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Abstract: Diabetic retinopathy (DR) is the most severe and frequent retinal vascular disease that
causes significant visual loss on a global scale. The purpose of our study was to evaluate retinal
vascularization in the superficial capillary plexus (SCP), the deep capillary plexus (DCP) and the
choriocapillaris (CC) and changes in the foveal avascular zone (FAZ) by optical tomography angiogra-
phy (OCTA) in patients with type 2 diabetes mellitus (DM2) with moderate DR but without diabetic
macular oedema (DME). Fifty-four eyes of DM2 with moderate DR (level 43 in the ETDRS scale)
and without DME and 73 age-matched healthy eyes were evaluated using OCTA with swept-source
(SS)-OCT to measure microvascularization changes in SCP, DCP, CC and the FAZ. The mean ages
were 64.06 ± 11.98 and 60.79 ± 8.62 years in the DM2 and control groups, respectively. Visual acuity
(VA) was lower in the DM2 patients (p = 0.001), OCTA showed changes in the SCP with a significant
diminution in the vascular density and the FAZ area was significantly higher compared to healthy
controls, with p < 0.001 at the SCP level. The most prevalent anatomical alterations were peripheral
disruption in the SCP (83.3%), microaneurysms (MA) in the SCP and in the DCP (79.6% and 79.6%,
respectively) and flow changes in the DCP (81.5%). A significant positive correlation was observed
between the DM2 duration and the FAZ area in the SCP (0.304 with p = 0.025). A significant negative
correlation was also found between age and CC central perfusion (p < 0.001). In summary, a decrease
in the vascular density in DM2 patients with moderate DR without DME was observed, especially at
the retinal SPC level. Furthermore, it was found that the FAZ was increased in the DM2 group in
both retinal plexuses and was greater in the SCP group.

Keywords: diabetes mellitus; diabetic retinopathy; foveal avascular zone; retinal capillary plexuses;
choriocapillaris; swept-source optical coherence tomography angiography; OCTA

1. Introduction

Diabetic retinopathy (DR) is one of the main causes of blindness worldwide [1]. It is
estimated that the prevalence of diabetes mellitus (DM) will increase, reaching 629 million
affected people by 2045 [2]. DR is the most severe and frequent ophthalmic complication,
related to diabetes macular oedema (DME) and proliferative DR [3].

Currently, the diagnosis and control of DR in daily practice is mainly based on the
assessment of visual acuity (VA), the evaluation of the eye fundus, fluorescein angiography

Diagnostics 2022, 12, 379. https://doi.org/10.3390/diagnostics12020379 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12020379
https://doi.org/10.3390/diagnostics12020379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-1234-9712
https://orcid.org/0000-0003-2710-1875
https://orcid.org/0000-0002-5621-1937
https://orcid.org/0000-0003-0349-9997
https://doi.org/10.3390/diagnostics12020379
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12020379?type=check_update&version=2


Diagnostics 2022, 12, 379 2 of 14

(FA) and macular morphology and thickness using optical coherence tomography (OCT)
to look for any DR signs. However, despite not finding anatomical retinal changes, visual
function could be impaired. New technological advances have improved the OCT resolu-
tion for in vivo clinical retinal imaging, especially with the swept-source OCT (SS-OCT)
with a resolution of 1050 nm and its unique capability of high performance imaging with
high sensitivity and speed relative to spectral-domain OCT (820 nm) [4,5]. SS-OCT allows
better evaluation of vascular changes previously unidentified, using OCT angiography
(OCTA) to assess retinal and choriocapillaris (CC) microvascularization [6].

OCTA is based on the evaluation of blood flow imaging. The movement of red blood
cells generates differences between consecutive B-scans. This provides the opportunity
to visualize movement both in the great vessels and in the microvascularization. Thus, it
allows the visualization of the superficial (SCP), the intermediate (ICP) and the deep (DCP)
capillary plexuses, the radial peripapillary capillary network, the CC and, partially, the
choroidal great vessels [6,7].

OCTA can detect multiple abnormalities present in DR, such as capillary nonperfusion
areas, microaneurysms (MA) and foveal avascular zone (FAZ) abnormalities in size, mor-
phology or neovascularization (NV). Vascular density (VD), perfusion and FAZ changes are
the most frequently investigated OCTA quantitative parameters as predictors of DR since
they are correlated with the severity of DR and VA and are useful as treatment markers [8].
OCTA allows the detection of early microvascular changes in DM, even before they are
clinically evident in the fundoscopy exam [9–11].

The aim of this study was to evaluate the structural changes measured by OCTA
in patients with type 2 DM (DM2) and moderate nonproliferative diabetic retinopathy
(NPDR) without DME, assess the SCP, DCP and CC, and compare the FAZ values with an
age-matched healthy group. To our knowledge, this is the first study including a single
level of DR patients DM2 with moderate NPDR since, in previous studies, the diabetic
group tended to aggregate different levels of DR [12–16].

