a few cases, descriptors are
either scattered across the Internet or contained only in related
manuscripts [10, 11]. In other cases, when available, descriptors
are more often projections of long-term objectives rather than
indicative of current status. This is unfortunate, because the
information could improve dataset discoverability and usage as

well as help researchers to determine a given dataset’s relevance
to a particular research objective prior to devoting resources for
requesting access to content.

We see, therefore, a need for a centralized, up to date, inter-
national catalog, designed to assist the global scientific commu-
nity by listing patient-level genotypic and phenotypic datasets
that might be useful for health-related research. We propose
a dynamic and open source catalog that allows the scientific
community to update existing datasets and submit new ones for
inclusion, following peer review.

Here, we provide a sample of datasets, containing both
patient-level clinical and genomic data. In addition, we created a
dynamic, online catalog for the biomedical research community
to consult, add contributions and review (Figure 1). Our catalog
is solely a listing of datasets along with the descriptors of those
datasets provided by the investigators. To be clear, it is not a
repository of clinical or genetic data. Our contribution is in
gathering descriptive information—often widely scattered—
about these datasets, making the information of the datasets
readily discoverable. Importantly, we allow contributions to the
catalog from the research community.

Searching available datasets
We identify datasets with patient-level clinical and genomic data
from a variety of sources. One source was dbGaP [12], a reposi-
tory that hosts 1359 patient-level datasets with genotypic and
phenotypic information. Each dataset in dbGaP contains mul-
tiple data descriptors, such as disease focus and study design,
number of subjects, selected publications related to the study,
applicable consent groups, molecular data types, marker sets,
sequencing technology and assays, and computed ancestry. All
the dataset descriptors are publicly available and downloadable
from the dbGaP website. Biobanks are another source of pheno-
type and genotype data. In addition to storing biological sam-
ples, some biobanks also store corresponding phenotypic and
genomic data. We performed a Web search for biobanks using
the keywords: next-generation sequencing (NGS), patient-level,
phenotype, data, biobank and biobank catalog. Most biobanks
describe their disease focus, year of creation and number of
subjects.

Inclusion criteria
We defined six criteria for dataset inclusion in this review.

(i) Including at least 500 human subjects.
(ii) Containing both genotypic and phenotypic data for every

patient. This allows comparative studies such as Phenome
Wide Association Studies (PheWAS) [13] to be performed
within and between individual patients and subpopulations.
PheWAS evaluates the association of a genotype to a specific
or multiple phenotype as well as the associations between
different phenotypes. It is useful to explore the pleiotropic
effect of genes—particularly when a genotype can be associ-
ated with multiple phenotypes [14]—and to examine comor-
bidities.

(iii) Genomic data content includes WGS or WES data. NGS, a
parallel genome-processing tool with high-throughput capa-
bilities, enables the exploration of the entire genome, rather
than a very limited set of single nucleotide polymorphisms.
This tool has become broadly available, in part due to sig-
nificant reductions in cost over time [15]. NGS is now gen-
erally affordable, enabling high-coverage genome mapping
for millions of individuals and variant discovery for targeted
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Figure 1. Curation and usage of the catalog. After locating rich datasets containing both phenotypic and genomic data from the same patients, the descriptive

information is extracted from each dataset, submitted through the Shiny App form and displayed in an interactive Shiny app, where users can run dynamic searches.

disease treatment [16–19]. These capabilities make NGS par-
ticularly useful and desirable for clinical applications.

(iv) At least 100 clinical variables are recorded for each dataset.
Many clinical datasets include extensive demographic
and consent information, i.e. recording variables for
demographic data such as age, ethnicity, sex, weight,
height, body mass index and various consent parameters
for patient data use. In fact, some datasets cumulatively
contain more than 50 of these demographic and consent
variables. When seeking to establish genotype-to-phenotype
associations in standard biomedical research, however,
such demographic and consent data are only of limited
utility. Thus, we arbitrarily chose a minimum of 100 clinical
variables recorded for each patient. This bound is intended to
keep the studies that aim to thoroughly collect phenotypes,
rather than just minimal metadata appended to the genomic
data.

