
A metabolism-associated gene
signature for prognosis
prediction of hepatocellular
carcinoma

Yilin Tian1,2, Jing Lu2 and Yongxia Qiao1*
1School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China, 2Shanghai
Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China

Hepatocellular carcinoma (HCC), the most frequently occurring type of cancer, is

strongly associated with metabolic disorders. In this study, we aimed to

characterize the metabolic features of HCC and normal tissue adjacent to the

tumor (NAT). By using samples fromTheCancer GenomeAtlas (TCGA) liver cancer

cohort and comparing 85 well-defined metabolic pathways obtained from the

Kyoto Encyclopedia of Genes and Genomes (KEGG), 70 and 7 pathways were

found to be significantly downregulated and upregulated, respectively, in HCC,

revealing that tumor tissue lacks the ability to maintain normal metabolic levels.

Through unsupervised hierarchical clustering of metabolic pathways, we found

that metabolic heterogeneity correlated with prognosis in HCC samples. Thus,

using the least absolute shrinkage and selection operator (LASSO) and filtering

independent prognostic genes by theCoxproportional hazardsmodel, a six-gene-

based metabolic score model was constructed to enable HCC classification. This

model showed that high expression of LDHA and CHAC2 was associated with an

unfavorable prognosis but that high ADPGK, GOT2,MTHFS, and FTCD expression

was associated with a favorable prognosis. Patients with higher metabolic scores

had poor prognoses (p value = 2.19e-11, hazard ratio = 3.767, 95% CI =

2.555–5.555). By associating the score level with clinical features and genomic

alterations, it was found that NAT had the lowest metabolic score and HCC with

tumor stage III/IV the highest. qRT‒PCR results for HCC patients also revealed that

tumor samples had higher score levels than NAT. Regarding genetic alterations,

patients with higher metabolic scores had more TP53 gene mutations than those

with lower metabolic scores (p value = 8.383e-05). Validation of this metabolic

score model was performed using another two independent HCC cohorts from

the Gene Expression Omnibus (GEO) repository and other TCGA datasets and

achieved good performance, suggesting that this model may be used as a reliable

tool for predicting the prognosis of HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is the most common type of

liver cancer and the 4th leading cause of cancer death worldwide

(Yu and Schwabe, 2017; Villanueva, 2019). As a key metabolic

organ in the body, the liver plays a key role in energy metabolism

and detoxification. When tumor cells become malignant and

migrate to the liver, they can destroy the metabolic functional

base of the liver and cause jaundice, pain, and weight loss, which

might ultimately lead to death (Phan et al., 2014; Anwanwan et al.,

2020). Previously reported risk factors for HCC include viral

infection, such as with hepatitis B virus (HBV), nonalcoholic

fatty liver disease, smoking, diabetes, and alcohol-induced

cirrhosis (Morgan et al., 2004; Zoller and Tilg, 2016). Due to

tumor heterogeneity and multiple risk factors, the molecular

mechanisms of HCC onset and progression are still not clearly

understood (Ogunwobi et al., 2019).

Abnormal tumor cell metabolism has been reported to deeply

participate in the pathogenesis of tumor growth and shape the

tumor microenvironment (TME) (Reina-Campos et al., 2017).

As a hallmark of cancer, metabolic alterations can be categorized

into different types (Gong et al., 2020), including amino acid

metabolism, carbohydrate metabolism, energy metabolism,

glycan biosynthesis and metabolism, lipid metabolism, and

cofactor and vitamin metabolism. Previously reported studies

on metabolism have revealed that metabolic pathways and

metabolites play an important role in hepatocarcinogenesis in

liver cancer (Perumpail et al., 2015; Gingold et al., 2018; Alannan

et al., 2020). For example, dysregulation of energy metabolism

can enable tumor cells to produce more adenosine triphosphate

(ATP) to support tumor proliferation and migration

(DeBerardinis and Chandel, 2016; Chen et al., 2020), and

extramitochondrial fatty acid oxidation is relevant to the

regulation of neoplastic cell growth of HCC (Ockner et al.,

1993). Therefore, characterization of the metabolic features of

HCC is important for investigating its hepatocarcinogenesis

mechanism and providing therapeutic targets.