2. Materials and Methods
2.1. Study Design

A prospective single-centre cross-sectional study performed at Ophthalmology Depart-
ment of the Lozano Blesa University Hospital of Zaragoza was conducted from February
2020 to December 2020, including a total of 127 eyes divided into two groups. Group 1
included 54 eyes of 54 DM2 white patients with moderate DR according to the ETDRS
classification (level 43 on the ETDRS retinopathy severity scale) [17] and without DME
or other ophthalmological pathology that could compromise best corrected visual acuity
(BCVA); Group 2 included 73 eyes of 73 healthy white subjects with no previous history
of ocular pathologies, systemic diseases affecting the eye or diabetes family history. The
present study complied with the principles of Helsinki and was accepted by the Clini-
cal Research Ethics Committee of Aragon (CEICA PI19/252), and all participants signed
informed consent forms.

Exclusion criteria for all participants included amblyopia or BCVA less than 20/40 on
the Snellen chart, refractive error over 5.50 diopters (D) of spherical equivalent (SE) or 3.00 D
of astigmatism, intraocular pressure (IOP) higher than 20 mmHg, history of any pathology
affecting central vision (cataract, age-related macular degeneration (AMD), pathologic
myopia (PM), macular hole, macular epiretinal membrane (MEM), macular pucker or
traumatic conditions, cerebrovascular accidents, cranioencephalic traumatism or ischemia
in carotid territory), glaucoma with perimetric involvement or papillary atrophy, or inability
to perform good quality OCT and OCTA evaluation (difficulty in layer segmentation, media
opacification, or lack of fixation or cooperation).

2.2. Study Protocol

All participants underwent a complete ophthalmological evaluation, including BCVA
expressed in logarithm of the minimum resolution angle (logMAR) measured with the
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ETDRS test, IOP measured by Goldmann tonometry and axial length (AL) using an Aladdin
KR-1 W Series optical biometry system (Topcon Corporation, Tokyo, Japan) as the mean of
5 measurements and expressed in millimetres. Clarus imaging was performed (Clarus 700®,
Carl Zeiss Meditec AG, Jena, Germany). In addition to the ophthalmological evaluation,
a complete history was performed in which all aspects related to the patient’s disease
(DM2) were collected, including current medication, time of diagnosis, blood glycosylated
haemoglobin (HbA1c) levels, serum lipid levels, serum glomerular filtration and serum
creatinine levels (the values were obtained within less than 6 months of the examination).

OCT and OCTA were performed using SS-OCT with deep range imaging (DRI)-Triton
SS-OCT (Topcon Corporation, Japan) by the same investigator. To evaluate retinal capillary
plexuses and CC VD, the 3 × 3 mm protocol was performed with IMAGEnet 6 Version
software 1.22.1.14101® 2014 (Topcon Corporation, Japan). DRI Triton images the SCP, the
DCP and the CC and gives its VD values in a grid divided into central (C), superior (S),
inferior (I) temporal (T) and nasal (N) quadrants in % pixels occupied by vessels (Figure 1).
The FAZ area was measured manually using the measurement tool in both the SCP and
DCP. All of the images were analysed by two different readers (IP, ABM) looking for
vascular abnormalities. In case of disagreement, images were evaluated by both readers
who reached an agreement.

Figure 1. Optical coherence tomography angiography (OCTA) in a 3 × 3 mm macular area of the left
eye, measured by deep range imaging (DRI) Triton swept-source (SS)-OCT. (A) Superficial capillary
plexus, (B) deep capillary plexus, (C) choriocapillaris and (D) an example of vascular density (%)
data of the retinal plexuses in 5 areas (abbreviated C: Central, S: Superior, T: Temporal, N: Nasal and
I: Inferior).

2.3. Statistical Analysis

Statistical analysis was performed using the Statistical Package for the Social Sciences
software (SPSS version 20, SPSS Inc., IBM Corporation, Armonk, NY, USA). First, a descrip-
tive and frequency analysis of the sample was carried out according to the demographic
variables and clinical characteristics. Second, the structural changes were determined by
assessing the SCP, DCP and CC, as well as the FAZ values, to compare the results with the
healthy group. The normal distribution of the values was studied with the Kolmogorov–
Smirnov test, and, subsequently, the Mann–Whitney U test was performed for independent
nonparametric samples to assess if there were statistically significant differences between
the groups. For the correlation of the anatomical results and the disease control parameters,
a bivariate analysis was performed using the Spearman correlation test. In DM patients,
OCTA anatomical changes were described as % of the total, considering 0% as the absence
of the anatomical alteration and 100% as the maximum presence of it. For all analyses, a
value of p < 0.05 was considered statistically significant.

