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Pre-mRNA splicing is an essential step
in gene expression that removes

intron sequences efficiently and accu-
rately to produce a mature mRNA for
translation. It is the large and dynamic
RNA-protein complex called the spliceo-
some that catalyzes intron removal. To
carry out splicing the spliceosome not
only needs to assemble correctly with the
pre-mRNA but the spliceosome requires
extensive remodelling of its RNA and
protein components to execute the 2
steps of intron removal. Spliceosome
remodelling is achieved through the
action of ATPases that target both RNA
and proteins to produce spliceosome con-
formations competent for each step of
spliceosome activation, catalysis and dis-
assembly. An increasing amount of
research has pointed to the spliceosome
associated NineTeen Complex (NTC) of
proteins as targets for the action of a
number of the spliceosomal ATPases
during spliceosome remodelling. In this
point-of-view article we present the latest
findings on the changes in the NTC that
occur following ATPase action that are
required for spliceosome activation, catal-
ysis and disassembly. We proposed that
the NTC is one of the main targets of
ATPase action during spliceosome
remodelling required for pre-mRNA
splicing.

Introduction

Splicing of pre-mRNA (pre-mRNA) is
a complex mechanism where introns are
removed, and exons are joined together to
form a mature mRNA competent for
translation. Pre-mRNA splicing is tightly
regulated and its failure is linked to

various tumors, pathologies of the endo-
crine system and neurodegenerative disor-
ders.1 This intrinsic process of splicing is
mediated by a multimegadalton ribonu-
cleoprotein complex called the spliceo-
some. The spliceosome consists of 5 small
nuclear RNAs (snRNAs), U1, U2, U4,
U5 and U6, which are associated with
proteins forming ribonucleoprotein par-
ticles (snRNPs).2,3 The snRNPs assemble
with the pre-mRNA and are then remod-
elled into a number of specific complexes
required for the 2 steps of splicing
(Fig. 1). The process of splicing begins
when the U1 and U2 snRNAs of the U1
and U2 snRNPs recognize, by base-pair-
ing, the 5’ splice site and the branch site
of the pre-mRNA, respectively, to form
the A complex. Then a preformed tri-
snRNP, containing U4/U6 and U5
snRNPs, joins complex A to form com-
plex B. At the same time a protein com-
plex associated with Prp19, named the
NineTeen Complex (NTC), also joins the
spliceosome.4-6 Next, the spliceosome
goes through dramatic rearrangements to
form the Bact then B* complexes which
involves dissociation of the U1 and U4
snRNPs as well as the removal and addi-
tion of certain proteins.7 The B* complex
is now the catalytically activated spliceo-
some and is competent to carry out the
first step of splicing, which is attack of the
50 splice site phosphate by the 20 hydroxyl
of the branch site adenosine. Following
the first step of splicing the B* complex is
then rearranged to form the C complex
through the removal of proteins and the
addition of proteins that promote the sec-
ond step of splicing.8 The C complex car-
ries out the second step of splicing which
is attack of the 30 splice site phosphate by
the 30 hydroxyl of the 50 exon to remove
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Figure 1. NTC protein remodelling by ATPases during the spliceosome assembly, activation and disassembly process. The pathway of complexes formed
on the pre-mRNA during spliceosome assembly, activation and disassembly are indicated with arrows and the names of each complex are given below
the complex. The ATPases are shown in red under the arrow for the step that each ATPase promotes. The NTC core complex (dark orange) and NTC-asso-
ciated proteins (light orange) are shown below each complex that they associate with. Arrows from the NTC complex are used to indicate the proteins
that leave following ATPase action. Question marks are used to indicate that experimental evidence for Yju2 removal from the NTC and Brr2 action dur-
ing spliceosome disassembly is not in agreement.
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the intron and join the 2 exons. The
resulting splicing complex is called the
post-splicing complex and this complex
must be disassembled to release the
mRNA, leaving the intron associated with
the snRNPs as the intron-lariat spliceo-
some (ILS). Finally, the ILS is disas-
sembled allowing recycling of the snRNPs
for subsequent rounds of splicing. The
rearrangements and conformational
changes required for spliceosome assem-
bly, activation and disassembly are cata-
lyzed by the spliceosomal ATPases.9 In
this “Point of View” we will describe an
increasing amount of experimental evi-
dence that identifies the NTC, and NTC-
associated proteins, as targets for a number
of the spliceosomal ATPases required for
remodelling the spliceosome during pre-
mRNA splicing. We will concentrate on
the yeast Saccharomyces cerevisiae system
where there is the most evidence to date
for this idea.

