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Abstract 

To discover multifunctional agents for the treatment of Alzheimer’s disease (AD), a new series of 1,2,3-triazole-
chromenone derivatives were designed and synthesized based on the multi target-directed ligands approach. The 
in vitro biological activities included acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition as 
well as anti-Aβ aggregation, neuroprotective effects, and metal-chelating properties. The results indicated a highly 
selective BuChE inhibitory activity with an  IC50 value of 21.71 μM for compound 10h as the most potent compound. 
Besides, compound 10h could inhibit self-induced Aβ1–42 aggregation and AChE-induced Aβ aggregation with 32.6% 
and 29.4% inhibition values, respectively. The Lineweaver–Burk plot and molecular modeling study showed that com-
pound 10h targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of BuChE. It should be noted 
that compound 10h was able to chelate biometals. Thus, the designed scaffold could be considered as multifunc-
tional agents in AD drug discovery developments. 
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Introduction
Dementia is one of the noteworthy problems in the pub-
lic health management as over 80% of dementia cases are 
suffering from Alzheimer’s disease (AD). Currently, avail-
able therapies provide temporary symptomatic relief but 
do not target the distractive neuropathology. Therefore, 
a new treatment to delay or halt disease progression has 
remained as an urgent medical need.

The pathophysiological processes in AD have still 
remained unclear to this day. However, alongside its 
complexity, several neurodegenerative processes could 

be identified which include (I) aggregation of insoluble 
amyloid beta (Aβ) plaques mostly trigger from sequen-
tial cleavage of amyloid precursor protein (APP) by the 
aspartyl protease β-site APP cleaving enzyme-1 (BACE1) 
and γ-secretase, (II) neurofibrillary tangles (NFTs) form 
through hyperphosphorylation of tau proteins, (III) bio-
metals dysfunction, and (IV) oxidative stress which in 
return results in synapse loss and death of neuronal cells 
in the brain [1]. Also, different hallmarks have been rec-
ognized including the loss of cholinergic neurons, reduc-
tion of the neurotransmitter acetylcholine (ACh), and 
increased expression of inflammatory mediators [2–4].

Based on the approved theory for AD, the loss of cho-
linergic neurons causes reduction of ACh. As a result, 
inhibition of the acetylcholinesterase (AChE) raises 
the level of ACh and improves cognitive performance 
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at the early stage of AD. The critical point is that the 
AChE level decreases with the progression of AD, sub-
sequently, AChE inhibition seems to be ineffective dur-
ing the progression of AD [5, 6]. Interestingly, the level 
of butyrylcholinesterase (BuChE) remains unchanged or 
even increases at the late stage of disease [7]. BuChE can 
hydrolyze ACh and thereby, compensates the reduction 
of AChE activity [8]. A recent experiment with AChE 
knockout mice supported this hypothesis [9]. Results 
from further studies were in accordance with the role of 
BuChE in AD brains and showed a positive correlation 
between selective BuChE inhibition and improved cogni-
tive performance and memory [10, 11].

BuChE has 65% amino acid sequence similarity to 
AChE along with mostly similar functions [12–14]. AChE 
and BuChE active sites have five subsites, including cata-
lytic active site (CAS), peripheral anionic site (PAS), acyl 
binding pocket, oxyanion hole, and anionic subsite [15]. 
One of the structural differences between AChE and 
BuChE can be associated with acyl pocket size. More 
specifically, smaller residue such as Leu286 and Val288 of 
BuChE acyl pocket provide a larger site in BuChE while 
aromatic and bulky Phe295 and Phe297 residues of AChE 
acyl pocket afford smaller space in AChE. Mentioned 
structural differences contribute to the design of selective 
inhibitors [5, 8, 16].

Moreover, produced Aβ peptides can aggregate into Aβ 
plaques which initiate pathogenic cascade leading to neu-
ronal loss and dementia. Inhibition of the accumulation 
of Aβ peptide in the brain could be another therapeutic 
strategy against the development of AD [2]. The metal 
chelatory potential of compounds has also been demon-
strated to exert beneficial effects via decreasing plaque 
aggregation [17, 18].

Results and discussion
Design
Because of the multifactorial and sporadic nature of AD, 
the modern approach “multi-target-one disease” could be 
efficient to develop effective agents to act simultaneously 
at different targets. Selective BuChE inhibitors could be a 
promising target for the treatment of AD at the moder-
ate and advanced stages of the disease [19]. Closer looks 
at X-ray crystallography of BuChE depicted that it usu-
ally tolerates bigger scaffolds than AChE as the active 
site of BuChE is approximately 200 Å larger than AChE. 
Analysis of the potent BuChE inhibitors revealed that 
the N-containing ring could be effective for the inter-
actions with ChE active site (Fig.  1). Molecular dock-
ing evaluation of compound A depicted that coumarin 
moiety interacted with Trp231 and Phe329 residues of 
CAS pocket and benzyl pyridinium moiety interacted 
with Trp82 of BuChE PAS pocket [20]. According to the 

interaction mode of compound B, it can be understood 
that 1,2,3-triazole-aryl moiety led to the formation of 
hydrophobic interactions with amino acids of PAS and 
chromenone ring oriented towards CAS pocket [21]. In 
the case of compound C, diphenyl fit into the BuChE 
CAS pocket while the benzyl triazine pendant group 
showed H-bond interaction with the PAS of BuChE [22, 
23]. As appeared in compounds B and C, increasing 
bulkiness and length of drug candidate could increase 
the selectivity of BuChE over AChE. As can be seen in 
compound D, the presence of relatively spacious moie-
ties can affect the interaction of the designed compounds 
with that amino acid within the active site of BuChE. 
As a result, introducing a dimethylamino propenone 
entity into our system increased the length and volume 
of the designed scaffold which might be a good strategy 
to increase selectivity towards BuChE [24]. Besides, this 
part could also exhibit metal-chelating potential [25].

In the case of anti-Aβ plaques aggregation, it is impor-
tant to keep the potential moiety in the structure to 
inhibit the aggregation of the toxic peptide.