3. Results

The mean age of the 54 DM2 patients was 64.06± 11.98 years (42–86) and 60.79 ± 8.62 years
(42–83) for the 73 healthy controls, without a significant age difference (p = 0.082). Groups
were sex-matched, men were 61.11% (n = 33) and 60.30% (n = 44) of the DM and con-
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trol groups, respectively; women were 38.89% (n = 21) and 39.70% (n = 29) of the DM
and control groups, respectively. In the DM2 group, the mean time since diagnosis was
2.50 ± 2.88 years (range 0–11 years), with good glycaemic control (HbA1c = 7.58 ± 1.30%).
Glycaemic, lipid and renal function values are presented in Table 1.

Table 1. Mean and standard deviation (SD) of the diabetic disease and systemic values (lipid levels
and renal function) of the type 2 diabetic mellitus (DM2) patients. Abbreviations: DM2, diabetes
mellitus type 2; HbA1c (%), glycosylated haemoglobin; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; TG, triglycerides; GF, glomerular filtration.

DM2 Group (n = 54) Mean SD

Disease duration (years) 2.50 2.88
HbA1c (%) 7.58 1.30

Total cholesterol total (mg/dL) 148.04 33.18
HDL cholesterol HDL (mg/dL) 47.83 15.21
LDL cholesterol LDL (mg/dL) 71.47 23.10

TG (mg/dL) 122.24 51.71
GF (CKD-EPI) (mL/min/1.73) 73.57 20.52

Creatinine (mg/dL) 1.05 0.50

There were no differences between groups in their AL (p = 0.075), SE (p = 0.110) or IOP
(p = 0.676). BCVA taken with the 100% contrast ETDRS test reached statistical significance
(p = 0.001), with a lower VA in the DM2 group (0.10 ± 0.12 LogMAR vs. 0.04 ± 0.05
LogMAR in the DM2 group vs. in the healthy group, respectively) (Table 2).

Table 2. Mean, standard deviation (SD) and statistical significance (p value) of the best corrected
visual acuity (BCVA) in the LogMAR scale, spherical equivalent (SE) in diopters (D), axial length (AL)
in mm and intraocular pressure (IOP) in mmHg between the control and type 2 diabetes mellitus
(DM2) groups. Differences that reached statistical significance with p < 0.05 are shown in bold.

Control Group (n = 73) DM2 Group (n = 54) p

Mean SD Mean SD
BCVA

(LogMAR) 0.04 0.05 0.10 0.12 0.001

SE (D) 0.04 1.58 0.37 1.70 0.110
AL (mm) 24.00 2.80 23.23 0.84 0.075

IOP (mmHg) 15.30 2.90 14.76 2.49 0.676

3.1. Vascular Density and Microvascular Changes Studied with OCTA

The DM2 group presented a significantly lower VD in the SCP than the control group
in all regions (C, S, T, N and I areas). The values are presented in Figure 2 (p < 0.05).

Regarding the rest of the VD values analysed, no statistically significant differences
were found in the DCP. However, statistically significant differences were found in the
CC (Figure 2) in the S (51.34 ± 3.38% in controls vs. 50.55 ± 5.62% in the DM2 group
with p = 0.026), T (53.39 ± 2.38% in controls vs. 51.31 ± 6.15% in the DM2 group with
p = 0.024), N (52.24 ± 2.63% in controls vs. 50.14 ± 5.81% in the DM2 group with p < 0.009)
and I (53.08 ± 2.89% in controls vs. 50.15 ± 6.41% in the DM2 group with p < 0.001) areas.
The CC C area showed higher values in the control group without reaching statistical
significance (p = 0.053).

The FAZ area of the SCP was significantly higher in the DM2 group than in the control
group (242.37 ± 85.36 µm2 in the control group vs. 333.58 ± 161.03 µm2 in the DM2 group
with p < 0.001). We did not find differences in the FAZ area of the DCP (Table 3).
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Figure 2. Mean and standard deviation (SD) of vascular density (%) of the superficial (SCP) and deep
(DCP) retinal plexuses, the choriocapillaris (CC), measured using DRI Triton SS-OCT in patients with
DM2 and in healthy controls and their comparison. The measurements were divided into 5 quadrants
(abbreviated C, Central; S, Superior; T, Temporal; N, Nasal; I, Inferior). Differences that reached
statistical significance (p < 0.05) are shown in grey.

Table 3. Mean and standard deviation (SD) of the foveal avascular zone (FAZ) (µm2) of the superficial
(SCP) and deep (DCP) retinal plexuses. Differences that reached statistical significance (p < 0.05) are
shown in bold.