(v) Accessible through a website or through collaboration with
investigators.

(vi) Information detailing access to the dataset is available
in English. Many biobanks throughout the world contain

descriptions in a local language. Since English is the lingua
franca of the worldwide biomedical research community,
instructions for access must follow suit in order to enable
global usage of a dataset and its utility to the Precision
Medicine Initiative. Non-English datasets were not included
in our review and catalog.

Though the catalog described in this paper is by no means
exhaustive, it is intended to be a living resource, accessible
via a dynamic Web-user interface through which the scientific
community can submit details about datasets for peer-review
and acceptance. The catalog itself does not contain patient data.
Instead, the catalog details only the characteristics of partici-
pating datasets and how to access the data within them. The
methodology used for the creation of this catalog is depicted
below (Figure 2).

Datasets that meet the inclusion criteria
At the outset of our work, there were no search tools (web-
site search and dbGaP Web) available for us to directly select
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Figure 2. New submission and validation process. Users first search for the information available in the current version of the catalog. Those interested in updating

or adding new information can edit the CSV file in GitHub. New information will be reviewed and the accepted changes in the CSV file in GitHub will automatically

update the Web Shiny app.

datasets, based on the six inclusion criteria described. Therefore,
we had to: (i) identify potential datasets; (ii) extract the dataset
descriptors; (iii) carry out manual curation and (iv) filter based
on the inclusion criteria. We followed these steps for both dbGaP
and biobanks that we found on the Internet.

We also included datasets of which we had prior knowledge
that satisfied the inclusion criteria.

dbGaP datasets

Of the 1359 datasets present in dbGaP, 41% contain NGS data,
41% have more than 500 subjects and 11% have more than 100
clinical variables. Only eight datasets satisfied all the inclu-
sion criteria (Genome-Wide Association Study of Amyotrophic
Lateral Sclerosis, Genotype-Tissue Expression (GTEx) [20], UIC
ACE Exome Sequencing Analysis [21], Sequencing of Targeted
Genomic Regions Associated with Smoking [22], Genetic Study of
Atherosclerosis Risk (GeneSTAR) [23], Genetics of Left Ventricular
Hypertrophy (HyperGEN) [24] and WES in Tourette Disorder in
Simplex Trios-TIC Genetics) [25].

For 216 datasets, dbGaP provides additional information
about their relationship to each other. After the data descriptors
for these related studies were combined, only 10 studies satisfied
all the inclusion criteria and were included in this review. For
example, there are three different datasets arising from the
Genetic Epidemiology of Chronic Obstructive Pulmonary Disease
(COPDGene) [26] study: phs000179.v6.p2, phs000296.v5.p2 and
phs000765.v3.p2. Individually, none of these datasets would have
satisfied the criteria for inclusion in our catalog. Study accession
number phs000179.v6.p2 includes 341 clinical variables for more
than 500 patients, but the molecular data type is not provided.
Dataset with study accession number phs000296.v5.p2 includes
NGS data but only for 289 patients and 20 clinical variables,
and the dataset with study accession number phs000765.v3.p2
includes NGS data for 9991 patients but only 7 clinical variables.
However, these three datasets are interrelated. Specifically,
phs000179.v6.p2 is the ‘parent study’, according to dbGaP.
Datasets phs000296.v5.p2 and phs000765.v3.p2 are considered
‘substudies’. By combining these three datasets into a single
entity, we enabled COPDGene to collectively meet our inclusion
criteria. Using this relationship-based strategy, we were able to
add 10 datasets to the review: Framingham Cohort [27], Genetic
Epidemiology of COPD (COPDGene), Women’s Health Initiative
(WHI) [28], Atherosclerosis Risk in Communities (ARIC) Cohort

[29], the Jackson Heart Study (JHS) [30], Cardiovascular Health
Study (CHS) Cohort [31], Orofacial Pain: Prospective Evaluation
and Risk Assessment (OPPERA) [32], T2D-GENES: San Antonio
Mexican American Family Studies (SAMAFS), NINDS Parkinson’s
Disease [33, 34] and Pediatric Cardiac Genomics Consortium
(PCGC) Study [35].

