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Abstract: Providing adequate amounts of all essential macro- and micronutrients to preterm infants
during the period of extraordinarily rapid growth from 24 to 34 weeks’ postmenstrual age to achieve
growth as in utero is challenging yet important, since early growth restriction and suboptimal
neonatal nutrition have been identified as risk factors for adverse long-term development. Along
with now well-established early parenteral nutrition, this review emphasizes enteral nutrition, which
should be started early and rapidly increased. To minimize the side effects of parenteral nutrition
and improve outcomes, early full enteral nutrition based on expressed mothers’ own milk is an
important goal. Although neonatal nutrition has improved in recent decades, existing knowledge
about, for example, the optimal composition and duration of parenteral nutrition, practical aspects of
the transition to full enteral nutrition or the need for breast milk fortification is limited and intensively
discussed. Therefore, further prospective studies on various aspects of preterm infant feeding are
needed, especially with regard to the effects on long-term outcomes. This narrative review will
summarize currently available and still missing evidence regarding optimal preterm infant nutrition,
with emphasis on enteral nutrition and early postnatal growth, and deduce a practical approach.

Keywords: preterm infant; nutrition; enteral feeding advancements; growth

1. Background

Feeding preterm infants is challenging because their nutritional needs are higher
than those of term infants. This is due to their 4-fold higher physiological growth rate
during this developmental period—the last trimester of fetal development—which occurs
in the neonatal intensive care unit (NICU) rather than in utero. This phase is characterized
by extraordinarily rapid, exponential growth from 24 to 34 weeks’ postmenstrual age
(PMA), and the acquirement of notable amounts of lean body mass, fat and reserves of
micronutrients. Remarkably, between 24 and 40 weeks PMA, adipose tissue increases
80 fold, water 4 fold and lean body mass solid matter 11 fold [1].

Achieving growth rates of all body compartments and organs that are similar to
those in utero should be the primary goal of preterm infant nutrition [2]. Despite more
intensive feeding strategies for preterm infants in recent years, growth failure remains a
common problem in very preterm infants during their postnatal hospitalization [3,4] and is
associated with impaired neurocognitive outcomes [5–8]. Furthermore, premature infants
are at an increased risk of cardiovascular disease and insulin resistance in adulthood [9–11].
The underlying link between preterm birth and later metabolic alterations is still poorly
understood, and early-life growth restriction, as well as excessive catch-up growth after
initial growth failure, have been reported [8,12]. Conceivably, the inadequate postnatal
growth of preterm infants may have deleterious “programming” effects on metabolic
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health similar to those of intrauterine growth restriction in term infants [13,14], occurring
during the same period of development.

Postnatal growth of preterm infants in the NICU is the result of a complex interaction
of various factors, such as neonatal morbidity and inflammation preventing anabolism,
increased respiratory work causing increased energy requirements and, of course, nutrition
and the immaturity of the gastrointestinal tract [15]. Therefore, providing adequate macro-
and micronutrients to preterm infants and achieving growth similar to that in utero is
challenging [2].

In the last decades, an increasing number of studies has been carried out regarding
the nutrition of premature infants [16–20], but knowledge remains limited, e.g., concerning
the optimal macro- and micronutrient intake through parenteral nutrition (both in the first
week after birth and thereafter), the best way to achieve full enteral feeding, or indications
for and the optimal composition of a breast milk fortifier.

Furthermore, long-term outcome data in infants following various nutritional inter-
ventions are often lacking. This review summarizes the perspective of a level 3 NICU with
a focus on very early enteral nutrition and its repercussions on other aspects of neonatal
nutrition (Tables 1 and 2). Therefore, we searched PubMed and the Cochrane library for
each of the topics addressed above to provide a narrative review of current evidence, open
questions, as well as controversial aspects.

Table 1. Summary of recommendations for postnatal parenteral nutrition in preterm infants according to the ESPGHAN
guideline 2018.