FAZ Area (µm2)

Control Group DM2 Group p

Mean SD Mean SD
SCP 242.37 85.36 333.59 161.03 <0.0001
DCP 278.85 103.25 307.18 141.16 0.301

We studied anatomical alterations, including peripheral disruption of the FAZ, linear
vascular dilatations, MA, intraretinal microvascular abnormalities (IRMAs), flow changes
and lack of CC perfusion. Changes were present in both plexuses. FAZ disruption and
IRMAs were more frequently detected in the SCP. Perfusion changes and MA were similar
in both plexuses. The most prevalent anatomical alterations in the DM2 group were
peripheral disruption in the SCP (83.3%), MA in the SCP and in the DCP (79.6% and 79.6%,
respectively) and flow changes in the DCP (81.5%) (Figure 3). Figure 4 shows an example
of the anatomical changes in the DM2 group. The percentages of the presence or absence of
these alterations in the DM2 group are shown in Figure 3.
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Figure 3. Qualitative analysis of the alterations presented in the type 2 diabetes mellitus (DM2) group
in percentage (%). Abbreviations: SCP, superficial capillary plexus; MA, microaneurysms; IRMAs,
intraretinal microvascular abnormalities; DCP, deep capillary plexus; CC, choriocapillaris.

Figure 4. Anatomical changes in the type 2 diabetes mellitus (DM2) group imaged by optical
coherence tomography angiography (OCTA). (A,B) correspond to the superficial capillary plexus
(SCP) and deep capillary plexus (DCP) in a 6 × 6 scan and (C,D) to the SCP and DCP in a 3 × 3 scan
protocol. (A,B) show microaneurysms in both the SCP (A) and DCP (B). (C,D) show foveal avascular
zone (FAZ) disruption, perfusion loss and intraretinal microvascular abnormalities (IRMAs) in both
the SCP (C) and DCP (D). Microaneurysms are shown as blue arrowheads, FAZ disruption as green
arrows, nonperfusion areas as yellow arrows and IRMA as orange arrowhead. Scale bar (in red)
represents 500 µm.
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3.2. Anatomo-Functional Correlation Study

We used the Spearman test to correlate the structural and functional data obtained by
DRI Triton SS-OCT and the qualitative analysis of the alterations present in DM2.

Regarding the DM2 duration, there was a significant negative correlation (p < 0.05) in
the N area of the SCP (−0.278, p = 0.042), in the C area of the DCP (−0.330, p = 0.016) and
in the T area of the CC (−0.308, p = 0.023). A positive correlation was obtained between the
DM2 duration and the FAZ area in the SCP (0.304 with p = 0.025) (Figure 5).

Figure 5. Correlation between type 2 diabetes mellitus (DM2) duration (A), glycosylated haemoglobin
(HbA1c) (%) (B) and age (C) in patients with DM2 in the 5 areas and in the FAZ of the SCP, DCP and
CC. The values that reached statistical significance (p < 0.05) are shown in grey.

Regarding patient age, there was a negative correlation (p < 0.001) with the C area of the CC.
Table 4 shows the correlation between anatomical alterations in DM2 and visual func-

tion, disease duration and metabolic control. We found a significant negative correlation
between high-density lipoprotein (HDL) levels and IRMAs (weak correlation: −0.308,
p = 0.024) and flow changes (moderate correlation: −0.415, p = 0.002) in the SCP.
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Table 4. Correlation coefficient and p-value (in brackets) of the anatomical alterations found in type
2 diabetes mellitus (DM2) with the different studied variables of visual function, disease duration
and metabolic control. The values that reached statistical significance (* p < 0.05 and ** p < 0.01)
are shown in bold. Abbreviations: SCP, superficial capillary plexus; DCP, deep capillary plexus;
CC, choriocapillaris; MA, microaneurysms; IRMAs, intraretinal microvascular abnormalities; DM2,
diabetes mellitus type 2; HbA1c (%), glycosylated haemoglobin; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; TG, triglycerides; GF, glomerular filtration; VA, visual acuity; LogMAR,
logarithm of the minimum resolution angle; SE, spherical equivalent; D, diopters; AL, axial length;
IOP, intraocular pressure.

Anatomical Alterations in NPDR DM2 Patients

Peripheral
Disruption

SCP

Dilatation
SCP

MA
SCP

IRMAs
SCP

Flow
Changes

SCP

Peripheral
Disruption

DCP

Dilatation
DCP

MA
DCP

IRMAs
DCP

Flow
Changes

DCP

Lack of
CC

Perfusion

Age −0.082
(0.558)

−0.027
(0.847)

0.081
(0.565)

−0.162
(0.246)

0.080
(0.571)

−0.043
(0.762)

0.286 *
(0.038)

−0.122
(0.386)

−0.182
(0.193)

0.096
(0.493)

0.251
(0.070)

Duration
DM2

0.094
(0.500)

0.113
(0.417)

0.010
(0.945)

0.130
(0.349)