In this study, we aimed to deeply explore the metabolic

features and investigate the tumor heterogeneity of HCC. To

better interpret metabolic pathways, we collected 85 well-

established metabolic gene sets (one pathway with only one

gene not included) from KEGG (Gong et al., 2020) and

summarized them into nine major types. To collect HCC data,

424 HCC and NAT samples with RNA sequencing data were

obtained from The Cancer Genome Atlas (TCGA) (Figure 1).

After the removal of duplicates, 367 primary solid tumor and

50 normal tissue adjacent to the tumor (NAT) samples were used

for further analysis (Figure 1). The relationship between metabolic

pathway scores and prognosis and other clinical characteristics was

evaluated. Next, six genes from among 1,200 metabolic genes were

selected to construct a prognostic-related metabolic score model

using the least absolute shrinkage and selection operator (LASSO),

which was applied for HCC classification.

Materials and methods

Data preprocessing

Bulk RNA-seq and clinical data of HCC used for survival analysis

and prognostic model construction were downloaded from the TCGA

database (https://portal.gdc.cancer.gov/) under accession TCGA-LIHC

FIGURE 1
Overview of the analyzing workflow and establishment of the metabolic model of HCC in this study.
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(liver hepatocellular carcinoma). Only primary solid tumor and normal

tissue adjacent to the tumor (NAT) samples were enrolled for analysis.

Patients without survival information were removed from further

evaluation of the model. Both TCGA datasets and clinical

information were downloaded using TGCAbiolinks (Colaprico et al.,

2016). External independent HCC cohorts were obtained from Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under

accession IDs GSE14520 and GSE76427. The expression data and

clinical information of these two HCC cohorts were downloaded using

GEOquery (Davis and Meltzer, 2007) or obtained from the

supplementary data of published research works (Roessler et al.,

2010; Grinchuk et al., 2018). For RNA sequencing data, the

fragments per kilobase per million mapped fragments (FPKM) value

was used to construct the model and calculate the metabolic score.

Identification of differentially expressed
metabolic genes/pathways in HCC

Metabolic gene sets were obtained from previously published

research works (Gong et al., 2020) and collected from the KEGG

database.Metabolic pathways defined by only one genewere excluded

from further analysis. Thus, only 85 metabolic pathways (including

1,660 genes) were used in the analysis. We then classified these

85metabolic pathways into ninemajor types: amino acidmetabolism,

carbohydrate metabolism, energy metabolism, glycan biosynthesis

and metabolism, lipid metabolism, metabolism of cofactors and

vitamins, nucleotide metabolism, xenobiotics biodegradation and

metabolism, and others. Pathway names, major types, and genes

in the metabolic pathways are listed in Supplementary Table S1. We

used an enrichment score to evaluate the expression level of each

metabolic pathway. The enrichment score of these metabolic

pathways was calculated using single-sample Gene Set Enrichment

Analysis (ssGSAE) in the R packageGSVA (Hanzelmann et al., 2013).

Differential analysis between tumors and NATs was calculated using

the mean value of the enrichment score of each type. p values were

calculated using the Wilcoxon rank-sum test and adjusted using

Benjamini and Hochberg (FDR). The significance level of the

metabolic pathway score was set as FDR < 0.05. Significance of

themetabolic pathways between tumor and normal samples are listed

in Supplementary Table S2. For gene level analysis, differentially

expressed metabolic genes were calculated using R package limma

(Ritchie et al., 2015). The significance level was defined by an adjusted

p value < 0.05 and log2 fold change > 1 (fold change > 2).