For the remaining 1143 datasets, information about the
relationship between datasets is not provided by dbGaP. For
example, two different datasets in dbGaP arose from the Multi-
Ethnic Study of Atherosclerosis (MESA) [36] (phs001416.v1.p1 and
phs000209.v13.p3). Independently, neither met our inclusion
criteria; phs001416.v1.p1 only contains 16 clinical variables,
while phs000209.v13.p3, although having 22 147 clinical
variables, does not provide the type of molecular data required
for inclusion. At the same time, the specific Web entry in dbGap
for phs001416.v1.p1 states that phenotypic data for MESA study
participants are available within phs00209. However, the latter
is not identified as a substudy, barring the collective inclusion
of both databases in our review.

To circumvent the problem, we obtained the relationship
information for these studies from the NIH Trans-Omics for
Precision Medicine (TOPMed) program (https://www.nhlbiwgs.
org) [9]. For background, TOPMed seeks to integrate different
layers of information, including WGS and clinical data, from
more than 80 distinct studies that focus on four main groups
of disorders (heart, lung, blood and sleep disorders). The WGS
data in TOPMed’s datasets are characterized by joint genotype
calling, an efficient genotype call detection across thousands of
samples to improve accuracy in variant discovery and increasing
sensitivity in regions with low coverage [37, 38]. This means
that although TOPMed’s studies were not large individually, their
deployment of joint variant calling produced a robust multi-
sample Variant-Calling Format file, consistent for the entire
population.

We used the information available for TOPMed Freeze 5b,
which contains 32 study accession numbers (https://www.
nhlbiwgs.org/topmed-whole-genome-sequencing-project-free
ze-5b-phases-1-and-2), alongside their corresponding parent
study accession numbers, when available. With this additional
information, we added five datasets to the review: MESA,
Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)
[39], Study of Adiposity in Samoans (SAS) [40], the Cleveland
Family Study (CFS) [41] and Genetic Epidemiology Network of
Arteriopathy (GENOA) [42].

phs001416.v1.p1
https://www.nhlbiwgs.org/
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-2
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We manually reviewed each study to confirm information
accuracy. We found that sample counts were not categorized
by molecular data type. For example, Genome-Wide Association
Study of Amyotrophic Lateral Sclerosis (phs000101.v5.p1) con-
tains 15 480 genomic samples extracted from 15 480 subjects.
However, NGS data are provided for only 409. Therefore, this
dataset was discarded, as it was considered too small to meet
our criteria.

Similarly, patient counts alone did not capture the true
number of patients for whom both clinical and genomic data
were recorded. This was the case with HyperGEN, where 2104
subjects had associated phenotypic data, but only 1773 also had
recorded genotypic data. When faced with this discrepancy,
we chose the smaller number of subjects (containing both
clinical and genomic data) as the cohort size. We manually
checked and updated these values for all of the datasets. Missing
descriptors for these datasets had to be manually obtained from
manuscripts.

Overall, 22 datasets from dbGaP (https://www.ncbi.nlm.ni
h.gov/projects/gapsolr/facets.html) satisfied the six criteria for
inclusion as of 18 November 2019.

Biobanks obtained after website exploration

The Web search for biobanks did not yield a listing of actual
biobanks. Instead, we obtained links to interconnected Web
pages, all of which had to be thoroughly reviewed to find neces-
sary information. In general, data descriptors for each biobank,
if available, were scattered and inconsistent. As a consequence,
searching for biobanks by just using the inclusion criteria yielded
only one result, the UK Biobank.

We then searched for existing catalogs of biobanks and found
a few listings, based on different classification criteria. One
listing was the catalog of European Biobanks directory [43] with
608 biobanks (as of 22 November 2019), hosted by the Biobanking
and BioMolecular Resources Research Infrastructure-European
Research Infrastructure Consortium [44]. This catalog focuses on
biobanks that strictly collect biological samples. However, it does
not include dataset descriptors that would suit the criteria of
this review, such as number of subjects, number of phenotypic
variables or NGS data.