ESPGHAN Recommendations for Parenteral Nutrition

Amino acids [21] - Start: Day 1 with at least 1.5 g/kg/d, day 2 and onwards 2.5 g/kg/d and 3.5 g/kg/d, accompanied by
non-protein intakes >65 kcal/kg/d

Lipids [22]

- Start: (a) immediately or no later than 2 days after birth (b) at discontinuation of enteral feeding at the
time of onset of PN

- Intake: parenteral lipid intake should not exceed 4 g/kg/day
- Essential fatty acids: providing a minimum linoleic acid intake of 0.25 g/kg/day
- Administration: continuously over 24 h
- Pure soybean oil: May provide a less balanced nutrition than composite intravenous lipid emulsions.

PN lasting longer than a few days, pure SO ILEs should no longer be used
- continuous over 24 h

Carbohydrates [23]

- Parenteral glucose supply in mg/kg per min (g/kg per day):

Start: day 1: 4–8 (5.8–11.5), day 2 onwards: target 8–10 (11.5–14.4), min 4 (5.8); max 12 (17.3)
- Glucose blood glucose levels: Avoid Hyperglycemia (>8 mmol/L/145 mg/dL) or Hypoglycemia

(≤2.5 mmol/L/45 mg/dL)

Calcium,
phosphorus and
magnesium [24]

Intake in mmol
(mg)/kg/d Calcium Phosphorus Magnesium

First days 0.8–2.0
(32–80)

1.0–2.0
(31–62)

0.1–0.2
(2.5–5.0)

Growing
premature

1.6–3.5
(100–140)

1.6–3.5
(77–108)

0.2–0.3
(5.0–7.5)

Vitamins [25]

- Infants receiving PN should receive parenteral vitamins
- Administration of water- and fat-soluble vitamins in fat emulsion to increase vitamin stability
- Recommendations for doses of individual vitamins are provided in the guideline [25], but optimal

doses and infusion conditions for vitamins in infants are not known

Trace minerals [26]

- Following trace minerals shoud be provided in preterm infants with PN:
- Zinc: 400–500 µg/kg/day
- Copper: 40 µg/kg/day
- Iodine: 1–10 µg/kg daily
- Selenium: 7 µg/kg/day
- Manganese: in long term PN max. 1 µg /kg/day
- Molybdenum: in long term PN max. 1 µg /kg/day
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Table 1. Cont.

ESPGHAN Recommendations for Parenteral Nutrition

Iron [26]

- Prefer enteral rather than parenteral administration
- NO administration in short term PN (<3 weeks)
- Monitoring of iron status
- If necessary: 200–250 µg/kg/day
- CAVE: no intravenous iron preparation is approved for pediatric use in Europe

Table 2. Practice Points.

Parenteral Nutrition
- Bridge the period until full enteral feeding is established [21–23,27]
- Start immediately after birth with glucose, amino acids and fat [21–23]
- Use standardized parenteral nutrition solutions for most preterm patients [28]

Transition from parenteral
to enteral nutrition

- Start enteral nutrition on day 1 [21]
- Accelerate enteral feeding volume in daily increments of 25–30 mL/kg [29]
- Ignore gastric residuals as long as abdominal findings are normal [17,30]

Enteral Nutrition

- Promote and support lactation [31]
- Bridge the period until sufficient mother’s own milk production with DHM [2,20,31–33]
- Fortify breastmilk to improve postnatal growth [2,34], consider adapted or individualized

fortification to meet nutritional needs [35]
- Consider short-term pasteurization in ELBW/VLBW to prevent pCMV infection [36,37]

2. Parenteral Nutrition

During the first postnatal days, complementary to enteral feeding, parenteral nutrition
is an integral part of preterm infant care, bridging the period until full enteral feeding is
established. Although neonatal parenteral nutrition has been established since the late
1960s [38], and has improved considerably since, evidence on the optimal composition
of macro- and micronutrients is limited, yet intensively discussed. Several studies and
systematic reviews have shown improved short-term growth and a shortened time to
regain birth weight using neonatal parenteral nutrition. However, according to randomized
controlled trials, its long-term benefit for metabolism and neurological development is still
unclear [39–42]. Nevertheless, data on associations between higher nutrient intake and
improved growth suggest that parenteral nutrition in the first postnatal weeks is likely to
improve cognitive outcomes [5,42,43].