Construction of the metabolic score
model using LASSO

For the filtration of 1,660 metabolism-related genes, we first

removed genes with low expression and retained those with detected

expression in all HCC samples. A total of 1,200 genes were used to

construct the model. The LASSO model was used for the next-step

filtration of genes, which was implemented in the R package glmnet

(v4.0.2). To evaluate the variability and reproducibility of the

estimates produced by the LASSO, we repeated the regression

fitting process and calculated the best lambda to reduce the error

rate by 10-fold cross-validation. Then, 23 genes with nonzero

coefficient estimates were retained. To further reduce genes and

identify genes correlating with prognosis, multivariate Cox

proportional hazards regression was performed to estimate the

coefficient in survival analysis; independent prognostic factors

(genes with p values less than 0.05) were kept for the next step of

LASSO. Finally, six genes were selected, and the metabolic score was

determined. Themedian value of themetabolic score was used as the

cutoff to separate HCC data into two groups. Basic information on

HCC patients in TCGA-LIHC patients, including the metabolic

score, is listed in Supplementary Table S3. Patients were grouped

into metabolic score-low and -high groups. The R package forestplot

was used for presentation of the results for TCGA-LIHC, HCC

cohorts obtained from GEO, and other TCGA cancer datasets. The

Kaplan–Meier method was used to generate survival curves for the

score-low and -high groups in each dataset, and the log-rank test was

used to determine the statistical significance of differences. The

hazard ratios for univariate analysis were calculated using the Cox

proportional hazards regression model. A multivariate Cox

regression model was used to determine independent prognostic

factors using the survival package.

RNA isolation and qRT‒PCR analysis

The human hepatoma cell lines BEL-7402 and BEL-7404

were established from clinical liver cancer surgical specimens

(Chen et al., 1980). Total RNA was isolated using TRIzol reagent

(Invitrogen, United States) following the manufacturer’s protocol

and quantified by nanodrop 8,000. In brief, cells were lysed with

TRIzol reagent, and chloroform was then added. After

centrifugation, the aqueous phase was collected and mixed

with isopropanol before centrifugation. RNA was dissolved in

RNase-free water. For analysis of mRNA expression, 1 µg of RNA

was converted into cDNA using the PrimeScript™ RT Reagent

Kit (Invitrogen, United States). Quantitative real-time

polymerase chain reaction (PCR) using ChamQ Universal

SYBR® qPCR Master Mix (Vazyme, China) was performed on

a QuantStudio5 Real-time PCR system (Applied Biosystems).

The quantitative PCR primer sequences of the metabolic genes

and the endogenous control GAPDH are listed in Supplementary

Table S4.

Functional enrichment analysis and
mutation analysis

The clusterProfiler (Yu et al., 2012) R package was used to

perform functional enrichment analysis on differentially
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expressed genes between the metabolic score groups. Gene sets

used in the enrichment analysis were downloaded from the

Molecular Signatures Database (MSigDB, v7.4) of the Broad

Institute (Liberzon et al., 2015). The gene sets were

downloaded from MSigDB, including HALLMARK gene sets

(H) and KEGG gene sets (C2). HALLMARK and Kyoto

Encyclopedia of Genes and Genomes (KEGG) terms were

used for functional enrichment of genes with a strict cutoff of

FDR < 0.05. For mutation analysis, mutations in HCC samples

from TCGA were obtained from the cBio cancer genomics portal

(cBioPortal, https://www.cbioportal.org/) (Cerami et al., 2012).

The mutation profiles of low and high metabolic scores were

visualized using the R package maftools (Mayakonda et al., 2018).

Statistical and survival analysis

TheWilcoxon rank-sum test was used for comparisons of the

two groups. Correlation coefficients were computed by Spearman

and distance correlation analyses. Two-sided Fisher exact tests

were used to analyze contingency tables. To identify significant

genes in differential gene analysis, we applied the

Benjamini–Hochberg (alias FDR) method to convert the p

value to FDR. The p values were two-sided, and less than

0.05 was considered statistically significant. For survival

analysis, Kaplan–Meier and log-rank tests were performed

using the survival (https://CRAN.R-project.org/package=

survival) and survminer (https://CRAN.R-project.org/package=

survminer) packages. For specific genes, patients were divided

into high- or low-expression groups according to the median

expression of the gene, and a p value < 0.05 was considered to

denote significance (Zeng et al., 2019). All heatmaps were

generated by the R package pheatmap (https://github.com/

raivokolde/pheatmap).

Results

Metabolic disorders of HCC

A flow chart was used to illustrate the analysis workflow of

this project (Figure 1). After removing duplicate samples,

367 patients were diagnosed with HCC, and 50 NAT samples

were used for analysis. We first calculated potential risk factors

for HCC using clinical overall survival data, which are shown in

Supplementary Figure S1. For HCC, the American Joint

Committee on Cancer (AJCC) stage of the tumor, which

consisted of the primary tumor (AJCC_T) and regional lymph

nodes (AJCC_N) and distant metastasis (AJCC_M), was the

most important prognostic factor (Supplementary Figure S1).