We manually searched for the data descriptors of more than
20 biobanks, starting with the largest (in terms of participant
number) that had websites in English. We discovered the ‘All of
Us’ Biobank [6], with one million participants, and the FINNGEN
Biobank or China Kadoorie Biobank, with approximately 500 000
participants. After filtering, based on our inclusion criteria, only
two biobanks were included in our review (All of Us and UK
Biobank [7]). Listed in Supplementary Table 1, the excluded
biobanks were either missing NGS data or did not have informa-
tion about the number of available NGS samples. An example is
the FinnGen Biobank with 809 phenotypic variables per patient
and more than 300 000 samples, but no available WGS or WES
data.

Datasets identified prior to this review

Given our research focus on autism and undiagnosed diseases,
we had known a priori about four datasets that also met the six
inclusion criteria: the Simons Simplex Collection (SSC) [45], the
Undiagnosed Diseases Network (UDN) [46], the Boston Children
PrecisionLink Biobank [47] and the Genomics Research and Inno-
vation Network (GRIN) [48]. The SSC dataset contains more than
5459 clinical variables and 4784 genomic samples, obtained from

2392 subjects. The UDN dataset contains 3965 clinical variables
and 462 genomic samples from 1042 subjects. The Boston Chil-
dren PrecisionLink Biobank dataset encompasses 73 077 clinical
variables and 500 WES samples from 500 subjects. Finally, the
GRIN dataset incorporates 19 649 clinical variables and 500 WES
genomic samples from 500 subjects.

Description of the selected datasets

This review catalogs 30 datasets that, as of 20 November 2019,
met our six inclusion criteria (Table 1, Supplementary Figure 1).
To build this resource at what we view as an acceptable standard,
we also undertook a manual curation process. We emphasize
that the current version is not an exhaustive list. Rather, this
catalog is meant to be an online resource and starting point
for investigators who are searching for datasets. The script to
perform automatic dataset selection, as well as the information
manually added, is available at the GitHub repository: https://gi
thub.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/ca
talogGenerator.R

For each dataset, we provided detailed information, including
dataset name, country where the research took place, the num-
ber of participants with both genomic and clinical data recorded,
study design (e.g. cohort, prospective and longitudinal), disease
focus (e.g. general or disease-specific), number of phenotypic
variables, phenotypic data type (e.g. EHRs, questionnaires and
clinical notes), total number of DNA samples with genotype
data, molecular data type (e.g. WGS and WES), genotype mark-
erset (e.g. genotyping microarrays or on a sequencing technol-
ogy basis), patients’ age and ancestry, consent (e.g. biomedical,
disease-specific), accession link to the dataset or contact infor-
mation to obtain data access, links to the originating clinical and
genomic study, and PubMED identifier of the main publication(s)
describing the dataset, if any. Table 1 shows 9 of 18 columns
that are available in the online version of the catalog (https://avi
llachlab.shinyapps.io/genophenocatalog/). This table is publicly
available on GitHub (https://github.com/hms-dbmi/GenoPheno-
CatalogShiny/blob/master/csv/tableData.csv).

Perspectives on included datasets
Size: The datasets in the catalog were sorted by the number of
subjects for which both phenotypic and genomic data had been
recorded. In terms of subject cohort size, the All of Us dataset [6]
was the largest, containing 80 000 subjects. The smallest was the
Boston Children PrecisionLink Biobank [47], which contains data
from 500 patients. Of note: the phenotypes of patients broadly
consented and enrolled in the Boston Children PrecisionLink
Biobank were the best-characterized among all the datasets in
the catalog, recording up to 73 077 phenotypic variables.

Source of clinical data: We could distinguish many sources
of clinical data, with registry data and EHRs being the most
common [49–52]. Each carried different advantages and limita-
tions. For example, registries recorded whether or not a partic-
ipant possessed a clinical variable. In the COPDGene [53] study,
specifically, patients answered the question: ‘Have you ever had
asthma?’ with any one of four different options: ‘yes’, ‘no’, ‘I
don’t know’ or ‘missing data.’ In an EHR system, in contrast, data
were in the form of codes that had been used for billing purposes.
An advantage of EHR data is that it contains records of all visits to
an institution. However, the record of any particular visit might
lack a report of primary symptoms or comorbidities that support
a diagnosis. From this record, an investigator can only ascertain
the presence or absence of the diagnosis. Typically, the absence