Therefore, initiating parenteral nutrition immediately after delivery is recommended
for preterm infants (Table 1) [27]. Since 2018, the guidelines of the European Society for
Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) recommend an amino
acid supply of at least 1.5 g/kg/d for the first postnatal day, increasing to 2.5–3.5 g/kg/d
from postnatal day 2 onwards [21]. To provide a rich source of energy at low volume,
intravenous lipid emulsions are an indispensable component of neonatal parenteral nu-
trition. These can be started shortly after birth but should not exceed 4 g/kg/d [22]. In a
systematic review including 29 studies with >2000 infants, no benefit of new lipid emul-
sions including fish oil, compared to conventional soybean oil-based lipid emulsions, was
found for the prevention of cholestasis, growth, mortality, retinopathy of prematurity and
bronchopulmonary dysplasia (BPD) [41]. However, according to the current ESPGHAN
recommendation, the latter emulsions should not be used for more than a few days in
term and preterm neonates, as pure soybean oil may provide a less balanced nutrition than
compound fat emulsions (e.g., soybean/olive with or without fish oil) [22].

A parenteral glucose supply should start at 4–8 mg/kg/min, and avoid overfeeding
or excessive glucose load by regular blood glucose measurements [23]. The maximum
endogenous glucose production, as well as the glucose oxidation rate, which both are
approximately 7–8 mg/kg/min (10–11.5 g/kg/day) in preterm infants, should not be
exceeded, at least not initially. In addition, though effects on growth have mostly been
studied for macronutrient intakes, an adequate micronutrient intake is also necessary for
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tissue, particularly parenchyma accretion [24,25]. In line with this, early and enhanced post-
natal parenteral nutrition is associated with increased electrolyte requirements, particularly
concerning phosphate and potassium, to meet the increased anabolism of parenchymal
tissues [24,44].

Standardized parenteral nutrition solutions and computerized prescriptions are rec-
ommended to improve patient safety [28]. Therefore, the authors practice nutrition with
standardized in-house “parenteral starter solutions” starting in the first postnatal hour and
containing 3.5 g/kg amino acids and 4.2 mg/kg/min glucose, as well as small amounts of
calcium, phosphate, and sodium. With an additional standardized fat emulsion including
fat- and water-soluble vitamins, a fat intake of 2.5 g/kg/d is achieved from the first day of
life onwards.

3. Transition from Intravenous to Enteral Sources

Prolonged parenteral nutrition is associated with cholestasis, thrombosis, infectious
and metabolic risks [29], partly due to an inadequate composition of existing products.
Hence, meeting nutritional needs through full enteral nutrition is a general goal. Re-
markably, the intestine of an extremely premature infant can already digest, tolerate and
metabolize human milk. In utero, amniotic fluid with its bioactive peptides not only plays
an important role in fetal gastrointestinal development [45], but animal data show that up
to 14% of intrauterine nutrient requirements are supplied and absorbed prenatally through
the intestine [46,47].

Nevertheless, evidence-based recommendations for the transition from intravenous to
enteral nutrient supply are lacking, and the optimal rate of enteral feeding advancements
in preterm infants is unclear [16,29,48,49]. Frequently, there are concerns that rapid enteral
feeding advancements may cause necrotizing enterocolitis (NEC). In a systematic review
of 9 studies including 1106 preterm infants, however, no increased risk of NEC was found
with early enteral feeding starting within 3 days after birth compared to a more delayed
onset [50]. Current evidence suggests that accelerating enteral feeding volume in daily
increments of 30 mL/kg does not increase the risk of NEC, death, or neurodevelopmental
disability at 24 months in preterm infants [16,29,48,51]. Instead, growth rates similar to
intrauterine trajectories can be achieved by rapid increases in enteral feeding volume and by
achieving full enteral nutrition within 5–7 days of birth even in extremely low gestational
age neonates [48,49]. However, even if weight gain along intra-uterine trajectories is
achieved, very preterm infants still show insufficient lean body mass growth and an
increased fraction of body fat at term-equivalent age [52,53]. This can be interpreted as a
lack of essential nutrients required to achieve parenchymal and muscle mass growth as in
utero [54].