Coumarin structures as active natural compounds may 
simultaneously possess anti-oxidative [2, 26], neuropro-
tective [27] anti-ChE [20] and anti-Aβ aggregative prop-
erties [28, 29]. Coumarins pharmacophore owing to the 
presence of polar elements in the structure (Fig. 1, com-
pound E and F) might help to inhibit amyloid fibril for-
mation through the interaction with the polar surface of 
Aβ [30–32]. Hence, coumarins could serve as a potent 
framework for the prevention of Aβ1-42 aggregation [28]. 
In addition to the inhibition of BuChE and Aβ plaques 
aggregation, an inhibitor that can tackle toxicity of Aβ 
peptide, ROS and RNS could be effective for a longer 
period of AD progression. Recently, iminochromene ring 
was characterized as a potent neuroprotective agent. In 
this project, the iminochromene group of compound G 
was bioisosterically replaced with chromenone moiety 
to evaluate the possible neuroprotectivity [33]. Hence, 
in the present work, a molecular hybridization and bio-
isosteric replacement approaches were used to design 
and synthesize multi-target agents with anti-BuChE, 
anti-Aβ aggregation, neuroprotective, and metal chelat-
ing properties.

Synthesis 
of 1,2,3‑triazole‑dimethylaminoacryloyl‑chromenones
Synthesis of the tilted compounds 10a-m was con-
ducted according to the steps shown in Scheme  1. 
Desired starting material, 2-hydroxy-4-(prop-2-
yn-1-yloxy)benzaldehyde (3) was exactly prepared 
according to the literature [34]. Then, the reaction of 
compound 3 and excess amounts of ethyl acetoacetate 
(4) in ethanol at room temperature overnight afforded 
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Fig. 1 Designed hybrids investigated as selective BuChE inhibitors with anti-Aβ aggregatory, neuroprotective, and metal chelating properties

Scheme 1. The synthetic route for the preparation of compounds 10a‑m 
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3-acetyl-7-(prop-2-yn-1-yloxy)-2H-chromen-2-one 
(5). Reaction of compound 5 and dimethylformamid-
dimethylacetal (DMA-DMF) in 1,4-dioxane under 
reflux conditions for 6  h led to the formation of (E)-3-
(3-(dimethylamino)acryloyl)-7-(prop-2-yn-1-yloxy)-
2H-chromen-2-one (7). Finally, click reaction [35] of 
compound 7 and in  situ prepared azides 9 in the pres-
ence of triethylamine and  CuSO4.5H2O in the mixture of 
water and tert-butyl alcohol at room temperature for 24 h 
gave the corresponding products 10a-m.

AChE and BuChE inhibitory activity
In vitro anti-AChE and anti-BuChE activity of synthe-
sized compounds, 10a-m were performed based on the 
modified Ellman’s method [36] comparing with donepezil 
as the reference drug. Compounds were initially screened 
in vitro against AChE, and none of them exhibited inhibi-
tory properties against the AChE enzyme. Interestingly, 
half of the 1,2,3-triazole- chromenone derivatives showed 
remarkable and selective inhibitory potency towards 
BuChE, which exerted a more prominent role at later 
stages of the disease [37].

As can be seen in Table 1, the BuChEI activity directly 
depended on the electronic property of substituents 
and their positions on the benzyl moiety connected to 
1,2,3-triazole ring. Results showed that compound 10h 
possessing 3,4-diF on the aryl ring induced the best 
BuChE inhibitory activity  (IC50 = 21.71  μM); however, 
the elimination of 3-F completely changed the activity in 
such a manner that compound 10g showed no inhibitory 
activity. meta-Fluorinated derivative 10f was found to 
be a moderate inhibitor as the calculated  IC50 value was 
59.58 μM and para-fluorinated derivative 10g showed no 
inhibitory activity towards BuChE  (IC50 > 100 μM).

Considering the inhibitory activity of other halo-
genated derivatives 10i-m depicted that chlorinated 
compounds 10i and 10j showed no inhibitory activity 
 (IC50 > 100  μM). In the case of brominated derivatives 
10k-m, compounds 10l possessing Br at 3-position of 
aryl ring showed moderate activity with  IC50 value of 
65.96 μM.

In the case of the electron-donating substituent (Me 
and OMe), relatively good results were obtained. The 
presence of methyl group at 2-position of aryl moiety 
(compound 10b) led to relatively good anti-BuChE activ-
ity  (IC50 = 35.73 μM); however, the presence of the same 
group at 4-position of compound 10c completely dimin-
ished inhibitory activity  (IC50 > 100  μM). Another point 
comes back to the derivative 10d containing OMe group 
at 3-position on the benzyl ring which led to higher activ-
ity  (IC50 = 23.44  μM). Finally, the absence of substitu-
ent on the aryl ring (compound 10a) also depicted good 
BuChE inhibitory activity  (IC50 = 34.41 μM).

The in  vitro anti-ChE assay showed that the un-sub-
stituted benzyl derivative (10a) along with the meta-
substituted analogs (10d, 10f, and 10l) had significant 
anti-BuChE activity. Introduction of extra small-size hal-
ogen groups such as F (compound 10h) resulted in the 
most potent activity with an  IC50 value of 21.71 µM.

Kinetic study of BuChE inhibition
The kinetic study was performed to investigate the mech-
anism of inhibition by compound 10h against BuChE. 
Graphical analysis of the reciprocal Lineweaver–Burk 
plot of compound 10h described a mixed-type inhibi-
tion pattern (Fig. 2a) in which compound 10h may bound 
to the BuChE or it already bound to the substrate. Also, 
the Ki value was calculated using the secondary plot as 
38.3 µM (Fig. 2b)

Inhibition of AChE‑induced and self‑induced Aβ aggregation
Aβ peptide is the major constituent of senile plaques 
in the brains of patients with AD. In this respect, the 
effect of the most potent compound 10h was assessed 
for the inhibition against Aβ1-42 aggregation and AChE-
induced Aβ1-40 peptide aggregation using the Thioflavin 
T (ThT) assay. Comparing with donepezil and tacrine 
as the reference compounds, it can be understood that 
10h  was more potent than both controls in inhibiting 

Table 1 Anti-cholinesterase activity of  1,2,3-triazole-

dimethylaminoacryloyl-chromenone 10a-m 

Data are expressed as mean ± SD (three independent experiments)

Entry Ar Product 10 AChEI  IC50 (µM) BuChEI  IC50 (µM)

1 C6H5 10a  > 100 34.41 ± 0.23

2 2-Me-C6H4 10b  > 100 35.73 ± 0.21

3 4-Me-C6H4 10c  > 100  > 100

4 3-MeO-C6H4 10d  > 100 23.44 ± 0.07

5 2-F-C6H4 10e  > 100  > 100

6 3-F-C6H4 10f  > 100 59.58 ± 0.05

7 4-F-C6H4 10g  > 100  > 100

8 3,4-diF-C6H3 10h  > 100 21.71 ± 0.57

9 2-Cl-C6H4 10i  > 100  > 100

10 4-Cl-C6H4 10j  > 100  > 100

11 2-Br-C6H4 10k  > 100  > 100

12 3-Br-C6H4 10l  > 100 65.96 ± 0.004

13 4-Br-C6H4 10m  > 100  > 100

14 donepezil 0.079 ± 0.002 5.19 ± 0.38
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Aβ1-42  self-aggregation, as depicted 32.6%  inhibition at 
10 µM (Table 2). Furthermore, compound 10h inhibited 
AChE-induced Aβ aggregation by 29.4% at 100 μM.