https://www.ncbi.nlm.nih.gov/projects/gapsolr/facets.html
https://www.ncbi.nlm.nih.gov/projects/gapsolr/facets.html
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa033#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa033#supplementary-data
https://github.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/catalogGenerator.R
https://github.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/catalogGenerator.R
https://github.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/catalogGenerator.R
https://avillachlab.shinyapps.io/genophenocatalog/
https://avillachlab.shinyapps.io/genophenocatalog/
https://github.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/csv/tableData.csv
https://github.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/csv/tableData.csv
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Table 1. Subset of six of 18 columns from the online catalog version 20 November 2019. The table is sorted in decreasing order, based upon the
number of subjects with associated genomic and clinical information. The latest, complete version of the table with additional information
(e.g. country, genotype markerset, patients’ age and ancestry, consent groups and accession links to the datasets) is available at https://avilla
chlab.shinyapps.io/genophenocatalog/

Name Subject count with
genomic and clinical

data

Study design Number of
phenotypic variables

per patient

Phenotypic data
type

Number of genomic
samples

All of Us [6] 80 000 Population-based
cohort

48 682 EHR; questionnaires;
physical
measurements

219 000

UK Biobank [7] 50 050 Prospective study 7291 EHR; questionnaires;
physical
measurements;
lifestyle

50 050

COPDGene[26] 10 371 Case-control 341 Patient/disease
registries

10 776

WHI [28] 10 000 Prospective
longitudinal cohort

6208 Patient/disease
registries

20 010

PCGC study [35] 9444 Prospective
observational cohort

435 Patient/disease
registries

8411

MESA [36] 4875 Prospective
longitudinal cohort

22 147 Patient/disease
registries

4875

FHS [27] 4154 Prospective
longitudinal cohort

61 988 Patient/disease
registries

8326

CHS [31] 3622 Prospective
longitudinal cohort

14 718 Patient/disease
registries

3622

ARIC [29] 3612 Prospective
longitudinal cohort

18 704 Patient/disease
registries

6667

The JHS [30] 3406 Prospective
longitudinal cohort

4690 Patient/disease
registries

6812

Sequencing of
targeted genomic
regions associated
with smoking [22]

2969 Case-control 131 Patient/disease
registries

6196

OPPERA prospective
cohort study of
first-onset TMJD [32]

2866 Prospective
longitudinal cohort

1061 Patient/disease
registries

2866

SSC [45] 2392 Family/Twin/Trios 5459 Questionnaires 4784
HyperGEN [24] 1773 Family/Twin/Trios 164 Patient/disease

registries
1776

GeneSTAR [23] 1636 Prospective
longitudinal cohort

157 Patient/disease
registries

3420

OPPERA baseline
case-control study of
chronic TMJD [70]

1608 Case-control 1079 Patient/disease
registries

1608

SAS [40] 1222 Cross-sectional 182 Patient/disease
registries

1232

GENOA [42] 1143 Prospective
longitudinal cohort;
Family/Twin/Trios

1118 Patient/disease
registries

1143

WES in Tourette
Disorder in Simplex
Trios-TIC Genetics
[25]

1104 Family/Twin/Trios 106 Patient/disease
registries

1104

T2D-GENES Project 2:
SAMAFS; substudy 2:
WGS in pedigrees

1048 Family/Twin/Trios 272 Patient/disease
registries

1651

UDN [46] 1042 Prospective
longitudinal cohort

3965 HPO terms by clinical
experts

462

NHGRI ClinSeq 1001 Case set 177 Patient /disease
registries

1001

The CFS [41] 994 Prospective
longitudinal cohort

2339 Patient/disease
registries

1988

Continued

https://avillachlab.shinyapps.io/genophenocatalog/
https://avillachlab.shinyapps.io/genophenocatalog/
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Table 1. Continued