Then, we calculated the expression levels of metabolic pathways

of HCC and NAT and associated them with overall survival to

identify prognosis-related pathways. To evaluate the metabolic

level of each sample, the enrichment score of each pathway was

calculated and then compared between HCC and NAT using the

Wilcoxon rank-sum test (Figure 2A). In total, 70 (82.4%)

pathways were significantly downregulated, and 7 pathways

(8.24%) were significantly upregulated in HCC, revealing a

lack of ability to maintain normal metabolic levels in tumors

(Figure 2A). Most (18/19, 94.7%) amino acid metabolism

pathways, including tryptophan, histidine, glycine, serine, and

threonine metabolism, were suppressed in HCC, suggesting that

normal catabolism of amino acids was disturbed. Most metabolic

pathways involved in normal liver functions, such as lipid and

carbohydrate metabolisms, were downregulated in HCC.

Regarding upregulated pathways, we noticed that pathways

related to pyrimidine metabolism (required for cell

proliferation) (Siddiqui and Ceppi, 2020), steroid and

cholesterol biosynthesis (promote tumorigenesis) (Huang

et al., 2020), and oxidative phosphorylation were significantly

upregulated in tumors, indicating increased phosphorylation

levels and malignant proliferation in HCC (Figure 2A). After

associating with overall survival data, it was found that two

pathways, pyrimidine metabolism (belonging to nucleotide

metabolism) and fructose and mannose metabolism

(belonging to carbohydrate metabolism), were unfavorable

indicators; 24 pathways, including fatty acid degradation,

histidine metabolism, linoleic acid metabolism,

selenocompound metabolism, glycine, serine, and threonine

metabolism, lysine degradation, and TCA cycle, were

favorable indicators of HCC (Figure 2B and Supplementary

Figure S2). These results suggest that metabolic disorders are

prevalent in tumor tissue and may be used as prognostic

indicators for the overall survival of patients.

Construction of a LASSO-Cox-based
model to predict the prognosis of HCC
patients

To deeply investigate the correlation between metabolic

pathways and the overall survival of HCC, we performed

unsupervised hierarchical clustering using metabolic pathway

scores calculated for the 367 HCC patients. The patients could be

divided into two clusters, one with overexpression of the most

metabolic pathways and another with a lower expression level,

based on the profile (Supplementary Figure S3A). Survival

analysis revealed that patients with a more active metabolic

level might have a favorable prognosis (Supplementary Figure

S3B). Differentially expressed genes between the two clusters

showed differences at the metabolic gene level (Supplementary

Figure S3C). Therefore, for a better interpretation of the

metabolic signature of HCC, we used LASSO to establish a

metabolic score model and presented the relationship between

metabolism and overall survival. Metabolic genes expressed at

lower levels or not were filtered, and 1,200 genes were used for

Frontiers in Molecular Biosciences frontiersin.org04

Tian et al. 10.3389/fmolb.2022.988323

https://www.cbioportal.org/
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=survminer
https://cran.r-project.org/package=survminer
https://github.com/raivokolde/pheatmap
https://github.com/raivokolde/pheatmap
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.988323


FIGURE 2
Comparison of metabolic pathways between HCC and NAT and characterization of prognosis of metabolic pathway levels. (A) Dot plot of the
dysregulated metabolic pathways between HCC and NAT. The X-axis is the difference between the mean enrichment score of HCC and NAT, while
the Y-axis is the log10 transformed FDR. The red dot represents the significant upregulated metabolic pathways in HCC, and the blue dot represents
the significant downregulatedmetabolic pathways in HCC. p values were calculated using theWilcoxon rank-sum test and adjusted using FDR.
(B) Bar plot of significant levels of metabolic pathways with overall survival analysis. The 85 metabolic pathways were ordered by the signed log10 p
value. For favorable indicators (higher expression, favorable prognosis), the bars are colored in blue (p value < 0.05). The unfavorable indicators are
colored in red. p values were calculated log-rank test.
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further analysis. Then, LASSO was used to narrow down the

number of genes by giving a zero to the estimated coefficient of

these genes (Figure 3A and Figure 3B). The model with a

minimum lambda of 0.0501 was selected, and a total of

23 genes were identified. We then used the Cox proportional

hazards model to filter independent prognostic factors. Six genes

(ADPGK, GOT2, MTHFS, FTCD, LDHA, and CHAC2) were

identified as independent prognostic factors using univariate

and multivariate survival analyses (Figure 3C and

Supplementary Figure S4). Finally, we constructed a six-gene-

based metabolic score model, which is shown as follows:

Metabolic score = ADPGK * (-0.3254) + GOT2 * (-0.2473) +

MTHFS * (-0.1798) + FTCD * (-0.0717) + LDHA * 0.2449 +

CHAC2 * 0.3262.