Neuroprotective studies on PC12 cell line
Compound 10h was selected to study the neuroprotec-
tive ability using PC12 cell injury induced by Aβ25–35 by 
MTT assay. This compound depicted no neuroprotective 
effect on Aβ-induced on PC12 cells up to 50 μM. It can 
be understood that bioisosteric replacement of imino-
chromene moiety (compound F, Fig. 1) with chromenone 
ring did not induce the desired neuroprotectivity.

Metal chelating
Compound 10h was tested for its metal chelating ability 
towards  Fe2+,  Cu2+, and  Zn2+ ions (Fig. 3) The UV spec-
trum of methanolic solution (20 µM) of that compound 
showed two characteristic absorption peaks at 309.9 and 
386.7  nm. After the interaction of compound 10h with 
the above mentioned ions for 30 min, small shifts as well 
as absorption intensity changes were observed in the 
spectra confirming biometal-ligand interactions.

Interaction of compound 10h with  Zn2+ ions demon-
strated two absorption peaks at 299.2 and 388.7 nm. Sim-
ilar changes were observed in the case of  Fe2+ ions and 

those absorptions were observed at 303.5 and 390.9 nm. 
When compound 10h was treated with  Cu2+ ions, two 
peaks were observed at 303.5 and 382.4 nm. The stoichi-
ometry of complex  10h-Cu2+  was also studied (Fig.  4) 
due to important role of copper ions in AD [38]. The con-
centration of the test compound 10h was 20 μM and the 
final concentration of  Cu2+  ranged from 0–44  μM with 
4 μM intervals at 303.5 nm. 
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Table 2 Inhibitory activities of  compounds 10h 
against Aβ1-42  aggregationa

a  Values are expressed as means ± SEM of three experiments. b Inhibition of 
self-induced Aβ1-42 aggregation (25 mM) produced by the test compound at 
10 µM concentration. c Co-aggregation inhibition of Aβ1-42 and AChE (2 µM, ratio 
100:1) by the test compound at 100 µM

Samples % Inhibition self‑induced 
Aβ1–42 aggregation

% Inhibition 
AChE‑induced Aβ 
aggregation

10h 32.6 ± 2.0 (10 µM) b 29.4 ± 1.5 (100 µM) c

Tacrine 7.6 ± 1.4 (10 µM) 6.7 ± 0.9 (100 µM)

Donepezil 18.1 ± 1.4 (10 µM) 25.2 ± 1.7 (100 µM)
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The plot was obtained by the corresponding absorption 
against the mole fraction of  Cu2+ to ligand 10h. Accord-
ing to the plot, the ratio 1:1 complexation ration of 10h-
Cu2+ can be seen at the fracture point of the plot with the 
mole fraction of 0.6.

Docking study of BuChE
As discussed in the introduction and designing sections, 
the volume of the BuChE active site is considerably bigger 
than the one found in the AChE, so BuChE can accom-
modate bulkier inhibitors, and this may constitute the 
basis for the selectivity of these derivatives. An overlay of 
the best pose for 10h with BuChE was depicted in Fig. 5. 
Chromenenone core is mostly surrounded by residues of 
CAS pocket, while 3,4-difluoro benzyl moiety oriented 
towards PAS pocket. More specifically, the carbonyl 
group of the chromenenone ring form a hydrogen bond 
with the oxygen of Ser198 of the CAS while the another 
hydrogen bond interaction was seen between the oxygen 
of chromenenone pendant group and Ser198. Also, the 
1,2,3-triazole ring formed a third hydrogen bond with 
Trp82 of the anionic subsite.

The nitrogen of the dimethylamino propenone inter-
acted with Pro285 via Van der Waals interaction. The 
Van der Waals interaction was also constructed between 
1,2,3-triazole moiety and Ala326 of the PAS residue. The 
3,4-difluoro benzyl ring also showed π–π and van der 
Waals interactions with Tyr332. These results strongly 
supported the high potency of compound 10h against 
BuChE. 

It is concluded that not only dimethylamino propenone 
attached to the chromenone ring is an essential factor 
for designing an active and selective BuChE inhibitor, 

but also the nature of substituents on the aryl moieity 
connected to 1,2,3-triazole is the necessary element to 
afford a higher BuChE inhibitory effect. Further com-
puter-aided lead optimization to improve anti-BuChE 
can be performed via replacing of  the dimethylamino 
propenone pendant group with a cyclic amine to evaluate 
the size and bulkiness for the selective BuChE inhibition. 
Besides, the 1,2,3-triazole moiety can be substituted by 
different aliphatic spacer containing CO, NHCO, NH to 
improve the capability of H-bonding interaction with the 
active site.

In silico ADME evaluation
In silico ADME/T studies of the synthesized compounds 
was performed using https ://lmmd.ecust .edu.cn/admet 
sar2/ and https ://pread met.bmdrc .kr, to evaluate phar-
macokinetic properties of possible and potential can-
didates/drug molecules which can be helpful for future 
anti-AD drug developments [40]. As shown in Table  3, 
most of the compounds showed drug-like characteristics 
based on Lipinski’s rule of five (MW < 500, cLogP < 5, HB 
donor ≤ 5, HB acceptor ≤ 10). Our results indicated that 
lipophilicity and solubility of the derivatives were drug-
like. Furthermore, molecular weight, cLogP, and blood–
brain barrier were well within the standard ranges.

Materials and methods
Instrumental methods
Melting points of synthesized compounds were deter-
mined on a Kofler hot stage apparatus. 1H and 13C NMR 
spectra were determined on a Varian FT-500, using TMS 
as an internal standard. IR spectra were recorded using 
KBr disks on a Bruker Tensor 27 FTIR spectrophotome-
ter. Elemental analysis was carried out with an Elemental 
Analyzer system GmbH VarioEL CHN mode.

Synthesis of 2‑hydroxy‑4‑(prop‑2‑yn‑1‑yloxy)benzaldehyde 
(3)
Compound 3 was prepared from the reaction of 2,4-dihy-
droxybenzaldehyde 1 and propargyl bromide 2 in the 
presence of potassium carbonate  (K2CO3) and potassium 
iodide (KI) in acetone at 50 ºC, according to the literature 
[34].