Name Subject count with
genomic and clinical

data

Study design Number of
phenotypic variables

per patient

Phenotypic data
type

Number of genomic
samples

GTEx [20] 980 Cross-sectional 269 Patient/disease
registries

3155

GOLDN [39] 898 Prospective
longitudinal cohort

123 Patient/disease
registries

1859

NHLBI GO-ESP: Heart
Cohorts Exome
Sequencing Project
(ARIC)

843 Case-control 127 Patient/disease
registries

1686

NINDS Parkinson’s
Disease [33,34]

618 Case-control 113 Patient/disease
registries

1223

UIC ACE Exome
Sequencing Analysis
[21]

523 Family/Twin/Trios 194 Patient/disease
registries

1066

Boston Children
Precision Link
Biobank [47]

500 Prospective
longitudinal cohort

73 077 EHR 500

GRIN [48] 500 Pediatric Network 19 649 EHR 500

of the diagnostic code is translated as the patient not having that
diagnosis. But just as likely, it may be that the symptoms or main
comorbidities were not a primary element of that particular
visit. This passive, negative assumption is different from the
clear ‘no’ that is actively recorded in registry datasets. As a way
around the limitation, recent studies have demonstrated the
usefulness analyzing EHR clinical data to discover or confirm
outcome correlations, find subcategories of disease and identify
adverse drug effects [54, 55]. The EHR data structure allows a
researcher, after the data has been collected, to view the full
ICD hierarchy and so assess whether or not a patient did, in
fact, have the disease or not. This desire for a much broader
spectrum of all potential diagnoses led the Boston Children
PrecisionLink Biobank to collect 73 077 clinical variables and All
of Us to gather 69 000, based on ICD classifications. In contrast,
the COPDGene collected merely 341 clinical variables and the
WES in Tourette Disorder in Simplex Trios-TIC Genetics [25] used
only 106, hindering subsequent analysis.

Genomic samples: All of Us [6] and UK Biobank [7] had the
most subjects with associated genomic information, 219 000
and 50 050 samples, respectively. NGS capabilities and contin-
ual technological improvement have enabled investigators to
explore the human genome in detail and use that knowledge to
treat complex diseases. With a significant reduction in cost in
the last decade, NGS has enabled the mapping of genomes for
millions of individuals, leading to the generation of extremely
large volumes of data [56, 57], which is useful for clinical appli-
cations. An alternative is WES data that cover only the protein-
coding regions of the genome (approximately 1.5%), but still
allows deep coverage. We have focused exclusively on the subset
of subjects that provided associated WGS or WES data.

Disease focus: While there were four more generalized reg-
istries (All of Us, the UK Biobank, Boston Children PrecisionLink
Biobank and GRIN), most of the datasets included in this review
had focused on one disease. Of the specific-disease datasets,
six targeted cardiovascular diseases [MESA, Framingham Heart
Study (FHS), Cardiovascular Heart Study, the JHS, ARIC and the
Heart Cohorts Exome Sequencing Project].

Study type: The datasets originated from five categories of
studies: case-control, prospective-cohort, cross-sectional, family

and population-based. Of note, population-based studies were
not necessarily disease-specific but always localized to a specific
geographical area. An example is the FHS [27], which recorded
clinical variables of patients with cardiovascular disorders in
the town of Framingham, MA. Similarly, the UK Biobank [7]
recorded clinical and genomic variables for more than 500 000
adult patients in the UK.

Five of the datasets were family studies, with the SSC [45]
being the largest. SSC was originally created to enhance the
discovery of rare and de novo variants in autism spectrum dis-
orders (ASD). It encompasses 2700 families in which a child has
ASD, unaffected biological parents and, in some cases, one or
more unaffected siblings. Serving as the basis for more than 1400
publications, SSC is a good example of collaboration between
several institutions.

Subject age: We were able determine the subjects’ ages for
27 of the 30 datasets located. In general, age was not included
in the webpage of the study. Rather, this information was more
likely to appear in manuscripts derived from the data. Simi-
larly, we could only ascertain subject ancestry for 23 of 30 total
studies. Most datasets included in this review contain adults
(>18 years old). Only four datasets focus mainly on children:
SSC [45], Undiagnosed Disease Network (UDN), the CFS and
the Boston Children PrecisionLink Biobank [47]. While Boston
Children’s Hospital treats mainly children, 20% of patients are
older than 18 years. The latter are often patients with very rare
conditions that continued to come to the hospital for follow-up
into adulthood in order to preserve a continuum of case. They
represent a special case, as their parents consented for them
as children and the patients themselves had to reconsent, upon
request, after reaching 18 years of age [58].