Among the six metabolic genes, ADPGK is an ADP-

dependent glucokinase and catalyzes ADP-dependent

phosphorylation of glucose, which is involved in

gluconeogenesis/glycolysis in cancer progression and is

upregulated in HCC tumor tissues (Ronimus and Morgan,

2004; Jing et al., 2020) (Supplementary Figure S4A). GOT2

(glutamic-oxaloacetic transaminase 2) is a pyridoxal

phosphate-dependent enzyme and plays a key role in amino

acid metabolism (Stegen et al., 2020) and is upregulated in

normal tissues (Supplementary Figure S4A). Regarding

MTHFS (methenyltetrahydrofolate synthetase) and FTCD

(formimidoyltransferase cyclodeaminase), both genes

participate in the metabolism of cofactors and vitamins and

are downregulated in HCC with a higher tumor stage

(Matakidou et al., 2007; Wu et al., 2009; Love et al., 2012;

Kanarek et al., 2018) (Supplementary Figure S4A). Our

analysis of the cohort TCGA-HCC revealed that high

expression of ADPGK, GOT2, MTHFS, and FTCD was

FIGURE 3
Extraction of the prognostic signature and identification of final metabolic-related genes to establish the metabolic model. (A) Coefficient
selection and variable screening of LASSO. The minimummean cross-validated error of λ is selected. The lower X-axis represents the lambda value,
and the upper X-axis scale represents the number of metabolic genes in the LASSO model. (B) Cross-validation in the LASSO model to select the
tuning parameter. The X-axis represents the log (lambda) value, and the Y-axis represents the partial likelihood deviance. (C) Forest plots of
multivariate analysis showing the six genes (ADPGK,GOT2,MTHFS, FTCD, LDHA, andCHAC2) as independent prognostic factors of overall survival of
HCC patients.
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FIGURE 4
Prognosis of the metabolic score model in the HCC cohort. (A) LASSOmodel of the HCC cohort. Each column represents one patient. Patients
are ordered by the metabolic score level. The upper panel shows the clinical feature of HCC patients, including AJCC stage, body mass index (BMI),
height, weight, gender, age, vital status, and metabolic score. The middle panel shows the expression level of the six genes selected by LASSO. The
lower panel shows the score level and the cutoff (median value -5.273) of HCC patients. (B) Kaplan–Meier curve comparing overall survival of
metabolic score-low and -high. Patients are separated into two groups according to the median value (-5.273) of the metabolic score. p value is
calculated using the log-rank test. (C) Forest plots ofmultivariate analysis showing themetabolic score as an independent prognostic factor of overall
survival of HCC patients.
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FIGURE 5
Clinical characteristics and genetic alterations associatedwith themetabolic score in HCC. (A) Boxplot of metabolic score in HCC and NAT. The
X-axis shows the AJCC stages of HCC. p values were calculated using the Wilcoxon rank-sum test. (B) Bar plot of metabolic calculated using the
qRT-PCR. (C) Enrichment analysis using differentially expressed genes between metabolic score-low and -high groups. (D) Oncoplot of the
mutation profiles of metabolic score-low and -high groups. Gene with overall mutation frequency > 5% were selected for visualization.
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associated with a favorable prognosis (Supplementary Figure

S4B). LDHA (lactate dehydrogenase A) and CHAC2 (ChaC

glutathione-specific gamma-glutamylcyclotransferase 2)

participate in amino acid metabolism. Previous studies on

LDHA have reported that elevation of LDHA expression can

promote the invasion and metastasis of tumors (Jin et al., 2017).