Synthesis of 3‑acetyl‑7‑(prop‑2‑yn‑1‑yloxy)‑2H‑chromen‑2
‑one (5)
A few drops of piperidine were added to the mixture of 
compound 3 (1 mmol) and ethyl acetoacetate (2.5 mmol) 
4 in ethanol (10 mL) and it was stirred overnight at room 
temperature to obtain yellow precipitates. After comple-
tion of the reaction (checked by TLC), they were filtered 
off and used for the next step with no further purification. 

Fig. 5 Schematic representation showing interactions of compound 
10h with the surrounding residues of BuChE (PDB code: 4BDS) [39]

https://lmmd.ecust.edu.cn/admetsar2/
https://lmmd.ecust.edu.cn/admetsar2/
https://preadmet.bmdrc.kr
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It was also completely characterized and compared with 
reported in the literature [41].

Synthesis of (E)‑3‑(3‑(dimethylamino)acryloyl)‑7‑(prop‑2‑y
n‑1‑yloxy)‑2H‑chromen‑2‑one (7)
The mixture of compound 5 (1 mmo l) and DMA-DMF 6 
(2 mmol) in 1,4-dioxane (10 mL) was heated at reflux for 
6 h. Then, the solvent was evaporated under vacuum and 
the residue was purified using plate chromatography with 
ethyl acetate as eluent.

Yield: 55%; M.p. 98–100 °C. IR (KBr): 2925, 2850, 2150, 
1715, 1642, 1598  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.58 (s, 1H, H4), 7.93 (d, J = 12.4 Hz, 1H, CH), 7.54 (d, 
J = 8.3 Hz, 1H, H5), 6.93–6.91 (m, 2H, H6, H8), 6.34 (d, 
J = 12.4 Hz, 1H, CH), 4.77 (s, 2H,  CH2), 3.17 (s, 3H,  CH3), 
2.97 (s, 3H,  CH3), 2.60 (1H, CH) ppm. 13C NMR  (CDCl3, 
125 MHz): 182.3, 162.1, 160.1, 156.4, 155.0, 145.9, 131.1, 
123.3, 113.5, 113.4, 101.3, 95.2, 77.2, 77.0, 56.3, 45.2, 
37.6 ppm.

Synthesis 
of 1,2,3‑triazole‑dimethylaminoacryloyl‑chromenone 
hybrids 10a‑m
The final step was performed by the click reaction of 
compound 7 and in situ prepared azides 9. For this pur-
pose, a solution of benzyl chloride/bromide derivative 
8 (1.1 mmol), sodium azide (0.06 g, 0.9 mmol), and tri-
ethylamine (0.13 g, 1.3 mmol) in water (4 mL) and tert-
butyl alcohol (4 mL) was stirred at room temperature for 
30 min. Then, compound 7 (0.5 mmol) and  CuSO4.5H2O 
(7  mol%) were added to the mixture and it was contin-
ued for 24  h. Upon completion of the reaction checked 
TLC), the mixture was diluted with water, extracted with 

chloroform, and dried over anhydrous  Na2SO4. After 
evaporation of the solvent, the residue was recrystal-
lized from ethyl acetate and petroleum ether to give pure 
product 10. In the case of some compounds, they were 
purified using plate chromatography with ethyl acetate as 
eluent.

(E)‑7‑((1‑Benzyl‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑3‑(3‑(dimethylamino)
acryloyl)‑2H‑chromen‑2‑one (10a)
Yield: 54%; M.p. 186–188 °C. IR (KBr): 2920, 2853, 1715, 
1640, 1597, 1558  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.55 (s, 1H, triazole), 7.91 (d, J = 12.5  Hz, 1H, CH), 
7.60 (s, 1H, H4), 7.50 (d, 1H, J = 8.5  Hz, H5), 7.38–7.29 
(m, 5H, H2′, H3′, H4′, H5′, H6′), 6.92–6.90 (m, 2H, H6, 
H8), 6.33 (d, J = 12.5 Hz, 1H, CH), 5.55 (s, 2H,  CH2), 5.24 
(s, 2H,  CH2), 3.17 (s, 3H,  CH3), 2.96 (s, 3H,  CH3) ppm. 
13C NMR  (CDCl3, 125  MHz): δ = 182.4, 171.7, 162.9, 
156.2, 151.4, 145.6, 144.0, 134.7, 133.3, 131.1, 129.8, 
128.9, 128.2, 122.6, 121.5, 113.3, 101.2, 92.2, 63.4, 57.2, 
47.6, 38.1 ppm. Anal. calcd. for  C24H22N4O4: C, 66.97; H, 
5.15; N, 13.02. Found: C, 66.71; H, 5.38; N, 12.86.

(E)‑3‑(3‑(Dimethylamino)
acryloyl)‑7‑((1‑(2‑methylbenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑2H‑chromen‑2‑one (10b)
Yield: 59%; M.p. 203–205 °C. IR (KBr): 2924, 2855, 1712, 
1640, 1596, 1558  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.58 (s, 1H, triazole), 7.92 (d, J = 12.3  Hz, 1H, CH), 
7.52 (d, 1H, J = 8.3  Hz, H5), 7.46 (s, 1H, H4), 7.32–7.18 
(m, 4H, H3′, H4′, H5′, H6′), 6.93–6.91 (m, 2H, H6, H8), 
6.35 (d, J = 12.3 Hz, 1H, CH), 5.57 (s, 2H,  CH2), 5.24 (s, 
2H,  CH2), 3.18 (s, 3H,  CH3), 2.98 (s, 3H,  CH3), 2.29 (s, 