Consent: Information about consent is also part of this review,
and the consent type or the link to the consent information is
available in the ‘Consent’ column of the online version of the cat-
alog. For some cases, such as the Boston Children PrecisionLink
Biobank and the SSC, the link to the research consent document
for data use agreement, signed by the patient, is available. For
other cases, such as UK Biobank, GRIN and All of US, the catalog
contains a link to a website with consent-related information.
For the rest of the datasets, hosted in dbGaP, the description
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of the different content types is displayed. Importantly, the
same study can present several patient consent groups that
might impact subsequent studies. For example, the COPDGene
study contains 290 patients who signed disease-specific (COPD
and smoking) consents and 10 328 patients who signed
health/medical biomedical consents. This means that, when
performing research unrelated to COPD and smoking, data from
the disease-consented 290 patients cannot be used. In contrast,
all the patient data can be used for future smoking research.

Access
Typically, the following steps are required to obtain access to a
dataset: (i) the database evaluation based on the dataset descrip-
tors available; (ii) the identification of the requirements to access
the data; (iii) writing a proposal and (iv) Data User Agreement
compliance and IRB approval. To enable dataset accessibility,
the online version of the catalog contains an accession link or
contact information. These will bring the user to a website or
document with detailed guidance to prepare data access request.
Twenty seven out of the 30 datasets are publicly available, while
three of them (Boston Children PrecisionLink Biobank, UDN and
GRIN) are only accessible via principal investigator collaboration.

Contributing to this catalog
Based on this review, we created the GenoPheno catalog. It
represents a dynamic and open-source dataset for the scientific
community to use. Specifically, scientists can add new infor-
mation and/or correct existing data. They can submit a new
dataset by going to the webpage and clicking on the ‘submit
a new dataset’ tab (https://avillachlab.shinyapps.io/genopheno
catalog/). Contributors can correct existing information via the
GitHub repository, using the CSV file containing available cat-
alog information (https://github.com/hms-dbmi/GenoPheno-Ca
talogShiny/blob/master/csv/tableData.csv) (Figure 2). Currently,
a validation team of four investigators, the developers or the
catalog, will periodically review the entered data. Eventually,
other validators will join the review.

For consideration, new submissions should include the fol-
lowing: name of the dataset, country where data was collected,
disease focus, number of subjects with genomic and clinical
data, number of phenotypic variables per patient, phenotypic
data type, number of samples, molecular data type, and the
link to the website (when applicable) or directions and/or con-
tact information for the investigators to whom correspondence
should be addressed. Following validation, the CSV file will be
updated and used to update the website.

Challenges
Overall, the main challenge in performing this review was
the procurement of information. Data were scattered and
lacked consistency in its descriptors (e.g. self-reported ances-
try/race/ethnicity). In many cases, the relationships between
multiple, derivative datasets were not always evident. This
created many difficulties in accurately determining patient
cohort sizes, sample specifications, availability of WGS data
and other parameters that would aid in making these datasets
discoverable and accessible.

For instance, to have a clear idea about how derived informa-
tion from each dataset can be used, it would be helpful to include
the license information for the datasets as an additional dataset
descriptor in the catalog. However, since some sources lack

license information, and this is addressed in the user agreement
when requesting access to the dataset, GenoPheno provides the
direct link to request data access and the applicable consent(s).

We manually curated and reviewed the datasets and made
our work available to others through the GenoPheno catalog.
In this way, we believe that we have facilitated the discover-
ability, accessibility and reusability of these datasets. Our work
is synchronous with ongoing standardization initiatives, such
as the Findability, Accessibility, Interoperability and Reusability
guiding principles [59] that serve to guide data producers and
publishers in their quest to properly manage and steward data.
Their relevance to precision medicine has been recognized by
the biomedical research community [60–62].