There are 8 ATPases involved in splic-
ing (Table 1) and they share 8 conserved
motifs divided into 2 domains, RecA1
and RecA2.9 The spliceosomal ATPases
are used to modulate RNA-RNA, RNA-
protein and protein-protein interactions
during the splicing cycle.10 The ATPases
promote correct conformations of the spli-
ceosome for progression through the 2
steps of intron removal with accuracy and
fidelity. It is the second role of some of
the ATPases, that of proofreading certain
steps of splicing, which provides the fidel-
ity in the splicing process.11-15 Spliceo-
some conformations are monitored by the
ATPases and can be rejected if a certain
complex is not formed correctly or in a
timely manner. The order of action of the

ATPases during splicing is Sub2, Prp5,
Prp28, Brr2, Prp2, Prp16, Prp22, Prp43
and Brr2 (Fig. 1).14 Of these ATPases, the
action of Prp2, Prp16, Prp22, Prp43 and
Brr2 appear to be related to changes in the
interactions of the NTC and NTC-associ-
ated proteins with the spliceosome. The
modulation of the NTC, therefore, is
essential for the progression of the spliceo-
some through the splicing cycle.

The NTC and NTC-associated pro-
teins are found within the B, Bact, B*, C,
post-splicing complex and ILS
(Fig. 1).8,16,17 The core NTC complex
nucleated by Prp19, is found in all these
complexes, it is composed of 8 proteins,
but an additional 18 NTC-associated pro-
teins interact with, or co-purify with, these
core proteins and can be found in one or
more of the splicing complexes.5 At the
core of the NTC, Prp19 forms tetramers
via its central coiled-coil domain which
are bound by Cef1.18 Prp19 also contains
WD domains with 2 molecules of Cwc2
interacting with these WD domains in the
Prp19 tetramer.19 The NTC is linked to
the spliceosome active site through Cwc2
which interacts directly with both the U6
snRNA and the pre-mRNA.20,21

Recently, the S. pombe homolog of Cef1,
called Cdc5, has been shown to bind dou-
ble stranded RNA in vitro suggesting that
Cef1/Cdc5 may also link the NTC to the
active site RNAs of the spliceosome.22

The NTC, and NTC-associated proteins,
are involved in a number of the spliceo-
some rearrangements and conformational
changes during the splicing cycle. Associa-
tions and interactions of certain NTC
proteins change following the action of
certain ATPases. We now present the

latest findings on the changes in the NTC
that occur following ATPase action that
are required for spliceosome activation,
catalysis and disassembly.

Prp2 Remodelling of the
Spliceosome for the First Step

of Splicing Includes NTC
Protein Remodelling

During the transition of the spliceo-
some B complex to the B* complex, which
is now competent for the first step of splic-
ing, it is the ATPase Prp2 that makes the
final rearrangement of the spliceosome.23

The remodelling by Prp2 involves a num-
ber of NTC proteins. Prp2 action releases
the SF3a/b complex associated with the
U2 snRNP.24,25 The removal of the SF3a/
b complex creates high affinity binding
sites for the NTC proteins Cwc25 and
Yju2. Both Cwc25 and Yju2 are required
to enable the catalytically-activated spli-
ceosome to carry out the first step of splic-
ing.25,26 The action of Prp2 requires the
NTC-associated proteins Spp2 and
Cwc22.27-29 Prp2 remodelling also
involves dissociation of the NTC proteins
Cwc24 and Cwc27.7,25 Therefore, it is
clear that the action of Prp2 not only
requires NTC proteins but Prp2 action
results in the association and dissociation
of NTC proteins with the spliceosome
required for the transition through the
first step of splicing.

Prp16 Acts Through the NTC to
Rearrange the Spliceosome for
the Second Step of Splicing

Prp16 is an ATPase that proofreads the
first step of splicing and promotes rear-
rangement of the spliceosome during the
second step of splicing.11,12,30-32 During
splicing a series of RNA-RNA interactions
occur, and one crucial interaction is
between the U2 and U6 snRNAs which
base-pair to form helix I.33 The U2/U6
helix I is formed following the release of
the U1 and U4 snRNPs, with helix I
required for the first step of splicing then
the second step and exon joining.30 It has
been suggested that sequences encompass-
ing helix I (U6 AGC triad) may form

Table 1. Yeast Spliceosomal ATPases

ATPase Family Function

Sub2/UAP56 DEAD-box Association of U2 snRNA with pre-mRNA
Prp5 DEAD-box Proofreads U2-branchsite interaction
Prp28 DEAD-box Release of U1 by disrupting the base-pairing

between U1 and 50splice site.
Prp2 DEAH-box Release of SF3a/SF3b
Prp16 DEAH-box Release of Yju2 and Cwc25

