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Advances in Understanding the Development of the Mathematical Brain

Mathematical thinking has served as a central test case for theories
of cognition and cognitive development for decades (e.g., Gelman and
Gallistel, 1986; Piaget, 1952; Wynn, 1990) and philosophical debates
on human nature and the mind for much longer. The theoretical im-
plications of understanding the development of mathematics, however,
should not overshadow its translational importance. Many children
struggle to learn mathematical concepts (see Butterworth et al., 2011).
This is problematic, as mathematics is ubiquitous and extremely im-
portant to success in modern life. By some estimates, for example,
mathematics achievement is a better predictor of life success than lit-
eracy (e.g., Duncan et al., 2007). Thus, a better understanding of
mathematical thinking has the potential to inform our understanding of
human symbolic learning as well as suggest ways in which we can
optimize it through education.

The last few decades of research on mathematical thinking have
built a rich foundation on which to investigate the relationships be-
tween mathematical thinking, development, and the brain. From past
research, we see that a reliable network of brain regions appears to be
critical for mathematical thought in educated human adults (e.g.,
Arsalidou & Taylor, 2011; Dehaene et al., 2003; Menon, 2015). Some
portions of the network, including intraparietal regions, appear to be
specialized for numerical and mathematical thinking (e.g., Amalric &
Dehaene, 2016), abnormalities or damage to which impair mathematics
(Price et al., 2007, Menon, 2016). Co-activation of other nodes of the
network suggests the conditions under which mathematics interfaces
with more general symbolic, language abilities, and executive abilities
(e.g., Menon, 2015; Vanbinst & De Smedt, 2016). From behavioral re-
search, we also see that early mathematics learning follows a reliable
trajectory (e.g., Libertus & Brannon, 2010; Wynn, 1990) and early in-
dividual differences predict later achievement (Duncan et al., 2007;
LeFevre et al., 2009; Starr et al., 2013). This trajectory coincides with
tremendous gains in linguistic and general executive abilities, un-
doubtedly contributing to the capacity to learn more complex mathe-
matics (see Blair & Razza, 2007; Chu & Geary, 2015; Fuhs & McNeil,
2013; LeFevre et al, 2010). Formal education and informal experience
(e.g., such as parental input) have a critical impact on mathematics
proficiency and fluency over development (e.g., Berkowitz et al., 2015;
LeFevre et al., 2009). Finally, behavior of human infants and children is
guided by basic, non-verbal numerical and mathematical intuitions,
evidence that some aspects of mathematical thinking might be present
before education or instruction (e.g., Feigenson et al., 2004, Gilmore
et al., 2007). Together, this work has led to a number of prominent and
competing contemporary theories of mathematics development (Carey,
2009; Danker & Anderson, 2007; Siegler, 2016; Spelke, 2003;
McClelland et al., 2016).

This foundation, as well as technological advances in applying brain
measures to developmental populations, provides the opportunity to
gain new insights. This special issue highlights some impressive ex-
amples of how developmental cognitive neuroscience is currently being
applied to further our understanding of the development of the math-
ematical brain. We see a few prominent themes are emerging from this
latest work.

First, there is starting to be enough accumulated evidence to move
beyond single studies and allow meta-science of the literature. Several
papers in this special issue provide novel insights into the current lit-
erature on the development of the mathematical brain through meta-
analytic approaches. Arsalidou, Pawilw-Levac, Sadeghi, and
Pascual-Leone present a meta-analysis of the regions of the brain as-
sociated with calculation in children, providing evidence for both the
commonly known frontal and parietal regions near the cortical surface,
as well as lesser recognized regions like the insula, claustrum, and
cingulate deeper within the brain. They argue based on their meta
analysis that more attention should be given to these deeper regions,
which may be implicated in the motivational aspects of mathematics.

Pollack and Ashby used meta-analytic techniques to investigate
the overlap between retrieval-based arithmetic and phonological pro-
cessing in adults and children. They find that children engage wide-
spread frontal regions and the left fusiform gyrus for both types of
processing, whereas activity in adults is more restricted to left later-
alized inferior frontal regions as well as inferior parietal regions. Theses
results suggest substantial overlap in the regions of the brain involved
in phonological and arithmetic fact processing, with a broader en-
gagement of domain general and symbolic processing resources in
children to a more focused processing of symbols and their linguistic
referents in adults.

Peters and De Smedt provide a comprehensive narrative review of
literature to date on the anatomical and function brain correlates of
arithmetic, as well as expert commentary on the way forward. They
highlight consistent findings in the literature of interconnected frontal,
parietal, temporal regions that engage for children during arithmetic, as
well as various changes in structure, function, and connectivity over as
arithmetic develops. They note that these changes broadly correspond
to changes in strategy (from calculation to fact retrieval) and compe-
tence over development, but that the actual causes of these changes and
their relationship to disability are not yet understood. They note that
age as a developmental variable needs to be used more carefully, ad-
ditionally taking into account the particular tasks, assessments, strate-
gies, and instructional environments of the children studied. Based on
their review, they also admonish those in the field to take advantage of
emerging technologies to further study the entire arithmetic network
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and its’ interconnections rather than particular nodes, to better un-
derstand these issues.