CHAC2 may act as a tumor suppressor in gastric and colorectal

cancer (Liu et al., 2017). Univariate survival analysis also showed

that high expression of LDHA and CHAC2 was associated with

an unfavorable prognosis, indicating that they could be

considered biomarkers of HCC (Supplementary Figure S4B).

Using the median value of metabolic score -5.273 as the

cutoff, we calculated the metabolic score and found that the

prognosis of patients with higher scores was poorer (Figure 4A

and Figure 4B). The HR of the metabolic score was 3.767

(p-value = 2.19e-11, 95% CI = 2.555–5.555, Figure 4B);

Supplementary Table S3 shows the metabolic scores for the

367 HCC patients. Multivariate survival analysis with age, sex,

weight, height, prior malignancy, and AJCC stage also revealed

the metabolic score as an independent prognostic indicator

(Figure 4C).

Association with clinical characteristics
and genetic alterations

We then associated the metabolic score with clinical data and

genetic alterations and found the score level to be significantly

lower in NAT (Figure 5A). The metabolic scores were highest for

patients with AJCC stage III/IV (Figure 5A). Through qRT‒PCR,

a higher HCC score was validated using twoHCC tumor cell lines

and one normal control cell (Figure 5B). After calculation of

differentially expressed genes between the metabolic score-low

and -high groups, we found genes significantly upregulated

(FDR<0.05) in the high-score group to be enriched in cell

proliferation pathways, such as the G2/M checkpoint, E2/F

target, cell cycle, and epithelial–mesenchymal transition

(EMT), and oncogenic pathways, such as the TP53 signaling

pathway (Figure 5C). To further investigate the correlation

between the six key metabolic genes and the role in affecting

metabolic/oncogenic pathways in HCC, we performed

protein–protein interaction networks functional enrichment

analysis based on the STRING database (Szklarczyk et al.,

2021). Interestingly, the results showed the direct pathways

that correlated with the six genes, namely, the HIF-1 signaling

pathway, pathways in cancer, metabolic pathways, WNT

signaling pathway, JAK-STAT signaling pathway, and

p53 signaling pathway (Supplementary Figure S5), revealing

that the six genes played an important role in HCC

(Supplementary Figure S5). Functional enrichment analysis

also revealed upregulated genes in the low-score groups to be

metabolism-related pathways, such as propanoate, arachidonic

acid, and fatty acid metabolism, suggesting that this metabolic

score model may be a valuable tool to evaluate metabolic

disorders in HCC (Figure 5C). By comparing mutations

between the two metabolic score groups, it was found that

patients with higher scores harbored more TP53 gene

mutations (p value = 8.383e-05, Pearson’s chi-squared test,

Figure 5D). However, there was no difference in tumor

mutational burden (TMB) between the two groups, indicating

that TP53 gene mutations are a key factor contributing to

metabolic disorders in HCC.

Validation of the metabolic score model in
external independent cohorts

To confirm the reliability of the metabolic score model,

another two independent HCC cohorts were used for

validation (Figure 6A and Figure 6B). For the two HCC

validation cohorts, namely, GSE14520 and GSE76427, only

tumor tissues were used for validation. Using the median

value as the cutoff, similar results, i.e., that high metabolic

score HCC patients harbored unfavorable overall survival,

were validated in both cohorts, revealing the metabolic score

as a reliable tool for prognosis prediction (Figure 6A and

Figure 6B). Other TCGA cohorts were also used to investigate

the application of the metabolic score model (Figure 6C). The

results showed good performance for other kinds of tumors of

digestive or metabolic organs, such as kidney chromophobe

(TCGA-KICH), kidney renal papillary cell carcinoma (TCGA-

KIRP), kidney renal clear cell carcinoma (TCGA-KIRC),

adrenocortical carcinoma (TCGA-ACC), pancreatic

adenocarcinoma (TCGA-PAAD), and uterine corpus

endometrial carcinoma (TCGA-UCEC) (p value < 0.05,

Figure 6D).

Discussion

There are multiple factors that are associated with the overall

survival of HCC patients. Among the clinical characteristics of

HCC patients, the tumor stage (AJCC stage) is the most relevant

to the overall survival of HCC and the most commonly used.

However, the AJCC stage only includes tumor characteristics but

lacks information about the biological characteristics of HCC,

such as molecular, metabolic, and immunologic features

(Chidambaranathan-Reghupaty et al., 2021). Targeting

metabolism has brought us new insights into cancer therapy.