0.202
(0.143)

−0.092
(0.506)

0.254
(0.064)

−0.021
(0.881)

−0.056
(0.686)

−0.025
(0.858)

−0.075
(0.590)

HbA1C% −0.008
(0.954)

0.111
(0.425)

−0.064
(0.648)

0.138
(0.318)

−0.040
(0.772)

0.042
(0.764)

−0.186
(0.178)

0.066
(0.633)

−0.052
(0.710)

−0.155
(0.264)

−0.052
(0.708)

Cholesterol 0.059
(0.672)

−0.092
(0.510)

−0.084
(0.545)

−0.236
(0.086)

−0.189
(0.171)

0.022
(0.874)

0.020
(0.886)

0.133
(0.338)

0.084
(0.545)

−0.240
(0.080)

−0.121
(0.384)

HDL 0.067
(0.630)

−0.241
(0.080)

−0.155
(0.263)

−0.308 *
(0.024)

−0.415 **
(0.002)

−0.076
(0.583)

−0.176
(0.203)

−0.096
(0.490)

−0.015
(0.916)

−0.078
(0.575)

−0.225
(0.102)

LDL −0.033
(0.810)

−0.020
(0.885)

−0.072
(0.603)

−0.248
(0.071)

−0.262
(0.055)

0.009
(0.951)

−0.044
(0.750)

0.198
(0.152)

0.046
(0.743)

−0.219
(0.112)

−0.106
(0.447)

TG −0.217
(0.115)

0.104
(0.456)

0.254
(0.064)

0.181
(0.190)

0.077
(0.580)

0.108
(0.436)

0.159
(0.252)

0.080
(0.567)

0.108
(0.438)

−0.047
(0.733)

0.008
(0.956)

GF 0.198
(0.152)

0.080
(0.563)

0.117
(0.401)

0.200
(0.148)

0.018
(0.895)

−0.037
(0.790)

−0.061
(0.661)

0.238
(0.083)

0.258
(0.060)

−0.275 *
(0.044)

−0.328 *
(0.015)

Creatine −0.097
(0.484)

−0.007
(0.959)

−0.123
(0.377)

−0.107
(0.440)

0.098
(0.479)

0.103
(0.457)

0.034
(0.805)

−0.227
(0.098)

−0.205
(0.137)

0.271 *
(0.048)

0.305 *
(0.025)

VA
(LogMAR)

−0.051
(0.716)

−0.111
(0.426)

−0.220
(0.110)

−0.076
(0.587)

−0.065
(0.639)

−0.017
(0.903)

0.009
(0.948)

−0.027
(0.849)

−0.039
(0.779)

−0.094
(0.500)

0.165
(0.233)

SE (D) −0.053
(0.704)

0.140
(0.314)

−0.033
(0.815)

−0.051
(0.712)

−0.134
(0.333)

−0.200
(0.147)

−0.142
(0.305)

−0.135
(0.331)

0.030
(0.832)

0.214
(0.121)

−0.003
(0.982)

AL (mm) 0.115
(0.408)

−0.180
(0.194)

0.089
(0.524)

−0.054
(0.700)

0.421 **
(0.002)

0.073
(0.602)

−0.014
(0.918)

0.136
(0.328)

0.199
(0.149)

0.144
(0.300)

0.024
(0.861)

IOP
(mmHg)

−0.003
(0.982)

0.112
(0.421)

0.039
(0.781)

−0.218
(0.113)

−0.149
(0.282)

−0.090
(0.520)

0.092
(0.506)

−0.172
(0.215)

0.015
(0.915)

−0.186
(0.179)

−0.315 *
(0.020)

Table 5 shows the correlation between the anatomical changes at the retinal plexuses,
at the CC, at the VD in the 5 sectors (C, S, T, N and I) and in the FAZ area in the SCP
and DCP.

Table 5. Correlation coefficient and p-value (in brackets) of the anatomical alterations in type 2
diabetes mellitus (DM2) in the SCP, DCP and CC in the 5 sectors and in the FAZ. The values that
reached statistical significance (* p < 0.05 and ** p < 0.01) are shown in bold. Abbreviations: SCP,
superficial capillary plexus; DCP, deep capillary plexus; CC, choriocapillaris; MA, microaneurysms;
IRMAs, intraretinal microvascular abnormalities; C, Central; S, Superior; T, Temporal; N, Nasal; I,
Inferior; FAZ, foveal avascular zone.