U2/U6 helix I remodelling
Prp22 DEAH-box Release of mature mRNA
Prp43 DEAH-box Disassembly of the ILS
Brr2 Ski2-like Disrupt U4/U6 base-pairing

Disrupt U2/U6 base-pairing
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tertiary interactions with the U6 ACA-
GAGA box and the U6 internal stem loop
(ISL) to bind a metal ion, enabling the
spliceosome to have an active site resem-
bling that found in group II introns.34-36

Evidence over time has pointed to a role
for Prp16 in modulating a conformational
change in the spliceosome involving the
U2/U6 helix I.30,31,37,38 The U2/U6 helix
I is destabilised between the 2 steps of
splicing by Prp16 before helix I is
reformed for the second step.30 As Prp16
interacts only transiently with the spliceo-
some, its influence on U2/U6 helix I must
be applied through other spliceosome pro-
teins. The first clue to how Prp16 could
exert its action was found when deletion
of the NTC protein Isy1 was shown to
suppress the cold sensitive prp16–302
allele.38 This was the first link between
Prp16 action and the NTC complex.
Recently, we have found that another
NTC protein, Cwc2, stabilizes U2/U6
helix I and appears to antagonize Prp16
action.39 The interactions of Cwc2 with
the U6 snRNA and the pre-mRNA are
influenced by Prp16 mutation.39 The
prp16–302 allele stabilizes Cwc2 interac-
tions with the U6 snRNA and destabilizes
Cwc2 interactions with the pre-mRNA
indicating that Cwc2 is one target for
Prp16 action during splicing.39 Addition-
ally, we have found that Cwc2 and Isy1
functionally cooperate during splicing.39

All together, these data point to the NTC
proteins Isy1 and Cwc2, either directly or
indirectly, as targets for Prp16 action in
helix I remodelling during splicing.

In addition to modulating RNA-RNA
and RNA-protein interactions between
the 2 steps of splicing, there is evidence
from both immunoprecipitation experi-
ments and a purified yeast splicing system
that Prp16 can also modulate the interac-
tions of NTC proteins with the spliceo-
some prior to the second step of
splicing.8,32 The binding of NTC proteins
Cwc25 and Yju2 to the spliceosome, cata-
lyzed by Prp2, is required to promote the
first step of splicing.25,26 Following the
first step of splicing Cwc25, and possibly
Yju2, are removed to most likely allow
new factors to bind to the spliceosome
and promote the second step of splicing.
It is the action of Prp16 that removes
Cwc25, and potentially Yju2, after the

first step of splicing. Using immunopre-
cipitation it was first shown that the action
of Prp16 resulted in the release of Cwc25
and Yju2 from the spliceosome.32 How-
ever, recent work utilizing a purified yeast
splicing system combined with mass spec-
trometry and dual-color fluorescence
cross-correlation spectroscopy has found
that Prp16 action causes a structural
change in the spliceosome that reduces the
binding affinity of Cwc25 allowing subse-
quent dissociation of Cwc25, but Prp16
action was not observed with this system
to dissociate Yju2.8 Despite the conflicting
data on Yju2 dissociation from the spli-
ceosome, it is clear that the action of
Prp16 influences the affinity of NTC pro-
teins for the spliceosome to allow the sec-
ond step of splicing.

Prp22 Dissociates the NTC
Proteins Cwc21 and Cwc22

During Spliceosome Disassembly
Along with the RES Complex

Following the second step of splicing
the post-splicing complex must be disas-
sembled to release the mRNA and recycle
the snRNPs. The first step of the disas-
sembly process is carried out through the
action of the ATPase Prp22.40,41 During
splicing, the U5 snRNA interacts with the
5’ exon and 3’ exon sequences to align the
2 exons for joining during the second step
of splicing.42-47 After the second step of
splicing, the interactions of the U5
snRNA with the 2 exon sequences are dis-
rupted by the ATPase activity of Prp22
promoting release of the mature
mRNA.48 Recent use of the purified yeast
splicing system combined with mass spec-
trometry to follow the spliceosome disas-
sembly process has revealed how the
protein composition of the post-splicing
complex changes following Prp22 action.
It was found that the NTC-associated pro-
teins Cwc21 and Cwc22 are significantly
reduced in the ILS produced by Prp22
action.17 In addition, the RES (REtention
and Splicing) complex proteins were also
found to be significantly less abundant, or
absent, from the ILS following Prp22
action.17 The RES complex associates
with the B complex along with the NTC
and is required for enhancing the splicing

of certain pre-mRNAs and retention of
unspliced pre-mRNAs.49-51 Significantly,
the RES complex protein Bud13/Cwc26
is an NTC protein found to associate with
Cef1.52 Therefore, it appears that the
action of Prp22 targets proteins of the
NTC to induce spliceosome disassembly.