Second, current work is moving beyond the role of particular brain
regions and attempting to better understand the mathematical brain as
a network and dependencies between brain regions in this network.
Two papers in this special issue examine the relationship between
functional connectivity and mathematics. Price, Yeo, Wilkey, and
Cutting examine the relationship between resting state functional
connectivity of subareas of the intraparietal sulcus (IPS) in 1st grade
children and arithmetic performance a year later. They find higher
interconnectivity between sub-regions of the IPS during rest is related
to better arithmetic in children. In contrast, they found higher func-
tional connectivity between parietal and frontal and parietal and tem-
poral regions at rest to be negatively associated with arithmetic de-
velopment. These relationships were robust and appear to be specific to
arithmetic, as they held, even after controlling for a variety of other
general cognitive and achievement factors. As the authors conclude,
there are a number of possible interpretations of these findings and
more work is needed to determine which interpretation is correct.
However, given the relative ease of collecting resting-state connectivity
data compared to active task brain imaging data with young children,
this paper provides a promising methodological approach for future
work.

Michels, O’Gorman, and Kucian used an experimental training
paradigm to compare functional connectivity of IPS between older
children with developmental dyscalculia and typical developing peers
before and after a number line training intervention. As has been seen
before, they found more connectivity, or hyper-connectivity, in those
with developmental dyscalculia. Remarkably, however, both groups
were responsive to the 5-week intervention, with group hyper-con-
nectivity disappearing at post-test. These results suggest differences in
functional connectivity may be important to explaining dysfunction,
but plasticity in functional connectivity may allow for remediation with
proper experience.

Third, researchers are seeking out deeper causal explanations by
testing the necessity and role of experience in formation and develop-
ment of the brain systems for mathematics through varied and in-
novative research designs and populations. Two papers in the special
issue focus on the role of early life experience in mathematical devel-
opment. Glenn, Demir-Lira, Gibson, Congdon, and Levine study the
effects of early brain injury on preschool numerical development. They
show that children with early brain injury are slightly delayed relative
to neurotypical peers in both learning of early number concepts and
preschool mathematics achievement. Longitudinal data also suggest
that children with early brain injury are slower to move through
common developmental stages of numerical development. Despite
these findings, however, the authors provide evidence that the delays
are relatively minor and that numerical experience through parental
number talk equally influenced children with and without brain injury.
Together, the findings of Glenn and colleagues suggest that mathe-
matical development is fairly resilient to early injury and, with proper
experience, may be able to somewhat remediated.

Amalric, Denghien, and Dehaene investigate the role of visual
experience in the formation of the brain networks supporting high-level
mathematics concepts. They show the engagement of a similar network
common to mathematics in sighted mathematicians and a small group
of mathematicians who have been blind from childhood. Furthermore,
the engaged network is also similar to that widely found when non-
mathematicians perform more basic mathematics, supporting the idea
that visual experience is not necessary for the formation of mathe-
matics-specific networks in the brain.

Two papers in this special issue report findings from experimental
research across different age groups. Mathieu, Epinat-Duclos, Leone,
Fayol, Thevenot, and Prado investigate the emergence of spatial
meaning for arithmetic operators and its neural correlates. They find
that around 12-13 years of age, children start to a relationship between

spatially relevant activity in the hippocampus and the perception of the
plus sign (+). Furthermore, this activity increases with age and is re-
lated to the degree to which operator priming, or presentation of the
plus sign prior to a mathematical problem, facilitated addition. They
speculate that these finding may reflect the building of associations
between the spatial system and the operation of addition in late
childhood.

Park studied the emergence of the direct perception of numerosity
in children using visual evoked potentials. He shows that numerosity-
specific activity arising from right occipital sites emerges steadily after
3 years of age. In contrast, direct perceptual sensitivity to other non-
numerical magnitudes is not present (and/or does not increase) in
childhood. These findings contrast with other work with younger po-
pulations showing behavioral and neural sensitivity to numerosity and
other non-numerical parameters, albeit with less strict and systemic
controls and contrasts. Park suggests that these new findings may
suggest either earlier numerical competencies may not be as specific to
number as previous thought or simply computed by other mechanisms
(e.g., parietal regions) with direct numerical perception developing
only later. Further work is needed, especially at younger ages to re-
concile these findings with the rest of the literature.

Together, the articles of this special issue provide a selection of
exciting new work expanding the boundaries of our knowledge of the
development of the mathematical brain.
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