Anatomical Alterations in NPDR DM2 Patients

Peripheral
Disruption

SCP

Dilatation
SCP

MA
SCP

IRMAs
SCP

Flow
Changes

SCP

Peripheral
Disruption

DCP

Dilatation
DCP

MA
DCP

IRMAs
DCP

Flow
Changes

DCP

Lack of
CC

Perfusion

SCP

C 0.018
(0.900)

0.033
(0.811)

0.199
(0.149)

−0.113
(0.415)

−0.048
(0.731)

0.212
(0.125)

−0.054
(0.697)

0.081
(0.560)

0.136
(0.328)

0.052
(0.709)

0.101
(0.468)

S 0.172
(0.213)

−0.260
(0.057)

−0.155
(0.263)

−0.318 *
(0.019)

−0.130
(0.350)

−0.148
(0.287)

0.101
(0.465)

−0.223
(0.105)

−0.103
(0.457)

0.000
(1.000)

−0.217
(0.115)

T −0.091
(0.513)

0.002
(0.986)

0.117
(0.401)

−0.135
(0.332)

−0.272 *
(0.046)

−0.076
(0.584)

0.049
(0.727)

−0.155
(0.263)

−0.043
(0.759)

0.064
(0.644)

0.021
(0.878)

N 0.014
(0.918)

−0.112
(0.421)

0.024 ±
0.865

−0.166
(0.231)

−0.212
(0.124)

−0.074
(0.596)

−0.170
(0.219)

−0.060
(0.664)

−0.056
(0.687)

−0.014
(0.921)

0.185
(0.180)

I 0.081
(0.559)

−0.026
(0.851)

0.007 ±
0.958

−0.139
(0.315)

0.018
(0.899)

−0.042
(0.764)

0.123
(0.376)

−0.040
(0.775)

−0.235
(0.088)

0.113
(0.415)

0.084
(0.545)

FAZ 0.002
(0.991)

0.221
(0.108)

−0.040
(0.775)

0.142
(0.306)

0.058
(0.677)

−0.093
(0.501)

0.003
(0.984)

−0.013
(0.924)

−0.009
(0.949)

0.107
(0.441)

0.037
(0.792)
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Table 5. Cont.

Anatomical Alterations in NPDR DM2 Patients

Peripheral
Disruption

SCP

Dilatation
SCP

MA
SCP

IRMAs
SCP

Flow
Changes

SCP

Peripheral
Disruption

DCP

Dilatation
DCP

MA
DCP

IRMAs
DCP

Flow
Changes

DCP

Lack of
CC

Perfusion

DCP

C −0.010
(0.944)

−0.035
(0.806)

0.131
(0.351)

−0.285 *
(0.039)

−0.172
(0.218)

0.008
(0.957)

−0.068
(0.630)

0.079
(0.574)

−0.002
(0.991)

−0.195
(0.161)

0.142
(0.311)

S 0.143
(0.301)

−0.284 *
(0.037)

−0.168
(0.224)

−0.193
(0.162)

−0.200
(0.146)

−0.204
(0.139)

−0.033
(0.813)

−0.108
(0.438)

0.062
(0.656)

−0.167
(0.228)

−0.026
(0.852)

T −0.180
(0.192)

0.243
(0.077)

−0.058
(0.679)

0.035
(0.804)

−0.290 *
(0.034)

−0.155
(0.263)

0.020
(0.886)

−0.031
(0.824)

−0.019
(0.891)

−0.199
(0.150)

0.141
(0.310)

N −0.126
(0.364)

−0.065
(0.638)

0.037
(0.791)

−0.127
(0.358)

−0.348 **
(0.010)

−0.207
(0.134)

−0.016
(0.910)

0.041
(0.767)

−0.090
(0.518)

−0.382 **
(0.004)

0.073
(0.598)

I 0.069
(0.622)

0.078
(0.573)

−0.162
(0.241)

−0.074
(0.596)

−0.103
(0.457)

−0.044
(0.750)

0.049
(0.727)

0.000
(1.000)

−0.208
(0.131)

0.156
(0.260)

0.127
(0.360)

FAZ −0.069
(0.622)

−0.045
(0.746)

−0.205
(0.137)

0.030
(0.831)

0.149
(0.283)

−0.042
(0.764)

−0.069
(0.622)

−0.205
(0.137)

0.046
(0.743)

0.229
(0.095)

0.049
(0.725)

CC

C 0.065
(0.639)

0.102
(0.462)

−0.074
(0.596)

0.018
(0.898)

−0.151
(0.275)

0.197
(0.154)

−0.157
(0.256)

0.058
(0.679)

0.173
(0.212)

0.021
(0.878)

−0.349 **
(0.010)

S 0.118
(0.396)

0.114
(0.411)

−0.090
(0.518)

0.139
(0.315)

0.165
(0.233)

0.140
(0.312)

0.100
(0.472)

−0.010 ±
0.941

−0.068 ±
0.626

0.179 ±
0.195

−0.116
(0.403)

T −0.086
(0.536)

0.170
(0.219)

0.128
(0.355)

−0.046
(0.739)

−0.377 **
(0.005)

0.278 *
(0.042)