Table 3 Calculated molecular profile for synthesized compounds 10a-m

Compound Descriptor

Mw cLogP H‑bond 
acceptor

H‑Bond 
Donor

BBB Human intestinal 
absorption

Caco‑2 permeability

10a 430.46 3.27 8 0  + 0.9757  + 0.9298 − 0.8029

10b 444.49 3.58 8 0  + 0.9754  + 0.9370 − 0.7985

10c 444.49 3.58 8 0  + 0.9757  + 0.9370 − 0.7908

10d 460.49 3.28 9 0  + 0.9757  + 0.9298 − 0.7587

10e 448.45 3.41 8 0  + 0.9757  + 0.9294 − 0.8157

10f 448.45 3.41 8 0  + 0.9757  + 0.9294 − 0.7970

10g 448.45 3.41 8 0  + 0.9757  + 0.9294 − 0.8152

10h 466.44 3.55 8 0  + 0.9757  + 0.9294 − 0.8211

10i 464.91 3.92 8 0  + 0.9746  + 0.9319 − 0.8289

10j 464.91 3.92 8 0  + 0.9746  + 0.9319 − 0.8211

10k 509.36 4.03 8 0  + 0.9751  + 0.9131 − 0.8299

10l 509.36 4.03 8 0  + 0.9751  + 0.9131 − 0.8115

10m 509.36 4.03 8 0  + 0.9751  + 0.9131 − 0.8306
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3H,  CH3) ppm. 13C NMR  (CDCl3, 125 MHz): δ = 182.4, 
162.4, 160.2, 156.5, 154.9, 145.9, 143.0, 137.0, 132.0, 
131.1, 130.7, 129.5, 129.3, 126.7, 123.5, 122.7, 113.3, 
113.0, 101.3, 95.2, 62.4, 52.5, 45.3, 37.6, 19.0 ppm. Anal. 
calcd. for  C25H24N4O4: C, 67.55; H, 5.44; N, 12.60. Found: 
C, 67.31; H, 5.70; N, 12.44.

(E)‑3‑(3‑(Dimethylamino)
acryloyl)‑7‑((1‑(4‑methylbenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑2H‑chromen‑2‑one (10c)
Yield: 55%; M.p. 199–201 °C. IR (KBr): 2923, 2855, 1715, 
1640, 1596, 1558  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.57 (s, 1H, triazole), 7.92 (d, J = 12.3  Hz, 1H, CH), 
7.55 (s, 1H, H4), 7.51 (d, 1H, J = 8.3  Hz, H5), 7.19–7.17 
(m, 4H, H2′, H3′, H5′, H6′), 6.94–6.91 (m, 2H, H6, H8), 
6.34 (d, J = 12.3 Hz, 1H, CH), 5.51 (s, 2H,  CH2), 5.24 (s, 
2H,  CH2), 3.17 (s, 3H,  CH3), 2.97 (s, 3H,  CH3), 2.36 (s, 
3H,  CH3) ppm. 13C NMR  (CDCl3, 125 MHz): δ = 182.5, 
162.4, 160.2, 156.6, 1549, 145.9, 143.1, 138.9, 131.2, 130.7, 
129.8, 128.2, 123.3, 122.8, 113.3, 133.2, 101.2, 95.2, 62.4, 
54.6, 45.6, 37.6, 21.2  ppm. Anal. calcd. for  C25H24N4O4: 
C, 67.55; H, 5.44; N, 12.60. Found: C, 67.40; H, 5.26; N, 
12.71.

(E)‑3‑(3‑(Dimethylamino)
acryloyl)‑7‑((1‑(3‑methoxybenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑2H‑chromen‑2‑one (10d)
Yield: 52%; M.p. 209–211 °C. IR (KBr): 2923, 2855, 1712, 
1640, 1595, 1557  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.57 (s, 1H, triazole), 7.92 (d, J = 12.4  Hz, 1H, CH), 
7.59 (s, 1H, H4), 7.52 (d, 1H, J = 8.4  Hz, H5), 7.30 (t, 
J = 7.9 Hz, 1H, H5′), 6.94–6.81 (m, 5H, H6, H8, H2′, H4′, 
H6′), 6.35 (d, J = 12.4  Hz, 1H, CH), 5.52 (s, 2H,  CH2), 
5.25 (s, 2H,  CH2), 3.79 (s, 3H,  OCH3), 3.17 (s, 3H,  CH3), 
2.97 (s, 3H,  CH3) ppm. 13C NMR  (CDCl3, 125  MHz): 
δ = 182.4, 162.4, 160.2, 156.6, 154.9, 145.9, 144.0, 143.2, 
135.7, 130.7, 130.3, 123.4, 122.9, 119.3, 114.3, 113.8, 
133.3, 112.5, 101.2, 95.2, 62.4, 55.3, 54.3, 45.2, 37.6 ppm. 
Anal. calcd. for  C25H24N4O5: C, 65.21; H, 5.25; N, 12.17. 
Found: C, 65.41; H, 5.10; N, 12.32.

(E)‑3‑(3‑(Dimethylamino)
acryloyl)‑7‑((1‑(2‑fluorobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑2H‑chromen‑2‑one (10e)
Yield: 55%; M.p. 180–183 °C. IR (KBr): 2924, 2852, 1712, 
1640, 1597, 1558  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.57 (s, 1H, triazole), 7.91 (d, J = 12.4  Hz, 1H, CH), 
7.67 (s, 1H, H4), 7.51 (d, 1H, J = 8.0  Hz, H5), 7.39–7.38 
(m, 1H, H4′), 7.30 (td, J = 7.6, 1.5  Hz, 1H, H3′), 7.17–
7.11 (m, 2H, H5′, H6′), 6.94–6.92 (m, 2H, H6, H8), 6.34 
(d, J = 12.4  Hz, 1H, CH), 5.61 (s, 2H,  CH2), 5.25 (s, 2H, 
 CH2), 3.17 (s, 3H,  CH3), 2.97 (s, 3H,  CH3) ppm. 13C 

NMR  (CDCl3, 125  MHz): δ = 182.3, 162.4, 160.6 (d, JC-
F = 251.2  Hz), 160.1, 158.7, 156.6, 154.8, 145.9, 143.2, 
131.1 (d, JC-F = 8.1 Hz), 130.7 (d, JC-F = 3.3 Hz), 124.9 (d, 
JC-F = 3.4 Hz), 123.3, 121.3, 121.6 (d, JC-F = 14.5 Hz), 115.9 
(d, JC-F = 21.03  Hz), 113.3, 113.2, 101.2, 95.2, 62.4, 47.9, 
45.2, 37.5  ppm. Anal. calcd. for  C24H21FN4O4: C, 64.28; 
H, 4.72; N, 12.49. Found: C, 64.36; H, 4.57; N, 12.55.