Particularly during the transition from intravenous to enteral nutrition, “increased”
gastric residues are detected during routine evaluation. The belief that increased gastric
residuals may be predictive of NEC frequently results in withholding or delaying enteral
feeding advancements [30]. Physiologically, however, 2–4 mL/kg of gastric residual fluid
is regularly aspirated just prior to any scheduled feeding [55]. Similarly, gastric residual
volume varies depending on patient position and feeding tube size and position, further
limiting the clinical usefulness of this practice [56]. A recent systematic review showed
insufficient evidence to support routine surveillance of gastric residuals with the intention
to prevent NEC [30]. In a subsequent randomized controlled trial involving 143 preterm
infants below 1250 g birth weight, no benefit was found for this practice [17]. Obviously, this
small study was under-powered to assess the effect of such a practice on NEC rates, but the
group that had no gastric residues determined showed an advanced enteral feeding pattern
and higher feeding volumes by week 5 [17]. Furthermore, discarding gastric residuals (e.g.,
those showing a dark green color) results in a loss of bile acids and phosphatidylcholine
from bile and digestive enzymes from the pancreas and enterocytes, all playing important
roles in intestinal homeostasis, regulation and digestion [57]. Thus, based on current
evidence, restricting monitoring of gastric residues to infants with symptoms of severe
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gastrointestinal dysfunction, such as emesis, abdominal tenderness, absent bowel sounds or
bloody stools likely improves enteral nutrient supply. However, the safety of this approach
remains to be proven.

4. Enteral Nutrition

Unquestionably, mothers’ own milk is the preferred source of nutrition for preterm
infants because of its numerous short- and longer-term health benefits, such as protection
against NEC, late-onset sepsis, and bronchopulmonary dysplasia (BPD), as well as im-
proved neurodevelopment [32,58]. Additionally, early oral administration of colostrum pro-
vides immunological components, probably stimulating the immune system and protecting
from inadequate bacterial colonization by lactoferrin, sIgA and other compounds [59,60].
Moreover, expressed breast milk contains high numbers of myeloid-derived suppressor
cells, which may prevent excessive inflammatory reactions and enhance tolerance to food
antigens [61,62].

However, mothers of preterm infants face a variety of barriers against breastfeeding.
Expressing breast milk approximately eight times/day during the first two weeks after
birth is the only proven way to increase the likelihood of achieving an adequate milk
supply of more than 500 mL per day, necessary for subsequent exclusive or predominant
breastfeeding. To achieve this, mothers must be encouraged to start manual and/or
mechanical breast milk expression shortly after birth [63,64]. In addition to the emotional
stress and concerns about the health of their baby [65], expressing breast milk 2–3 hourly,
as recommended, is time consuming and needs to be included in a tight daily routine with
kangarooing and, if present, caring for older siblings [66]. Appropriate prenatal counselling
and postnatal support for a variety of systems (e.g., double electric, bedside and free home
breast pumps for milk expression) by clinical staff in the NICU, peer support, skin-to-skin
care, staff education and a lactation consultant should therefore be common practice [67].

When mothers’ own milk is available in insufficient quantity or is contraindicated
(e.g., acquired immunodeficiency syndrome, chemotherapy), donor human milk (DHM)
is the adequate substitute for preterm infant feeding, as recommended by all relevant
societies [2,20,31–33]. In 2019, a systematic review of 12 studies, including 1879 infants
<2500 g birth weight, showed that formula feeding, compared to predominantly non-
supplemented DHM, resulted in improved weight gain, linear length and head growth,
indicating an inadequately low nutrient supply through non-supplemented DHM [33].
However, formula feeding also resulted in a higher risk of NEC (typical risk ratio (RR) 1.87,
95% CI 1.23 to 2.85) [33] and was associated with a lower quantity of breast- compared to
formula feeding at discharge [20]. DHM is not available in all NICUs and is considerably
more expensive than formula (e.g., $15/100 mL from a US not-for-profit Human Milk Bank
compared to $3/100 mL for preterm formula) [68]. By contrast, from a societal perspective,
the total cost of providing DHM to preterm infants is equal to formula feeding, due to
a reduced NEC rate [69]. In essence, it is important to reiterate that fresh mothers’ own
milk is the first choice for feeding preterm infants, and that great efforts should be made to
promote lactation, bridging the time to sufficient breast milk supply with (supplemented)
DHM [31].