−0.252
(0.067)

0.226 ±
0.101

0.077 ±
0.581

−0.145 ±
0.295

−0.177
(0.199)

N −0.018
(0.900)

−0.100
(0.472)

−0.193
(0.162)

−0.244
(0.075)

−0.237
(0.085)

0.108
(0.436)

−0.300 *
(0.027)

0.034 ±
0.808

−0.072 ±
0.603

0.037 ±
0.792

−0.309 *
(0.023)

I 0.171
(0.218)

−0.064
(0.645)

−0.075
(0.589)

−0.087
(0.532)

0.197
(0.154)

0.032
(0.818)

−0.089
(0.524)

0.031 ±
0.824

−0.264 ±
0.054

0.162 ±
0.242

−0.080
(0.568)

Significant negative correlations were observed in the T and N sectors of the DCP
and the presence of flow changes in this plexus (−0.290; p = 0.034 and −0.348; p = 0.010,
respectively). In addition, negative correlations were found between the C and N sectors
of the CC and the presence of a lack of perfusion (−0.349; p = 0.010 and −0.309; p = 0.023,
respectively) (Table 5).

4. Discussion

There are different studies evaluating the use of OCTA to analyse different findings in
DR, with special emphasis on the FAZ size, morphology and capillary perfusion [18–20].
Macular microvascularization has been related to proliferative retinopathy and DME and
is associated with nonperfusion areas and increased leakage [21]. We studied a group of
patients with only moderate DR (level 43 on the ETDRS scale) to evaluate changes in their
vessels. We excluded patients with DME to avoid any potentially confusing effects in the
OCTA metrics [22].

At the beginning of the study, we verified that the groups were similar in terms of
variables that could alter the results, such as sex and age or AL, and with IOP in the
normal range. These values can modify the data obtained by OCT and OCTA, not only
in the choroidal thickness and in the CC VD [23] but also in the macular perfusion with a
progressive VD diminution and an increase in the FAZ area [24–26]. The FAZ area has also
been related to other factors, such as central retinal thickness, sex, SE, AL and choroidal
thickness [27]. OCTA studies provide different findings not only in normal eyes but also in
DM patients. This can be related to different methodological techniques, measurements or
devices [28,29] and the stage of DM disease or its duration. Age has also been described
as a confounding factor in OCTA and DM patients. Ghassemi et al. [28] found a negative
correlation between age and parafoveal VD in the SCP in DM. In our study, we found a
negative correlation between age and CC perfusion, indicating a diminution of CC flow
with age. We had a higher proportion of women in the non-DM group, but we do not
expect this difference to have affected our results.

All patients had diabetic control close to HbA1c 7% and preserved renal function;
impaired renal function could affect retinal thickness and cause oedema.
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Regarding BCVA, in our study, significant differences (p = 0.001) were obtained be-
tween groups, with lower VA in the DM2 group (0.10 ± 0.12 LogMAR vs. 0.04 ± 0.05
LogMAR in the DM2 group vs. the healthy one). Zhu et al. [30] presented similar results
of BCVA (0.10 ± 0.19 LogMAR) in DM2, but they found no differences from the control
group. In another follow-up study, the initial BCVA in DM1 patients was −0.03 ± 0.16
LogMAR, but it had worsened to 0.03 ± 0.20 LogMAR 10 years later [31]. The BCVA
results were better in Orduna et al.’s paper [32] studying a younger DM1 group without
DR (−0.13 ± 0.11 LogMAR, p = 0.910) with the same 100% contrast ETDRS test; the good
BCVA values were probably related to the mean age of the DM1 group (41.52 ± 13.05 years).
BCVA decreases with disease duration, probably due to the retinal neurodegeneration
theory, which has been related to less perfusion and higher metabolic demands of the
inner retina that make it more vulnerable to diabetes-induced metabolic stress [33] and
worse visual function; functional impairments have been especially described for contrast
sensitivity [34], colour perception [1] and dark adaptation [35].

In our study, the OCTA results showed a decrease in VD in all areas of the SCP of
the DM2 group (C, S, T, N and I) and most areas of the CC (S, T, N and I) with significant
differences with respect to the healthy controls (Figure 2), which may be related to the
BCVA decrease observed in these patients. However, these differences were not present in
the DCP. Different studies found a reduction in VD in the diabetic group versus the healthy
group, not only in the SCP but also in the DCP and CC. Forte et al. [36] and Alam et al. [37]
in 2020 found lower VD in the DM2 group with a decrease in VD with DR progression.
Ghassemi et al. also described lower VD in both retinal plexuses in DM patients than in
normal eyes [28]. This reduction progressed with the worsening of DR. Other authors, such
as Nesper et al. [38] or Dimitrova et al. [39], described a higher impairment in the DCP
with the progression of the disease.