(E)‑3‑(3‑(Dimethylamino)
acryloyl)‑7‑((1‑(3‑fluorobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑2H‑chromen‑2‑one (10f)
Yield: 60%; M.p. 183–185  °C. IR (KBr): 2922, 2850, 
1713, 1640, 1597  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.57 (s, 1H, triazole), 7.91 (d, J = 12.3  Hz, 1H, CH), 
7.61 (s, 1H, H4), 7.51 (d, 1H, J = 8.3  Hz, H5), 7.36 (td, 
1H, J = 7.5, 2.2  Hz, H5′), 7.08–7.04 (m, 2H, H4′, H6′), 
6.97 (d, 1H, J = 9.2 Hz, H2′), 6.94–6.91 (m, 2H, H6, H8), 
6.34 (d, J = 12.3 Hz, 1H, CH), 5.55 (s, 2H,  CH2), 5.26 (s, 
2H,  CH2), 3.17 (s, 3H,  CH3), 2.96 (s, 3H,  CH3) ppm. 13C 
NMR  (CDCl3, 125  MHz): δ = 180.0, 162.3, 160.7 (d, JC-
F = 262.2  Hz), 160.1, 156.7, 154.9, 145.8, 143.5, 136.6 (d, 
JC-F = 19.4 Hz), 130.8 (d, JC-F = 8.1 Hz), 130.7, 123.6, 123.3, 
122.9, 115.9 (d, JC-F = 20.9  Hz), 115.1 (d, JC-F = 22.0  Hz), 
113.3, 113.2, 101.2, 95.2, 62.4, 53.7, 45.0, 37.6 ppm. Anal. 
calcd. for  C24H21FN4O4: C, 64.28; H, 4.72; N, 12.49. 
Found: C, 64.47; H, 4.84; N, 12.60.

(E)‑3‑(3‑(Dimethylamino)
acryloyl)‑7‑((1‑(4‑fluorobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑2H‑chromen‑2‑one (10g)
Yield: 62%; M.p. 183–185 °C. IR (KBr): 2923, 2855, 1714, 
1640, 1598  cm−1. 1H NMR  (CDCl3, 500  MHz): δ = 8.56 
(s, 1H, triazole), 7.92 (d, J = 12.4 Hz, 1H, CH), 7.58 (s, 1H, 
H4), 7.51 (d, 1H, J = 8.4 Hz, H5), 7.29 (dd, J = 8.7, 5.1 Hz, 
2H, H2′, H6′), 7.07 (t, J = 8.7 Hz, 2H, H3′, H5′), 6.93–6.91 
(m, 2H, H6, H8), 6.33 (d, J = 12.4  Hz, 1H, CH), 5.52 (s, 
2H,  CH2), 5.24 (s, 2H,  CH2), 3.16 (s, 3H,  CH3), 2.96 (s, 
3H,  CH3) ppm. 13C NMR  (CDCl3, 125 MHz): δ = 180.1, 
162.4, 160.5 (d, JC-F = 260.5  Hz), 160.1, 156.5, 154.8, 
145.1, 143.4, 134.5 (d, JC-F = 19.5 Hz), 130.7, 130.1, 123.3, 
122.8, 116.2 (d, JC-F = 21.0 Hz), 113.3, 113.2, 101.2, 95.1, 
62.1, 53.5, 45.0, 37.5 ppm. Anal. calcd. for  C24H21FN4O4: 
C, 64.28; H, 4.72; N, 12.49. Found: C, 64.44; H, 4.60; N, 
12.27.

(E)‑7‑((1‑(3,4‑Difluorobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑3‑(3‑(dimethylamino)
acryloyl)‑2H‑chromen‑2‑one (10h)
Yield: 59%; M.p. 188–190 °C. IR (KBr): 2922, 2850, 1718, 
1640, 1594  cm−1. 1H NMR  (CDCl3, 500  MHz): δ = 8.57 
(s, 1H, triazole), 7.91 (d, J = 12.3 Hz, 1H, CH), 7.63 (s, 1H, 
H4), 7.52 (d, 1H, J = 8.4 Hz, H5), 7.21–7.11 (m, 2H, H5′, 
H6′), 7.06–7.04 (m, 1H, H2′), 6.93–6.91 (m, 2H, H6, H8), 
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6.33 (d, J = 12.3 Hz, 1H, CH), 5.52 (s, 2H,  CH2), 5.27 (s, 
2H,  CH2), 3.18 (s, 3H,  CH3), 2.97 (s, 3H,  CH3) ppm. 13C 
NMR  (CDCl3, 125  MHz): δ = 182.3, 160.1, 156.6, 154.9, 
150.5 (d, JC-F = 243.1 Hz), 149.6, (d, JC-F = 240.0 Hz), 145.8, 
144.0, 143.6, 132.8, 131.2, 130.7, 124.3, 123.4, 122.9, 118.1 
(d, JC-F = 17.2), 117.3 (d, JC-F = 17.6), 113.3, 101.2, 95.2, 
62.4, 53.2, 45.2, 37.6 ppm. Anal. calcd. for  C24H20F2N4O4: 
C, 61.80; H, 4.32; N, 12.01. Found: C, 61.63; H, 4.17; N, 
11.84.

(E)‑7‑((1‑(2‑Chlorobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑3‑(3‑(dimethylamino)
acryloyl)‑2H‑chromen‑2‑one (10i)
Yield: 58%; M.p. 178–180 °C. IR (KBr): 2923, 2852, 1713, 
1640, 1597  cm−1. 1H NMR  (CDCl3, 500  MHz): δ = 8.60 
(s, 1H, triazole), 7.91 (d, J = 11.0 Hz, 1H, CH), 7.68 (s, 1H, 
H4), 7.51 (d, 1H, J = 8.1 Hz, H5), 7.43 (d, 1H, J = 7.9 Hz, 
H3′), 7.32–7.24 (m, 3H, H4′, H5′, H6′), 6.93–6.87 (m, 
2H, H6, H8), 6.33 (d, J = 11.0  Hz, 1H, CH), 5.69 (s, 2H, 
 CH2), 5.29 (s, 2H,  CH2), 3.16 (s, 3H,  CH3), 2.96 (s, 3H, 
 CH3) ppm. 13C NMR  (CDCl3, 125 MHz): δ = 182.7, 171.5, 
163.8, 158.5, 156.3, 151.7, 144.5, 133.6, 131.7, 130.7, 130.5, 
130.4, 130.0, 127.7, 123.4, 120.1, 113.3, 112.8, 100.6, 96.6, 
61.1, 52.3, 46.4, 40.4 ppm. Anal. calcd. for  C24H21ClN4O4: 
C, 62.00; H, 4.55; N, 12.05. Found: C, 61.81; H, 4.38; N, 
11.90.