5. Fortification

Human breast milk is optimally designed for term newborns and infants, who double
their weight within 4–6 months after birth. However, in line with the physiological
intrauterine growth rate during the 3rd trimester, very preterm infants double their weight
within 4–6 weeks. Thus, an increased supply of macro- and micronutrients is necessary for
adequate growth. Requirements for energy, protein, (essential) fatty acids, minerals such as
calcium and phosphate, as well as micronutrients like iron and vitamin D, to name a few,
are higher than in healthy newborns. For additional constitutive components, like choline,
increased requirements compared to current recommendations are debated as well [54].
All these nutrients are principally present in multi-nutrient human milk fortifiers (HMF),
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although their quantities are still controversial [54,70]. Hereby, intakes recommended
by ESPGHAN in 2010 (energy: 110–135 kcal/kg/d, protein: 4.0–4.5 g/kg/d (<1 kg) and
3.5–4.0 g/kg/d (1–1.8 kg), carbohydrate: 11.6–13.2 g/kg/d, fat: 4.8–6.6 g/kg/d) should
be achieved [2]. However, several recent studies indicate a ceiling effect for the beneficial
effect of protein intake on growth at approximately 4.5 g/kg/d [18,71].

Although breastmilk fortification is practiced in most NICUs [34], evidence for its
impact on long-term outcomes is remarkably sparse [72]. In a systematic review, multi-
nutrient fortification of human milk vs. non-fortified human milk showed increased
in-hospital growth rates for weight, head circumference and length without increasing
the risk of NEC [72]. However, the limited follow-up data for post-discharge growth and
neurodevelopment in later childhood show no benefit from fortification [72]. A recent
meta-analysis showed that early fortification starting at 20–40 mL/kg/d of enteral feeds
vs. late fortification (starting at 100 mL/kg/d) had little or no effect on short-term growth
outcomes [73].

However, as breast milk has no uniform nutrient content and marked inter- and
intra-individual variability exists [74], there are strategies for individualizing fortifica-
tion to match the nutritional needs of preterm infants [34]. Individual fortification is
performed by measuring the infant’s blood urea nitrogen (‘adjustable’ fortification) or the
macronutrient content of breast milk using a milk analyzer (‘targeted’ fortification). In a
recent review including 7 RCTs with a total of 521 participants, increased growth rates
for weight, length and head circumference were found with moderate to low evidence
following individualized compared to standard non-individualized fortification [35]. In
2021, a double-blind, randomized controlled trial was conducted in 103 preterm infants
<30 weeks comparing standard versus targeted fortification with modular proteins, lipids,
and carbohydrates [52]. The targeted fortification group had higher macronutrient intakes
and higher average growth velocity across the first 21 days of intervention (21.2 ± 2.5 vs.
19.3± 2.4 g/kg/d). Not surprisingly, infants born to mothers with a low breast milk protein
content showed the greatest benefit from targeted fortification regarding their weight at
36 weeks, length, head circumference, fat and fat-free mass [52]. Likewise, donor milk often
contains low levels of protein, suggesting targeted fortification to improve growth [75,76].
However, data on the clinical benefit of individual fortification by adjusting breast milk
macronutrients beyond short-term growth are sparse and inconclusive. A secondary analy-
sis of a randomized controlled trial indicated that ‘adapted’ protein supplementation, by
calculating breast milk protein content based on the duration of lactation, may be an easy
and inexpensive alternative to ‘targeted’ protein supplementation for achieving protein
supply on target in >95% of analyzed breast milk samples [77].