However, Ong et al. [40] described the utility of VD evaluation, the FAZ and the
vessel length density at the SCP to distinguish healthy subjects and the different stages
of nonproliferative DR (NPDR). They suggested that SCP changes are more reliable due
to the lower noise and artefacts in OCTA acquisition. They found less variability in the
vessel length skeleton at the DCP in moderate to severe NPDR. Our study was based only
on DM2 patients with a moderate NPDR, without comparisons with other stages and not
pooling with other stages of DR. Other authors, such as Durbin et al. [41], also found that
VD in the SCP had the highest area under the receiver operating characteristic (ROC) curve,
indicating that it is the best method to distinguish between diabetic and nondiabetic eyes.
In their study, they pooled moderate and severe NPDR together compared to early stage
and mild DR pooled together.

DM has manifestations at the choroidal level, with findings not only in anatomical
studies but also in indocyanine green angiography and OCT [42–46]. It is straightforward
to find manifestations in the CC. Understanding choroidal changes can help to predict
disease progression [47]. In our study, we also found significant differences in VD in
parafoveal sectors (S, T, N and I), excluding the central sector. Our findings are similar
to those authors describing a pathological choroid in DM patients related to their renal
function [48]. Zhang et al. [49] described a higher choroidal thickness with lower CC flow
using OCTA.

Regarding the FAZ, we observed a significantly greater area at the SCP level in the
DM2 group; however, no significant differences were found in DCP. Despite not reaching
statistical significance in the DCP, we observed that the FAZ area increased in both plexuses
in the DM2 group compared to the control group. Our results are similar to other authors,
such as De Carlo [50] et al. and Dimitrova et al. [39], who demonstrated an increase in the
FAZ size of the SCP in DM patients without DR associated with a decrease in VD in both
plexuses. Takase et al. [51] and Di et al. [52] found that patients with more severe retinal
damage had a larger FAZ and that the FAZ can be used to predict DR progression and
DME and VA impairment. Otherwise, clinical examinations and glycaemic control still
have the primary role in detecting preclinical changes in patients with diabetes.
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Other authors, such as Lupidi et al. [18], have studied anatomical alterations in DM
patients in different plexuses. They studied DM1 and DM2 patients with nonprolifera-
tive RD and no DME, pooling different stages. Their results were similar to ours. They
described abnormalities in both SCP and DCP. They found a higher number of linear
vascular dilatations and a smaller number of MAs (in our series, MA was described in
both plexuses in 80% of the patients, but 55% and 64% were described in SCP and CP,
respectively). Peripheral disruption and flow changes were almost equal in both studies.
Couturier et al. [53] found a lack of perfusion in the SCP. In the DCP, they found a lack
of perfusion in some eyes and MA, although these were better detected by fluorescein
angiography. Hwang et al. [54] also found a lack of capillary perfusion in the SCP and in
the DCP, in addition to vascular dilatations in the DCP.

Although we were not able to find a VD diminution in the DCP in the DM2 group
(Figure 2), we found a negative correlation, not only in the N area of the SCP and in the
T area of the CC but also in the C area of the DCP with the DM2 duration (Figure 5).
Xie et al. [55] described a lower VD associated with age and higher levels of HbA1c. Our
DM2 patients had a short disease duration (2.50 ± 2.88 years, range 0–11 years), which
could explain the smaller changes in the VD at the DCP or they had an early diagnosis,
before the signs became more severe. These results suggest that VD diminished with
the progression of DM2, its duration and with the aging of the patient, as described by
Lavia et al. [56] and Ciloglu et al. [57]. Most likely, this loss in the C area of the DCP will
be reflected over time by an increase in the FAZ area in the DCP and a potential decrease
in the BCVA. Other studies did not find any correlation between the VD or FAZ area and
HbA1c or the duration of the disease [41].

We also found a significant negative correlation between HDL levels and anatomical
alterations of the SCP (IRMAs and flow changes), suggesting a vascular implication of
dyslipidaemia. Additionally, a significant positive correlation was found between AL and
flow changes in the SCP, with greater flow changes with higher AL values. Tang et al. [58]
described a lower VD associated with a shorter AL as well as a more severe and worse VA.

The use of artificial intelligence (AI) or deep learning would help the evaluation of
OCTA images in different DR levels. Xiang et al. and Nazir et al. have demonstrated the
ability of the technique to distinguish DR severity. In the near future, OCTA will help to
conduct the DR progression assessment using AI [59–61].

5. Conclusions

In conclusion, retinal vascularization is affected in DM2 patients with moderate DR
without DME. There was a diminution in VD and an increase in the FAZ area, especially in
the SCP. DM2 patients with moderate DR show anatomical alterations in both plexuses.
OCTA provides powerful information about retinal vascularization and the FAZ area,
depending on the DR level.
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