(E)‑7‑((1‑(4‑Chlorobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑3‑(3‑(dimethylamino)
acryloyl)‑2H‑chromen‑2‑one (10j)
Yield: 61%; M.p. 178–180 °C. IR (KBr): 2891, 2850, 1715, 
1640, 1597, 1558  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.54 (s, 1H, triazole), 7.90 (d, J = 12.4  Hz, 1H, CH), 
7.61 (s, 1H, H4), 7.50 (d, J = 8.5  Hz, 1H, H5), 7.34 (d, 
J = 8.1  Hz, 2H, H3′, H5′), 7.22 (d, J = 8.1  Hz, 2H, H2′, 
H6′),

6.92–6.89 (m, 2H, H6, H8), 6.34 (d, J = 12.4  Hz, 
1H, CH), 5.52 (s, 2H,  CH2), 5.19 (s, 2H,  CH2), 3.11 (s, 
3H,  CH3), 2.95 (s, 3H,  CH3) ppm. 13C NMR  (CDCl3, 
125  MHz): δ = 182.9, 162.4, 160.1, 156.5, 154.9, 145.8, 
144.2, 143.4, 134.9, 130.7, 129.5, 129.4, 123.3, 122.9, 
113.3, 133.2, 101.2, 95.2, 62.4, 53.5, 45.2, 37.6 ppm. Anal. 
calcd. for  C24H21ClN4O4: C, 62.00; H, 4.55; N, 12.05. 
Found: C, 62.11; H, 4.40; N, 12.28.

(E)‑7‑((1‑(2‑Bromobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑3‑(3‑(dimethylamino)
acryloyl)‑2H‑chromen‑2‑one (10k)
Yield: 58%; M.p. 202–205 °C. IR (KBr): 2924, 2850, 1709, 
1641, 1598, 1559  cm−1. 1H NMR  (CDCl3, 500  MHz): 
δ = 8.57 (s, 1H, triazole), 7.92 (d, J = 12.3  Hz, 1H, CH), 
7.70 (s, 1H, H4), 7.63 (d, 1H, J = 7.5  Hz, H3′), 7.52 (d, 

1H, J = 8.3  Hz, H5), 7.33 (t, 1H, J = 7.5  Hz, H5′), 7.25–
7.21 (m, 2H, H4′, H6′), 6.95–6.93 (m, 2H, H6, H8), 6.34 
(d, J = 12.3  Hz, 1H, CH), 5.69 (s, 2H,  CH2), 5.27 (s, 2H, 
 CH2), 3.21 (s, 3H,  CH3), 2.97 (s, 3H,  CH3) ppm. 13C NMR 
 (CDCl3, 125 MHz): δ = 182.5, 162.4, 160.1, 156.6, 154.9, 
145.9, 143.1, 133.8, 133.4, 133.3, 130.7, 130.6, 130.5, 
128.3, 123.6, 123.3, 113.4, 113.3, 100.4, 95.2, 62.0, 54.0, 
44.8, 37.2 ppm. Anal. calcd. for  C24H21BrN4O4: C, 56.59; 
H, 4.16; N, 11.00. Found: C, 56.37; H, 4.30; N, 11.21.

(E)‑7‑((1‑(3‑Bromobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑3‑(3‑(dimethylamino)
acryloyl)‑2H‑chromen‑2‑one (10l)
Yield: 64%; M.p. 218–220 °C. IR (KBr): 2925, 2856, 1710, 
1640, 1595  cm−1. 1H NMR  (CDCl3, 500  MHz): δ = 8.59 
(s, 1H, triazole), 7.93 (d, J = 12.4 Hz, 1H, CH), 7.61 (s, 1H, 
H4), 7.55–7.51 (m, 3H, H5, H2′, H4′), 7.26–7.18 (m, 2H, 
H5′, H6′), 6.96–6.94 (m, 2H, H6, H8), 6.35 (d, J = 12.4 Hz, 
1H, CH), 5.51 (s, 2H,  CH2), 5.28 (s, 2H,  CH2), 3.19 (s, 
3H,  CH3), 2.98 (s, 3H,  CH3) ppm. 13C NMR  (CDCl3, 
125  MHz): δ = 180.1, 162.3, 160.2, 156.5, 154.9, 145.9, 
143.5, 136.4, 133.7, 132.1, 131.1, 130.9, 130.8, 126.6, 
122.9, 122.2, 113.4, 113.3, 101.1, 95.0, 62.8, 53.6, 44.8, 
38.8  ppm. Anal. calcd. for  C24H21BrN4O4: C, 56.59; H, 
4.16; N, 11.00. Found: C, 56.31; H, 4.24; N, 11.18.

(E)‑7‑((1‑(4‑Bromobenzyl)‑1H‑1,2,3‑triazol‑4‑yl)
methoxy)‑3‑(3‑(dimethylamino)
acryloyl)‑2H‑chromen‑2‑one (10m)
Yield: 64%; M.p. 173–175 °C. IR (KBr): 2925, 2850, 1715, 
1640, 1597  cm−1. 1H NMR  (CDCl3, 500  MHz): δ = 8.57 
(s, 1H, triazole), 7.91 (d, J = 12.3  Hz, 1H, CH), 7.60 
(s, 1H, H4), 7.52–7.51 (m, 3H, H5, H3′, H5′), 7.17 (d, 
J = 8.4 Hz, 2H, H2′, H6′), 6.93–6.91 (m, 2H, H6, H8), 6.34 
(d, J = 12.3  Hz, 1H, CH), 5.51 (s, 2H,  CH2), 5.22 (s, 2H, 
 CH2), 3.17 (s, 3H,  CH3), 2.96 (s, 3H,  CH3) ppm. 13C NMR 
 (CDCl3, 125 MHz): δ = 182.4, 162.9, 160.1, 156.6, 154.9, 
146.6, 144.4, 143.5, 133.3, 132.4, 130.7, 129.8, 123.3, 
123.1, 122.9, 112.7, 100.8, 95.2, 62.4, 53.6, 45.2, 37.6 ppm. 
Anal. calcd. for  C24H21BrN4O4: C, 56.59; H, 4.16; N, 11.00. 
Found: C, 56.68; H, 4.38; N, 10.87 (Additional file 1).

Inhibitory activities against AChE and BuChE
All enzymes and reagents required for the assay were 
obtained from Aldrich. The in  vitro anticholinester-
ase activity of all synthesized compounds 10a-m was 
assayed using modified Ellman’s method using a 96-well 
plate reader (BioTek ELx808) according to the literature 
[36, 42]. Initially, the stock solutions of compounds 10 
were prepared by dissolving the test compound (1  mg) 
in DMSO (1 mL) and then, diluted solutions at final con-
centrations of 1, 10, 20, and 40  μg/mL were prepared 
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using methanol. Each well contained 50 µL potassium 
phosphate buffer  (KH2PO4/  K2HPO4, 0.1  M, pH 8), 25 
µL sample solution, and 25 µL enzyme (final concentra-
tion 0.22 U/mL in buffer). Control experiments were also 
performed under the same conditions without enzyme. 
After incubation at room temperature for 15 min, 125 µL 
DTNB (3  mM in buffer) was added and the characteri-
zation of enzymatic reaction was spectrometrically per-
formed at 405 nm followed by the addition of substrate 
(ATCI 3  mM in water) after 5–10  min. The  IC50 values 
were determined graphically from inhibition curves (log 
inhibitor concentration vs. percent of inhibition). Also, 
the same method was used for the BuChE inhibition 
assay.