In recent years, discussions have addressed the question of whether multi-nutrient
fortifiers (HMF) derived from human rather than bovine milk may further reduce the
risk of NEC. However, the potential benefits of HMF derived from human milk have
been insufficiently investigated, especially in comparison with feeding regimens without
supplementary formula feeding, the latter already known to increase NEC rates. In 127
preterm infants <1250 g, an RCT using human vs. bovine milk-derived HMF in infants
fed human milk failed to improve feeding tolerance [78], but was underpowered to assess
effects on mortality and morbidity such as NEC. Moreover, concerns exist against the
commercialization of human milk, as the milk used to produce the fortifier is no longer
available as donor milk for very preterm infants. Other disadvantages are high cost,
unequal access to these products in different countries, and the fact that the large volume
of such liquid human milk-based HMF reduces the volume of expressed breast milk
administered to the infants by up to 1/3. Therefore, the use of human milk-based HMF is
currently not recommended by most committees and experts on pediatric nutrition [34,79].

6. Breast Milk–Acquired Cytomegalovirus Infection

Cytomegalovirus (CMV) reactivates in the lactating breast of up to 96% of CMV-
seropositive mothers, i.e., in approximately 50–80% of all mothers of preterm infants [19,80].
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It can cause severe sepsis-like symptoms with highly variable organ manifestations [80,81].
Postnatal transmission occurs in approximately 40% of infants <32 weeks’ gestation, with
higher transmission rates the lower gestational age is [19,80]. In most cases, at least one
of the following clinical signs is found: apnea and bradycardia, hepatosplenomegaly,
hepatitis, pneumonitis, intestinal distention and altered laboratory parameters (includ-
ing lymphocytopenia, neutropenia, thrombocytopenia, and elevated liver enzymes) [19].
Although most of these symptoms are self-limiting, CMV-related deaths have also been
reported [81]. In addition, an increased risk of developing BPD has been described in
cohorts of 385 extremely [82] and 2132 very low birth weight (VLBW) infants [83], as
well as in a recent study involving >100 000 VLBW infants [84]. NEC also seems to be
associated with postnatal CMV infection (pCMV). In numerous case reports and case series,
pCMV could be identified in gut specimens [85,86]. A recent study enrolling 596 VLBW
infants found an almost 3-times higher risk of NEC in CMV-positive than in CMV-negative
infants [87]. An actual multicenter study comprising 304 VLBW infants with postnatal
CMV observed significant associations with hearing and growth impairment, as well as
a prolonged hospitalization (by 12 days), but not with NEC [88]. Principally, all organ
systems, including the brain, can be involved in pCMV disease, as shown by autopsy
findings [89].

Some controversy exists whether early pCMV has negative consequences for neurocog-
nitive development [81,90,91]. In a recent cohort study involving 356 infants <32 weeks’
gestation [91], no negative impact on neurodevelopment until age six years was found
in a subgroup of 49 CMV-positive infants (14%). In a case-control study of 42 former
VLBW infants, pCMV positive infants had significantly lower test results at age six years
in the simultaneous processing scale of the Kaufman Assessment Battery for Children. In
a further follow-up study on 11–16 year old adolescents born at <32 wk GA (19 with, 23
without early pCMV infection), there was evidence of adverse effects of pCMV infection on
cognitive function [92]. This was supported by their functional magnetic resonance imag-
ing (MRI) results (n = 15) showing different activations in two brain regions for language
performance and differences in grey matter volume compared to children without pCMV
infection (n = 19) [93]. Intellectual deficits resulting from pCMV might be more obvious
in older children with more complex reasoning. These human data are supported by a
neonatal guinea pig model, where postnatally infected pups showed significant cognitive
deficits and brain anomalies compared to controls [94].

Notwithstanding the increasing knowledge about short- and long-term consequences
of pCMV infection, there is currently no consensus about preventive measures, but further
efforts seem justified. The Red Book Committee of the American Academy of Pediatrics
recommends serologic screening of mothers of infants born at <32 weeks and to consider
short-term breast milk pasteurization in those tested CMV-seropositive [36,37]. Others
recommend the pasteurization of breast milk from CMV-positive women in infants born
at <28 0/7 wk GA or with a birth weight <1000 g starting on day four until reaching 32
0/7 weeks post-menstrual age [95]. Further prospective studies are urgently needed.