Prp43 Disassembles the ILS to
Allow Recycling of the snRNPs
and the NTC for Further Rounds

of Splicing

The second phase of spliceosome disas-
sembly involves the removal of the
snRNPs from the intron lariat RNA, but
also dissociation of the snRNPs from each
other, allowing the snRNPs to be recycled
for subsequent rounds of splicing. The
ATPase Prp43 is recruited for this disas-
sembly step of the spliceosome. Prp43
associates with Ntr1 and Ntr2 (NTC-
related proteins) and forms the NTR com-
plex.53,54 It is Ntr1 that activates the
ATPase activity of Prp43 to trigger release
of the snRNPs from the intron lariat.55

The use of the purified yeast splicing sys-
tem combined with mass spectrometry
has also revealed how the protein compo-
sition of the snRNPs changes following
Prp43 action to release the intron lariat
and the snRNPs from each other. It has
been found that the action of Prp43
completely dissociates the NTC protein
Ntc20 from the snRNPs and intron-lar-
iat.17 The other NTC proteins in the ILS
appear to remain associated with the U2
and U5 snRNPs as well as the intron-lar-
iat, but it is not clear how the NTC pro-
teins are then further recycled from the
released snRNPs and intron-lariat follow-
ing Prp43 action.17 Nevertheless, it is
apparent that the action of Prp43 influen-
ces NTC proteins during disassembly of
the ILS.

Brr2 is Linked to the ATPases that
Remodel the NTC During Splicing

The ATPase Brr2 is an essential U5
snRNP protein involved in remodeling
RNA-RNA interactions during spliceoso-
mal activation and disassembly.56 Brr2
disrupts the base-pairing of the U4/U6
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snRNAs to promote the release of U4, but
once the catalytic steps of splicing are
completed, Brr2 again disrupts the base-
pairing of U2/U6 marking the start of the
spliceosome disassembly process.57-59

Brr2 activity is regulated by the GTPase
Snu114.60 Brr2 contains 2 helicase cas-
settes, with the N-terminal cassette able to
hydrolyse ATP whereas the C-terminal
cassette has evolved into a protein binding
module.56 While it does not appear that
Brr2 ATPase action directly influences the
NTC, Brr2 is known to interact with a
number of ATPases that do remodel the
NTC during splicing. Brr2 has been
shown to interact with Prp2 by the 2-
hybrid assay but also directly by pull-
down assays.61,62 It has been proposed
that Prp2 is recruited to the spliceosome
by its interaction with Brr2.61 Brr2 has
also been shown to interact with Prp16
which may be the way in which Prp16
associates with the spliceosome.62 Prp43
interacts with Ntr1 and Ntr2, with Prp43
being recruited to the spliceosome
through Ntr2 interaction with Brr2.63

Ntr2 binding to Brr2 may be prevented
by Prp16 and Slu7 binding to Brr2 pro-
viding a mechanism by which Prp43
action is regulated.64 Overall, Brr2
appears to be a binding platform for a
number of the ATPases that modulate the
NTC during splicing, indirectly linking
Brr2 to NTC dynamics during splicing.

Conclusions and Future
Directions

It is clear that the action of the
ATPases Prp2, Prp16, Prp22 and Prp43
are related to the modulation of the NTC
and NTC-associated proteins with the
spliceosome during the splicing cycle.
These changes in the NTC brought about
by ATPase action are essential for provid-
ing the spliceosome conformations
required for the first and second steps of
splicing. Additionally, ATPase action is
also required to modulate NTC interac-
tions during spliceosome disassembly.
Once the NTC is assimilated into the spli-
ceosome it may not operate as a discrete
complex as it appears only certain NTC
proteins are modulated by ATPase action.
Alternatively, it may be that the whole

NTC is modulated by ATPase action but
evidence is now only available for a few of
the NTC proteins. In many cases it is not
known whether the ATPases act directly
or indirectly on the NTC proteins. In
future, it will be important to determine
the interaction network within the spliceo-
some by which the actions of the ATPases
are transmitted to the NTC. There is no
evidence to date for the action of the
ATPases Sub2, Prp5 and Prp28 influenc-
ing the NTC as they act before the associ-
ation of the NTC with the spliceosome.
In humans a number of other DExD box
ATPases like DDX5 (p68) and DDX17
(p72) are associated with the spliceo-
some.65 It is conceivable that the action of
other ATPases may induce conformations
during spliceosome assembly that allows
incorporation of the NTC and NTC-asso-
ciated proteins with the spliceosome. Nev-
ertheless, the NTC appears to be a major
target for ATPase remodelling of the spli-
ceosome and the NTC is therefore inti-
mately associated with the
essential remodelling steps required for
pre-mRNA splicing.
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