To provide enough energy for malignant proliferation and

metastasis, some metabolic pathways are aberrantly altered in

tumor tissues (DeBerardinis and Chandel, 2016). The tumor

microenvironment is a mixture of tumor cells, stromal cells, and

immune cells (Zheng et al., 2017). Abnormal cancer metabolism,

such as glycolysis, plays important roles in drug resistance and

the stemness of cancer cells (Park et al., 2020). Previous studies
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FIGURE 6
Validation of the metabolic score model in external independent HCC cohorts and TCGA projects. (A) Kaplan–Meier curve comparing overall
survival of metabolic score-low and -high groups in the GSE14520 cohort. Patients are separated into two groups according to the median value of
metabolic score in this cohort. p value is calculated using the log-rank test. (B) Kaplan–Meier curve comparing overall survival of metabolic score-
low and -high groups in the GSE76427 cohort. (C) The metabolic score level across the 36 TCGA projects. Abbreviations of cancer types in
TCGA projects: TCGA-LIHC: liver hepatocellular carcinoma, TCGA-PRAD: prostate adenocarcinoma, TCGA-KICH: kidney chromophobe, TCGA-

(Continued )
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have reported high consistency between gene expression and

protein levels and other kinds of omics (Gao et al., 2019),

indicating that RNA sequencing data can be used to estimate

the altered metabolic pathways in cancer research. Therefore,

discovering abnormal metabolic pathways and targeting

metabolism using RNA sequencing has brought new insights

into cancer therapy (Luengo et al., 2017).

In this study, focusing on aberrantly expressed metabolic

genes, we built a metabolic score model to predict the prognosis

of HCC. Six metabolic-related genes were calculated as

independent prognostic factors. Among the six metabolic

genes, LDHA catalyzes the conversion of pyruvate and

participates in the TCA cycle and has been reported to

associate with tumor growth, maintenance, and invasion of

HCC (Sheng et al., 2012; Miao et al., 2013). In the

protein–protein interaction analysis, LDHA also acts as a hub

gene that directly correlates withHIF1A, EP300, TP53, PKM, and

other genes that are enrolled in metabolic pathways

(Supplementary Figure S5). FTCD plays a role as a tumor

suppressor gene in HCC and is critical for the catabolism of

histidine (Chen et al., 2022). The expression level of histidine

metabolism is also associated with the overall survival of HCC in

our analysis. Several important pathways, including the TCA

cycle and histidine metabolism, were key regulators in HCC

progression. More evidence and experimental validation would

be utilized to discover the mechanisms of these pathways in

future work. In our project, using LASSO and Cox proportional

hazards model, a six-gene-based metabolic model was

constructed and relevant to the metabolic level and prognosis

of HCC. Patients with higher scores had poorer prognoses. For

patients with higher scores, pathways involved the cell cycle and

tumorigenesis signaling pathways, such as TP53 signaling,

indicating an exclusive correlation between TP53 and

metabolism. Therefore, for patients with higher metabolic

scores, TP53 signaling may be a valuable target for future

analysis.

However, there are some limitations in our study. First, the

potential mechanisms of metabolic pathways in overall survival

need to be further explored. Next, further validation of the

metabolic score model is needed, especially in clinical

applications. Third, the key hepatocarcinogenesis mechanism

for the metabolic score and potential therapeutic targets for

patients with higher scores should be deeply investigated. In

general, the six-gene-based metabolic score model, as an

independent prognostic indicator of the overall survival of

HCC patients, may help predict the procession of survival and

provide insights for a metabolic analysis of cancer research.

Conclusion

By comparing the expression profile of metabolic genes and

pathways between tumor tissues and NAT, we found that HCC

patients harbored lower expression levels of most metabolic

pathways. The expression levels of several metabolic pathways

were also correlated with the prognosis of HCC. To associate

metabolic level with prognosis, a metabolic score model was built

to predict the prognosis of overall survival of HCC based on the

expression profile of dysregulated metabolic genes. Through

validation using external independent cohorts, we believe that

this six-gene-based metabolic score will be beneficial for

prognosis prediction and the identification of potential

therapeutic drug targets of HCC in the future.
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