Limitations
We found three main limitations when building this catalog: (i)
the lack of data descriptors; (ii) biobank websites not written
in English and (iii) difficulty in distinguishing biobanks with
samples from those that also contained processed information.

A large number of datasets worldwide have descriptive infor-
mation available only in the vernacular language. The lack of
descriptive information in English restricts the use of these
datasets to a geographical region or a specific user commu-
nity. More importantly, data from these nationally—and possibly
ethnically diverse patient cohorts—are rendered unavailable for
analysis to the larger global research community. For these
reasons, we inserted in the inclusion criterion a requirement
that access instructions be available in English and excluded
non-English datasets from this review.

Shared ancestry has been identified as a confounding factor
in association studies such as genome wide association studies
carried out on ethnically homogeneous patient cohorts [63],
leading to the identification of false positives. On the other
hand, association studies performed on patient cohorts from
diverse ancestries (multi-ethnic studies) have identified associ-
ations between several novel genetic variants and phenotypes
not commonly observed in patient populations with the most
commonly studied European ancestry [64–67]. To further this
type of discovery, we encourage data managers worldwide to
provide access instructions and descriptors in English.

We also considered the European Genome-phenome Archive
(EGA) [68] repository that contains datasets from 2400 studies. Of
these, 348 datasets are also hosted on dbGaP. Data descriptors
are not easily accessible on EGA nor are they specified. Where
available, an independent query had to be executed on each
study to extract the metadata. Due to these limitations, EGA
datasets were not included in this review.

The time-intensive nature of compiling accurate descriptive
information for the included datasets narrowed the scope of this
review to 30 datasets. However, the limitation was addressed
by releasing this information in a dynamic catalog and encour-
aging community participation in the review and update of
the datasets, as well as in the submission of new datasets for
inclusion.

We have not delved into the interoperable aspects of the
datasets in this review. The wide heterogeneity between the
clinical and genomic data variables captured in the various
datasets in GenoPheno was a significant impediment to dataset
interoperability. Major challenges in interoperability include the
harmonization of the variables across the diverse datasets, the
batch effects between studies and differences in protocols. To
achieve interoperability, we suggest identifying biological asso-
ciations in one study cohort and validating them in another.

https://avillachlab.shinyapps.io/genophenocatalog/
https://avillachlab.shinyapps.io/genophenocatalog/
https://github.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/csv/tableData.csv
https://github.com/hms-dbmi/GenoPheno-CatalogShiny/blob/master/csv/tableData.csv
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The recorded clinical variables differed from study to study.
This introduced complications in the development of analyses
that utilize clinical data from different studies. Therefore, it
will be necessary to identify variables that are shared across
studies, especially variables that record more than patient demo-
graphic information. Harmonization of the clinical variables
shared across studies is necessary because different studies will
typically record the value of these variables differently, using
different units for quantitative measurements or different scales
for ordinal and categorical measurements. The harmonization
of clinical variables involved painstaking human curation. As an
example, the harmonization of a set of 43 clinical variables (e.g.
‘presence or absence of carotid plaque’, ‘body height at baseline’
and ‘body weight at baseline’) for over 230 000 patients across 17
studies took 2 years for a team of data scientists at the TOPMed
Data Coordination Center [69].

Conclusions
This review summarizes 30 patient-level datasets integrating
both NGS genomic and phenotypic data to facilitate the dis-
covery and access of these data to advance precision medicine
research. Additionally, we present this information in the form
of a dynamic, open-source catalog, GenoPheno, which can be
accessed online by users who can review as well as contribute
new datasets for inclusion.

Key Points
• Datasets containing patient phenotypic and genomic

(NGS) data are crucial to the advancement of precision
medicine.

• Availability of dataset descriptors prior to requesting
data access saves researchers time and effort, allowing
them to focus on data analysis that is relevant to their
work.

• This manual review of 30 datasets containing patient
genotypic and phenotypic data, although not an
exhaustive listing, is meant to launch a new attempt
at standardization and better access for clinical and
biomedical research communities.

• The scientific community is invited and encouraged
to contribute and update the current content of this
review, available as a dynamic online GenoPheno
catalog.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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