Kinetic characterization of BuChE inhibitory activity
The kinetic study for the inhibition of BuChE by com-
pound 10h was carried out according to Ellman’s method 
used for the inhibition assay using four different con-
centrations of inhibitor (0, 10.7, 42.9, and 85.8  µM). 
The Lineweaver–Burk reciprocal plot was provided by 
plotting 1/V against 1/[S] at variable concentrations of 
butyrylthiocholine as the substrate (187.5, 750, 1500, 
3000 µM). The inhibition constant Ki was achieved by the 
plot of slopes versus the corresponding concentrations of 
compound 10h [43, 44].

Inhibition of Aβ1-42 aggregation and disaggregation 
of aggregated Aβ1-40 induced by AChE
Inhibition of Aβ1-42 self-aggregation was measured 
by ThT fluorescence assay. The details of the method 
were reported in our previous study [45]. To study Aβ42 
aggregation inhibition, a reported method, based on the 
fluorescence emission of ThT was followed. Briefly, the 
mixtures of Aβ1-40 peptide (Bachem company, Switzer-
land) and AChE (Sigma, Electrophorus electricus), in 
the presence or absence of the test inhibitor were incu-
bated for 24  h at room temperature. The final concen-
trations of Aβ (dissolved in DMSO and diluted 0.215 M 
sodium phosphate buffer, pH 8), AChE (dissolved in 
0.215 M sodium phosphate buffer, pH 8.0), and the test 
compound are 200 µM, 2 µM and 100 µM, respectively. 
After co-incubation, 20 µL of the mixed solution was 
diluted to a final volume of 2  mL with ThT (1.5  µM in 
50  mM glycine–NaOH buffer, pH 8.5) and the absorb-
ance was measured with a multi-mode plate reader at the 
excitation and emission wavelength of λex = 450 nm and 
λem = 485 nm, respectively [45].

Neuroprotection assay against Aβ‑induced damage
MTT reduction assay was used to evaluate the neuro-
protective effect of compound 10h on neuronal PC12 
cell damage induced by Aβ25-35. The cells were grown 

in monolayer culture on collagen-coated plates at 
37 °C in a humidified atmosphere of 5%  CO2. Neuronal 
PC12 cells were plated at a density of 5 × 105 cells/well 
on 96-well plates. The cells were pre-incubated with 
compound 10h for 3  h before human Aβ 25–35 (final 
concentration of 5  μM) was added. After 24  h, 90 μL 
the medium was taken out and 20 μL of MTT (0.5 mg/
ml dissolved in RPMI containing phenol red) was 
added and incubated for an additional 2 h at 37 °C. The 
absorbance (A570 nm) was measured using a Bio-Rad 
microplate reader (Model 680, Bio-Rad). The details 
were reported in our previous work [33, 46].

Metal chelation studies
To study the metal chelating ability, the solutions of 
compound 10h and  Fe2+,  Cu2+, and  Zn2+ ions (from 
 FeSO4,  CuCl2.2H2O, and  ZnCl2) were prepared in meth-
anol. The mixture of compound 10h (1 mL) and the test 
ion solutions (1  mL) with the same final concentra-
tion of 20 µM in a 1 cm quartz cuvette was incubated 
at room temperature for 30 min. Then, the absorption 
spectra were recorded in the range of 200–600 nm.

The stoichiometry of complex  10h-Cu2+  was also 
studied using the molar ratio method [47, 48]. The con-
centration of compound  10h was 20  μM and the final 
concentration of  Cu2+ ranged from 0–44 μM with 4 μM 
intervals at 303.5 nm. The plot was obtained by the cor-
responding absorption versus mole fraction of  Cu2+ to 
ligand 10h. All experiments were performed in triplicate.

Molecular docking
The molecular docking studies of the most potential 
ligand was performed on BuChE (PDB code: 4BDS) [39] 
to observe the binding orientation and consensual bind-
ing interactions using AutoDock 4.2. The X-ray crystal 
structure of the receptor was downloaded from the PDB 
database. All water and ligand molecules were removed 
from the structure, and the protein was prepared for 
docking. The co-crystallized ligand within the PDB 
structures was defined as a center of the binding site. All 
ligands were created using Chem3D Ultra software, and 
energy minimizations were done by the semiempirical 
 MM+ [49]. The compounds were docked into the active 
site of proteins using default parameters for each ligand 
with 100 runs and 27,000 as the maximum number of 
generations. The grid boxes were set with 60, 60, and 60 
points in the x, y, and z directions, respectively. All other 
options were set as default. The calculated geometries 
were ranked in terms of free energy of binding and the 
best pose was selected for further analysis. Molecular 
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visualizations were performed by Discovery Studio 4.0 
client software [20].

Prediction of ADME descriptors
ADME-Tox properties of the  synthesized compounds 
were performed by using online servers especially https 
://lmmd.ecust .edu.cn:8000/predi ct/ and https ://pread 
met.bmdrc .kr.

Conclusion
In summary, a new series of 1,2,3-triazole-dimethyl-
aminoacryloyl-chromenone derivatives were designed 
and synthesized as multifunctional anti-Alzheimer’s 
agents. All the target compounds were synthesized 
and screened as AChE/BuChE inhibitors. The most 
active compound was further evaluated by the multi-
ple biological activities including Aβ1-42 aggregation 
inhibition, metal-chelating properties, and neuropro-
tective effects against Aβ25-35-induced PC12 cell injury. 
Our results showed that these compounds had a high 
inhibitory potency and selectivity towards BuChE 
with an  IC50 value of 21.71  μM for 10h as the most 
potent BuChE inhibitor. The inhibition kinetic analy-
sis revealed a mixed-type inhibition pattern for this 
compound. The molecular modeling study of the most 
potent compound 10h with BuChE indicated that it 
bound to both CAS and PAS of the BuChE. Moreover, 
this compound had a significant anti-Aβ aggregation 
capacity and served as a metal chelator. These results 
indicated that this hybridization approach could be 
a successful strategy for the further developments of 
potential multifunctional candidates against AD.
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