For effectively eliminating CMV from breast milk, heat inactivation is required,
whereas freeze thawing is not sufficient. Holder pasteurization (63 ◦C for 30 min) is
safe, but it reduces most of the nutritionally and immunologically relevant components in
human milk, such as immune cells, antibodies, enzymes, growth factors and hormones [96].
The authors’ institution therefore practices short-term heat inactivation (heating to 62 ◦C
for 5 s) in their patients born at <32 weeks, as this sufficiently prevents CMV transmission
while preserving most benefits of breast milk [81,97].

7. Post-Discharge Nutrition

Achieving percentile-parallel growth using mothers’ own milk is the goal of post-
discharge nutrition [2]. Breastfeeding of preterm infants, starting with skin-to-skin contact
and non-nutritive sucking, should enable predominant breastfeeding at the time of dis-
charge. However, if weaning from the nasogastric tube is impossible, hospital discharge
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with tube feeding at home and adequate follow-up is the only feasible perspective [98]. In
Europe, this applies to approximately 40% of infants <32 weeks GA [99]. A recent meta-
analysis of 1251 preterm infants demonstrated that post-discharge formula feeding with
74 kcal/mL does not improve weight or head circumference growth compared to standard
term infant formula (≈67 kcal/100 mL) [100]. Limited evidence suggests that feeding
preterm infant formula (80 kcal/100 mL, usually in-house available only) compared to
standard term formula increases growth rates up to 18 months after birth (mean differences:
500 g weight, 10 mm length, 5 mm head circumference). No convincing evidence exists to
support discharging preterm infants with nutrient-fortified mothers’ milk [101]. Therefore,
the ESPGHAN guideline recommends individualized post-discharge nutrition adapted
to postnatal growth; i.e., for preterm infants with adequate weight gain until discharge,
fortified mothers’ milk or a special discharge formula is not required after discharge [2],
whereas infants who have grown less well initially should receive fortified breast milk
or a special post-discharge formula until at least three months corrected age [2]. This is
because of the common observation that former very preterm infants discharged home
shortly after discontinuation of naso-gastric tube top-up feeding experience a period of
inadequate weight gain [102], which is of unknown clinical importance but at least a major
burden for their parents.

8. Research Perspectives

Based on the concept that postnatal growth and body composition of preterm infants
should ideally mimic intra-uterine growth, and hence that postnatal nutrition should be
oriented at placental supply rather than breast milk composition (which is tailored to term
infants), we postulate that micronutrients that are actively transported to the fetus against a
concentration gradient must be of importance. As an example, fetal plasma concentrations
of choline, an essential nutrient for all age groups, are 3–4 times those of the parturient
throughout gestation, and very rapidly decrease by 50% or more after preterm birth [54,70].
It is also remarkable that the placenta enriches the fetus with docosahexaenoic acid (DHA)
and arachidonic acid (ARA), whereas linoleic acid (LA) is actively held back in the maternal
circulation. Based on current feeding regimens for preterm infants, the resulting fatty acid
profile of fetal lipoprotein phospholipids (high ARA, low LA, increasing DHA towards
term birth) is transformed to adult values (high LA, low ARA, low DHA) within one
week. Consequently, the preterm infant’s lipidome at term-corrected age is dramatically
different from that of term born infants in all compartments yet investigated, indicating
ARA and DHA deficiency and LA-overnutrition [103]. Addressing these and other nutrient
deficiencies and imbalances may help further to improve lean body mass growth and
long-term outcomes.

9. Conclusions

Preterm infants should be provided with all the macro- and micronutrients required to
achieve growth as in utero. To minimize side effects of parenteral nutrition, enteral feeding
should be started in the first days after birth, preferably based on supplemented mother’s
own milk or DHM. Further prospective studies are needed for many aspects of preterm
infant feeding.
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ARA Arachidonic acid
BPD Bronchopulmonary dysplasia
CMV Cytomegalovirus
DHA Docosahexaenoic acid
DHM Donor human milk
ELBW Extremely low birth weight (<1000 g)
GA Gestational Age
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LA Linoleic acid
NEC Necrotizing enterocolitis
NICU Neonatal intensive care unit
pCMV Postnatal cytomegalovirus infection
PMA Postmenstrual age
VLBW Very low birth weight (<1500 g)
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